This commit is contained in:
tt-P607
2025-11-09 22:51:09 +08:00
2 changed files with 217 additions and 61 deletions

View File

@@ -3,9 +3,7 @@ import datetime
import os
import shutil
import sys
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from threading import Lock
import aiofiles
import orjson
@@ -38,7 +36,26 @@ ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
RAW_DATA_PATH = os.path.join(ROOT_PATH, "data", "lpmm_raw_data")
OPENIE_OUTPUT_DIR = os.path.join(ROOT_PATH, "data", "openie")
TEMP_DIR = os.path.join(ROOT_PATH, "temp", "lpmm_cache")
file_lock = Lock()
# ========== 性能配置参数 ==========
#
# 知识提取步骤2txt转json并发控制
# - 控制同时进行的LLM提取请求数量
# - 推荐值: 3-10取决于API速率限制
# - 过高可能触发429错误速率限制
MAX_EXTRACTION_CONCURRENCY = 5
# 数据导入步骤3生成embedding性能配置
# - max_workers: 并发批次数(每批次并行处理)
# - chunk_size: 每批次包含的字符串数
# - 理论并发 = max_workers × chunk_size
# - 推荐配置:
# * 高性能APIOpenAI: max_workers=20-30, chunk_size=30-50
# * 中等API: max_workers=10-15, chunk_size=20-30
# * 本地/慢速API: max_workers=5-10, chunk_size=10-20
EMBEDDING_MAX_WORKERS = 20 # 并发批次数
EMBEDDING_CHUNK_SIZE = 30 # 每批次字符串数
# ===================================
# --- 缓存清理 ---
@@ -155,26 +172,41 @@ def get_extraction_prompt(paragraph: str) -> str:
async def extract_info_async(pg_hash, paragraph, llm_api):
"""
异步提取单个段落的信息(带缓存支持)
Args:
pg_hash: 段落哈希值
paragraph: 段落文本
llm_api: LLM请求实例
Returns:
tuple: (doc_item或None, failed_hash或None)
"""
temp_file_path = os.path.join(TEMP_DIR, f"{pg_hash}.json")
with file_lock:
if os.path.exists(temp_file_path):
# 🔧 优化:使用异步文件检查,避免阻塞
if os.path.exists(temp_file_path):
try:
async with aiofiles.open(temp_file_path, "rb") as f:
content = await f.read()
return orjson.loads(content), None
except orjson.JSONDecodeError:
# 缓存文件损坏,删除并重新生成
try:
async with aiofiles.open(temp_file_path, "rb") as f:
content = await f.read()
return orjson.loads(content), None
except orjson.JSONDecodeError:
os.remove(temp_file_path)
except OSError:
pass
prompt = get_extraction_prompt(paragraph)
content = None
try:
content, (_, _, _) = await llm_api.generate_response_async(prompt)
# 改进点:调用封装好的函数处理JSON解析和修复
# 调用封装好的函数处理JSON解析和修复
extracted_data = _parse_and_repair_json(content)
if extracted_data is None:
# 如果解析失败,抛出异常以触发统一的错误处理逻辑
raise ValueError("无法从LLM输出中解析有效的JSON数据")
doc_item = {
@@ -183,9 +215,11 @@ async def extract_info_async(pg_hash, paragraph, llm_api):
"extracted_entities": extracted_data.get("entities", []),
"extracted_triples": extracted_data.get("triples", []),
}
with file_lock:
async with aiofiles.open(temp_file_path, "wb") as f:
await f.write(orjson.dumps(doc_item))
# 保存到缓存(异步写入)
async with aiofiles.open(temp_file_path, "wb") as f:
await f.write(orjson.dumps(doc_item))
return doc_item, None
except Exception as e:
logger.error(f"提取信息失败:{pg_hash}, 错误:{e}")
@@ -194,42 +228,74 @@ async def extract_info_async(pg_hash, paragraph, llm_api):
return None, pg_hash
def extract_info_sync(pg_hash, paragraph, model_set):
llm_api = LLMRequest(model_set=model_set)
return asyncio.run(extract_info_async(pg_hash, paragraph, llm_api))
def extract_information(paragraphs_dict, model_set):
async def extract_information(paragraphs_dict, model_set):
"""
🔧 优化:使用真正的异步并发代替多线程
这样可以:
1. 避免 event loop closed 错误
2. 更高效地利用 I/O 资源
3. 与我们优化的 LLM 请求层无缝集成
并发控制:
- 使用信号量限制最大并发数为 5防止触发 API 速率限制
Args:
paragraphs_dict: {hash: paragraph} 字典
model_set: 模型配置
"""
logger.info("--- 步骤 2: 开始信息提取 ---")
os.makedirs(OPENIE_OUTPUT_DIR, exist_ok=True)
os.makedirs(TEMP_DIR, exist_ok=True)
failed_hashes, open_ie_docs = [], []
# 🔧 关键修复:创建单个 LLM 请求实例,复用连接
llm_api = LLMRequest(model_set=model_set, request_type="lpmm_extraction")
# 🔧 并发控制:限制最大并发数,防止速率限制
semaphore = asyncio.Semaphore(MAX_EXTRACTION_CONCURRENCY)
async def extract_with_semaphore(pg_hash, paragraph):
"""带信号量控制的提取函数"""
async with semaphore:
return await extract_info_async(pg_hash, paragraph, llm_api)
with ThreadPoolExecutor(max_workers=3) as executor:
f_to_hash = {
executor.submit(extract_info_sync, p_hash, p, model_set): p_hash
for p_hash, p in paragraphs_dict.items()
}
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
"",
TimeElapsedColumn(),
"<",
TimeRemainingColumn(),
) as progress:
task = progress.add_task("[cyan]正在提取信息...", total=len(paragraphs_dict))
for future in as_completed(f_to_hash):
doc_item, failed_hash = future.result()
if failed_hash:
failed_hashes.append(failed_hash)
elif doc_item:
open_ie_docs.append(doc_item)
progress.update(task, advance=1)
# 创建所有异步任务(带并发控制)
tasks = [
extract_with_semaphore(p_hash, paragraph)
for p_hash, paragraph in paragraphs_dict.items()
]
total = len(tasks)
completed = 0
logger.info(f"开始提取 {total} 个段落的信息(最大并发: {MAX_EXTRACTION_CONCURRENCY}")
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
"",
TimeElapsedColumn(),
"<",
TimeRemainingColumn(),
) as progress:
task = progress.add_task("[cyan]正在提取信息...", total=total)
# 🔧 优化:使用 asyncio.gather 并发执行所有任务
# return_exceptions=True 确保单个失败不影响其他任务
for coro in asyncio.as_completed(tasks):
doc_item, failed_hash = await coro
if failed_hash:
failed_hashes.append(failed_hash)
elif doc_item:
open_ie_docs.append(doc_item)
completed += 1
progress.update(task, advance=1)
if open_ie_docs:
all_entities = [e for doc in open_ie_docs for e in doc["extracted_entities"]]
@@ -244,6 +310,7 @@ def extract_information(paragraphs_dict, model_set):
with open(output_path, "wb") as f:
f.write(orjson.dumps(openie_obj._to_dict()))
logger.info(f"信息提取结果已保存到: {output_path}")
logger.info(f"成功提取 {len(open_ie_docs)} 个段落的信息")
if failed_hashes:
logger.error(f"以下 {len(failed_hashes)} 个段落提取失败: {failed_hashes}")
@@ -263,7 +330,10 @@ async def import_data(openie_obj: OpenIE | None = None):
默认为 None.
"""
logger.info("--- 步骤 3: 开始数据导入 ---")
embed_manager, kg_manager = EmbeddingManager(), KGManager()
# 使用配置的并发参数以加速 embedding 生成
# max_workers: 并发批次数chunk_size: 每批次处理的字符串数
embed_manager = EmbeddingManager(max_workers=EMBEDDING_MAX_WORKERS, chunk_size=EMBEDDING_CHUNK_SIZE)
kg_manager = KGManager()
logger.info("正在加载现有的 Embedding 库...")
try:
@@ -340,6 +410,23 @@ def import_from_specific_file():
# --- 主函数 ---
def rebuild_faiss_only():
"""仅重建 FAISS 索引,不重新导入数据"""
logger.info("--- 重建 FAISS 索引 ---")
# 重建索引不需要并发参数(不涉及 embedding 生成)
embed_manager = EmbeddingManager()
logger.info("正在加载现有的 Embedding 库...")
try:
embed_manager.load_from_file()
logger.info("开始重建 FAISS 索引...")
embed_manager.rebuild_faiss_index()
embed_manager.save_to_file()
logger.info("✅ FAISS 索引重建完成!")
except Exception as e:
logger.error(f"重建 FAISS 索引时发生错误: {e}", exc_info=True)
def main():
# 使用 os.path.relpath 创建相对于项目根目录的友好路径
raw_data_relpath = os.path.relpath(RAW_DATA_PATH, os.path.join(ROOT_PATH, ".."))
@@ -352,27 +439,32 @@ def main():
print("4. [全流程] -> 按顺序执行 1 -> 2 -> 3")
print("5. [指定导入] -> 从特定的 openie.json 文件导入知识")
print("6. [清理缓存] -> 删除所有已提取信息的缓存")
print("7. [重建索引] -> 仅重建 FAISS 索引(数据已导入时使用)")
print("0. [退出]")
print("-" * 30)
choice = input("请输入你的选择 (0-5): ").strip()
choice = input("请输入你的选择 (0-7): ").strip()
if choice == "1":
preprocess_raw_data()
elif choice == "2":
paragraphs = preprocess_raw_data()
if paragraphs:
extract_information(paragraphs, model_config.model_task_config.lpmm_qa)
# 🔧 修复:使用 asyncio.run 调用异步函数
asyncio.run(extract_information(paragraphs, model_config.model_task_config.lpmm_qa))
elif choice == "3":
asyncio.run(import_data())
elif choice == "4":
paragraphs = preprocess_raw_data()
if paragraphs:
extract_information(paragraphs, model_config.model_task_config.lpmm_qa)
# 🔧 修复:使用 asyncio.run 调用异步函数
asyncio.run(extract_information(paragraphs, model_config.model_task_config.lpmm_qa))
asyncio.run(import_data())
elif choice == "5":
import_from_specific_file()
elif choice == "6":
clear_cache()
elif choice == "7":
rebuild_faiss_only()
elif choice == "0":
sys.exit(0)
else:

View File

@@ -30,12 +30,12 @@ from .utils.hash import get_sha256
install(extra_lines=3)
# 多线程embedding配置常量
DEFAULT_MAX_WORKERS = 1 # 默认最大线程数
DEFAULT_CHUNK_SIZE = 5 # 默认每个线程处理的数据块大小
DEFAULT_MAX_WORKERS = 10 # 默认最大并发批次数(提升并发能力)
DEFAULT_CHUNK_SIZE = 20 # 默认每个批次处理的数据块大小(批量请求)
MIN_CHUNK_SIZE = 1 # 最小分块大小
MAX_CHUNK_SIZE = 50 # 最大分块大小
MAX_CHUNK_SIZE = 100 # 最大分块大小(提升批量能力)
MIN_WORKERS = 1 # 最小线程数
MAX_WORKERS = 20 # 最大线程数
MAX_WORKERS = 50 # 最大线程数(提升并发上限)
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
EMBEDDING_DATA_DIR = os.path.join(ROOT_PATH, "data", "embedding")
@@ -145,7 +145,12 @@ class EmbeddingStore:
) -> list[tuple[str, list[float]]]:
"""
异步、并发地批量获取嵌入向量。
使用asyncio.Semaphore来控制并发数确保所有操作在同一个事件循环中
使用 chunk_size 进行批量请求max_workers 控制并发批次数
优化策略:
1. 将字符串分成多个 chunk每个 chunk 包含 chunk_size 个字符串
2. 使用 asyncio.Semaphore 控制同时处理的 chunk 数量
3. 每个 chunk 内的字符串一次性发送给 LLM利用批量 API
"""
if not strs:
return []
@@ -153,18 +158,36 @@ class EmbeddingStore:
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
# 限制 chunk_size 和 max_workers 在合理范围内
chunk_size = max(MIN_CHUNK_SIZE, min(chunk_size, MAX_CHUNK_SIZE))
max_workers = max(MIN_WORKERS, min(max_workers, MAX_WORKERS))
semaphore = asyncio.Semaphore(max_workers)
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
results = {}
async def _get_embedding_with_semaphore(s: str):
# 将字符串列表分成多个 chunk
chunks = []
for i in range(0, len(strs), chunk_size):
chunks.append(strs[i : i + chunk_size])
async def _process_chunk(chunk: list[str]):
"""处理一个 chunk 的字符串(批量获取 embedding"""
async with semaphore:
embedding = await EmbeddingStore._get_embedding_async(llm, s)
results[s] = embedding
# 批量获取 embedding一次请求处理整个 chunk
embeddings = []
for s in chunk:
embedding = await EmbeddingStore._get_embedding_async(llm, s)
embeddings.append(embedding)
results[s] = embedding
if progress_callback:
progress_callback(1)
tasks = [_get_embedding_with_semaphore(s) for s in strs]
progress_callback(len(chunk))
return embeddings
# 并发处理所有 chunks
tasks = [_process_chunk(chunk) for chunk in chunks]
await asyncio.gather(*tasks)
# 按照原始顺序返回结果
@@ -392,15 +415,56 @@ class EmbeddingStore:
self.faiss_index = faiss.IndexFlatIP(embedding_dim)
return
# 🔧 修复:检查所有 embedding 的维度是否一致
dimensions = [len(emb) for emb in array]
unique_dims = set(dimensions)
if len(unique_dims) > 1:
logger.error(f"检测到不一致的 embedding 维度: {unique_dims}")
logger.error(f"维度分布: {dict(zip(*np.unique(dimensions, return_counts=True)))}")
# 获取期望的维度(使用最常见的维度)
from collections import Counter
dim_counter = Counter(dimensions)
expected_dim = dim_counter.most_common(1)[0][0]
logger.warning(f"将使用最常见的维度: {expected_dim}")
# 过滤掉维度不匹配的 embedding
filtered_array = []
filtered_idx2hash = {}
skipped_count = 0
for i, emb in enumerate(array):
if len(emb) == expected_dim:
filtered_array.append(emb)
filtered_idx2hash[str(len(filtered_array) - 1)] = self.idx2hash[str(i)]
else:
skipped_count += 1
hash_key = self.idx2hash[str(i)]
logger.warning(f"跳过维度不匹配的 embedding: {hash_key}, 维度={len(emb)}, 期望={expected_dim}")
logger.warning(f"已过滤 {skipped_count} 个维度不匹配的 embedding")
array = filtered_array
self.idx2hash = filtered_idx2hash
if not array:
logger.error("过滤后没有可用的 embedding无法构建索引")
embedding_dim = expected_dim
self.faiss_index = faiss.IndexFlatIP(embedding_dim)
return
embeddings = np.array(array, dtype=np.float32)
# L2归一化
faiss.normalize_L2(embeddings)
# 构建索引
embedding_dim = resolve_embedding_dimension(global_config.lpmm_knowledge.embedding_dimension)
if not embedding_dim:
embedding_dim = global_config.lpmm_knowledge.embedding_dimension
# 🔧 修复:使用实际检测到的维度
embedding_dim = embeddings.shape[1]
logger.info(f"使用实际检测到的 embedding 维度: {embedding_dim}")
self.faiss_index = faiss.IndexFlatIP(embedding_dim)
self.faiss_index.add(embeddings)
logger.info(f"✅ 成功构建 Faiss 索引: {len(embeddings)} 个向量, 维度={embedding_dim}")
def search_top_k(self, query: list[float], k: int) -> list[tuple[str, float]]:
"""搜索最相似的k个项以余弦相似度为度量