Files
Mofox-Core/src/plugins/chat/auto_speak.py
2025-04-10 17:01:25 +08:00

185 lines
7.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import asyncio
import random
from random import random as random_float
from typing import Dict
from ..config.config import global_config
from .message import MessageSending, MessageThinking, MessageSet, MessageRecv
from ..message.message_base import UserInfo, Seg
from .message_sender import message_manager
from ..moods.moods import MoodManager
from ..chat_module.reasoning_chat.reasoning_generator import ResponseGenerator
from src.common.logger import get_module_logger
from src.heart_flow.heartflow import heartflow
from ...common.database import db
logger = get_module_logger("auto_speak")
class AutoSpeakManager:
def __init__(self):
self._last_auto_speak_time: Dict[str, float] = {} # 记录每个聊天流上次自主发言的时间
self.mood_manager = MoodManager.get_instance()
self.gpt = ResponseGenerator() # 添加gpt实例
self._started = False
self._check_task = None
self.db = db
async def get_chat_info(self, chat_id: str) -> dict:
"""从数据库获取聊天流信息"""
chat_info = await self.db.chat_streams.find_one({"stream_id": chat_id})
return chat_info
async def start_auto_speak_check(self):
"""启动自动发言检查任务"""
if not self._started:
self._check_task = asyncio.create_task(self._periodic_check())
self._started = True
logger.success("自动发言检查任务已启动")
async def _periodic_check(self):
"""定期检查是否需要自主发言"""
while True and global_config.enable_think_flow:
# 获取所有活跃的子心流
active_subheartflows = []
for chat_id, subheartflow in heartflow._subheartflows.items():
if (
subheartflow.is_active and subheartflow.current_state.willing > 0
): # 只考虑活跃且意愿值大于0.5的子心流
active_subheartflows.append((chat_id, subheartflow))
logger.debug(
f"发现活跃子心流 - 聊天ID: {chat_id}, 意愿值: {subheartflow.current_state.willing:.2f}"
)
if not active_subheartflows:
logger.debug("当前没有活跃的子心流")
await asyncio.sleep(20) # 添加异步等待
continue
# 随机选择一个活跃的子心流
chat_id, subheartflow = random.choice(active_subheartflows)
logger.info(f"随机选择子心流 - 聊天ID: {chat_id}, 意愿值: {subheartflow.current_state.willing:.2f}")
# 检查是否应该自主发言
if await self.check_auto_speak(subheartflow):
logger.info(f"准备自主发言 - 聊天ID: {chat_id}")
# 生成自主发言
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform="qq", # 默认使用qq平台
)
# 创建一个空的MessageRecv对象作为上下文
message = MessageRecv(
{
"message_info": {
"user_info": {"user_id": chat_id, "user_nickname": "", "platform": "qq"},
"group_info": None,
"platform": "qq",
"time": time.time(),
},
"processed_plain_text": "",
"raw_message": "",
"is_emoji": False,
}
)
await self.generate_auto_speak(
subheartflow, message, bot_user_info, message.message_info["user_info"], message.message_info
)
else:
logger.debug(f"不满足自主发言条件 - 聊天ID: {chat_id}")
# 每分钟检查一次
await asyncio.sleep(20)
# await asyncio.sleep(5) # 发生错误时等待5秒再继续
async def check_auto_speak(self, subheartflow) -> bool:
"""检查是否应该自主发言"""
if not subheartflow:
return False
current_time = time.time()
chat_id = subheartflow.observe_chat_id
# 获取上次自主发言时间
if chat_id not in self._last_auto_speak_time:
self._last_auto_speak_time[chat_id] = 0
last_speak_time = self._last_auto_speak_time.get(chat_id, 0)
# 如果距离上次自主发言不到5分钟不发言
if current_time - last_speak_time < 30:
logger.debug(
f"距离上次发言时间太短 - 聊天ID: {chat_id}, 剩余时间: {30 - (current_time - last_speak_time):.1f}"
)
return False
# 获取当前意愿值
current_willing = subheartflow.current_state.willing
if current_willing > 0.1 and random_float() < 0.5:
self._last_auto_speak_time[chat_id] = current_time
logger.info(f"满足自主发言条件 - 聊天ID: {chat_id}, 意愿值: {current_willing:.2f}")
return True
logger.debug(f"不满足自主发言条件 - 聊天ID: {chat_id}, 意愿值: {current_willing:.2f}")
return False
async def generate_auto_speak(self, subheartflow, message, bot_user_info: UserInfo, userinfo, messageinfo):
"""生成自主发言内容"""
thinking_time_point = round(time.time(), 2)
think_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=think_id,
chat_stream=None, # 不需要chat_stream
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
# 生成自主发言内容
try:
response, raw_content = await self.gpt.generate_response(message)
except Exception as e:
logger.error(f"生成自主发言内容时发生错误: {e}")
return False
if response:
message_set = MessageSet(None, think_id) # 不需要chat_stream
mark_head = False
for msg in response:
message_segment = Seg(type="text", data=msg)
bot_message = MessageSending(
message_id=think_id,
chat_stream=None, # 不需要chat_stream
bot_user_info=bot_user_info,
sender_info=userinfo,
message_segment=message_segment,
reply=message,
is_head=not mark_head,
is_emoji=False,
thinking_start_time=thinking_time_point,
)
if not mark_head:
mark_head = True
message_set.add_message(bot_message)
message_manager.add_message(message_set)
# 更新情绪和关系
stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
return True
return False
# 创建全局AutoSpeakManager实例
auto_speak_manager = AutoSpeakManager()