删除内存分析工具使用指南文档

This commit is contained in:
Windpicker-owo
2025-12-14 19:09:08 +08:00
parent 314021218e
commit 3207aa31b1
2 changed files with 0 additions and 573 deletions

View File

@@ -1,102 +0,0 @@
# AWS Bedrock 集成完成 ✅
## 快速开始
### 1. 安装依赖
```bash
pip install aioboto3 botocore
```
### 2. 配置凭证
`config/model_config.toml` 添加:
```toml
[[api_providers]]
name = "bedrock_us_east"
base_url = ""
api_key = "YOUR_AWS_ACCESS_KEY_ID"
client_type = "bedrock"
timeout = 60
[api_providers.extra_params]
aws_secret_key = "YOUR_AWS_SECRET_ACCESS_KEY"
region = "us-east-1"
[[models]]
model_identifier = "us.anthropic.claude-3-5-sonnet-20240620-v1:0"
name = "claude-3.5-sonnet-bedrock"
api_provider = "bedrock_us_east"
price_in = 3.0
price_out = 15.0
```
### 3. 使用示例
```python
from src.llm_models import get_llm_client
from src.llm_models.payload_content.message import MessageBuilder
client = get_llm_client("bedrock_us_east")
builder = MessageBuilder()
builder.add_user_message("你好AWS Bedrock")
response = await client.get_response(
model_info=get_model_info("claude-3.5-sonnet-bedrock"),
message_list=[builder.build()],
max_tokens=1024
)
print(response.content)
```
## 新增文件
-`src/llm_models/model_client/bedrock_client.py` - Bedrock 客户端实现
-`docs/integrations/Bedrock.md` - 完整文档
-`scripts/test_bedrock_client.py` - 测试脚本
## 修改文件
-`src/llm_models/model_client/__init__.py` - 添加 Bedrock 导入
-`src/config/api_ada_configs.py` - 添加 `bedrock` client_type
-`template/model_config_template.toml` - 添加 Bedrock 配置示例(注释形式)
-`requirements.txt` - 添加 aioboto3 和 botocore 依赖
-`pyproject.toml` - 添加 aioboto3 和 botocore 依赖
## 支持功能
-**对话生成**:支持多轮对话
-**流式输出**:支持流式响应
-**工具调用**:完整支持 Tool Use
-**多模态**:支持图片输入
-**文本嵌入**:支持 Titan Embeddings
-**跨区推理**:支持 Inference Profile
## 支持模型
- Amazon Nova 系列 (Micro/Lite/Pro)
- Anthropic Claude 3/3.5 系列
- Meta Llama 2/3 系列
- Mistral AI 系列
- Cohere Command 系列
- AI21 Jamba 系列
- Stability AI SDXL
## 测试
```bash
# 修改凭证后运行测试
python scripts/test_bedrock_client.py
```
## 文档
详细文档:`docs/integrations/Bedrock.md`
---
**集成状态**: ✅ 生产就绪
**集成时间**: 2025年12月6日

View File

@@ -1,471 +0,0 @@
# Bot 内存分析工具使用指南
一个统一的内存诊断工具,提供进程监控、对象分析和数据可视化功能。
## 🚀 快速开始
> **提示**: 建议使用虚拟环境运行脚本(`.\.venv\Scripts\python.exe`
```powershell
# 查看帮助
.\.venv\Scripts\python.exe scripts/memory_profiler.py --help
# 进程监控模式(最简单)
.\.venv\Scripts\python.exe scripts/memory_profiler.py --monitor
# 对象分析模式(深度分析)
.\.venv\Scripts\python.exe scripts/memory_profiler.py --objects --output memory_data.txt
# 可视化模式(生成图表)
.\.venv\Scripts\python.exe scripts/memory_profiler.py --visualize --input memory_data.txt.jsonl
```
**或者使用简短命令**(如果你的系统 `python` 已指向虚拟环境):
```powershell
python scripts/memory_profiler.py --monitor
```
## 📦 依赖安装
```powershell
# 基础功能(进程监控)
pip install psutil
# 对象分析功能
pip install pympler
# 可视化功能
pip install matplotlib
# 一次性安装全部
pip install psutil pympler matplotlib
```
## 🔧 三种模式详解
### 1. 进程监控模式 (--monitor)
**用途**: 从外部监控 bot 进程的总内存、子进程情况
**特点**:
- ✅ 自动启动 bot.py使用虚拟环境
- ✅ 实时显示进程内存RSS、VMS
- ✅ 列出所有子进程及其内存占用
- ✅ 显示 bot 输出日志
- ✅ 自动保存监控历史
**使用示例**:
```powershell
# 基础用法
python scripts/memory_profiler.py --monitor
# 自定义监控间隔10秒
python scripts/memory_profiler.py --monitor --interval 10
# 简写
python scripts/memory_profiler.py -m -i 5
```
**输出示例**:
```
================================================================================
检查点 #1 - 14:23:15
Bot 进程 (PID: 12345)
RSS: 45.82 MB
VMS: 12.34 MB
占比: 0.25%
子进程: 2 个
子进程内存: 723.64 MB
总内存: 769.46 MB
📋 子进程详情:
[1] PID 12346: python.exe - 520.15 MB
命令: python.exe -m chromadb.server ...
[2] PID 12347: python.exe - 203.49 MB
命令: python.exe -m uvicorn ...
================================================================================
```
**保存位置**: `data/memory_diagnostics/process_monitor_<timestamp>_pid<PID>.txt`
---
### 2. 对象分析模式 (--objects)
**用途**: 在 bot 进程内部统计所有 Python 对象的内存占用
**特点**:
- ✅ 统计所有对象类型dict、list、str、AsyncOpenAI 等)
-**按模块统计内存占用(新增)** - 显示哪个模块占用最多内存
- ✅ 包含所有线程的对象
- ✅ 显示对象变化diff
- ✅ 线程信息和 GC 统计
- ✅ 保存 JSONL 数据用于可视化
**使用示例**:
```powershell
# 基础用法(推荐指定输出文件)
python scripts/memory_profiler.py --objects --output memory_data.txt
# 自定义参数
python scripts/memory_profiler.py --objects \
--interval 10 \
--output memory_data.txt \
--object-limit 30
# 简写
python scripts/memory_profiler.py -o -i 10 --output data.txt -l 30
```
**输出示例**:
```
================================================================================
🔍 对象级内存分析 #1 - 14:25:30
================================================================================
📦 对象统计 (前 20 个类型):
类型 数量 总大小
--------------------------------------------------------------------------------
<class 'dict'> 125,843 45.23 MB
<class 'str'> 234,567 23.45 MB
<class 'list'> 56,789 12.34 MB
<class 'tuple'> 89,012 8.90 MB
<class 'openai.resources.chat.completions'> 12 5.67 MB
...
📚 模块内存占用 (前 20 个模块):
模块名 对象数 总内存
--------------------------------------------------------------------------------
builtins 169,144 26.20 MB
src 12,345 5.67 MB
openai 3,456 2.34 MB
chromadb 2,345 1.89 MB
...
总模块数: 85
🧵 线程信息 (8 个):
[1] ✓ MainThread
[2] ✓ AsyncOpenAIClient (守护)
[3] ✓ ChromaDBWorker (守护)
...
🗑️ 垃圾回收:
代 0: 1,234 次
代 1: 56 次
代 2: 3 次
追踪对象: 456,789
📊 总对象数: 567,890
================================================================================
```
**每 3 次迭代会显示对象变化**:
```
📈 对象变化分析:
--------------------------------------------------------------------------------
types | # objects | total size
==================== | =========== | ============
<class 'dict'> | +1234 | +1.23 MB
<class 'str'> | +567 | +0.56 MB
...
--------------------------------------------------------------------------------
```
**保存位置**:
- 文本: `<output>.txt`
- 结构化数据: `<output>.txt.jsonl`
---
### 3. 可视化模式 (--visualize)
**用途**: 将对象分析模式生成的 JSONL 数据绘制成图表
**特点**:
- ✅ 显示对象类型随时间的内存变化
- ✅ 自动选择内存占用最高的 N 个类型
- ✅ 生成高清 PNG 图表
**使用示例**:
```powershell
# 基础用法
python scripts/memory_profiler.py --visualize \
--input memory_data.txt.jsonl
# 自定义参数
python scripts/memory_profiler.py --visualize \
--input memory_data.txt.jsonl \
--top 15 \
--plot-output my_plot.png
# 简写
python scripts/memory_profiler.py -v -i data.txt.jsonl -t 15
```
**输出**: PNG 图像,展示前 N 个对象类型的内存占用随时间的变化曲线
**保存位置**: 默认 `memory_analysis_plot.png`,可通过 `--plot-output` 指定
---
## 💡 使用场景
| 场景 | 推荐模式 | 命令 |
|------|----------|------|
| 快速查看总内存 | `--monitor` | `python scripts/memory_profiler.py -m` |
| 查看子进程占用 | `--monitor` | `python scripts/memory_profiler.py -m` |
| 分析具体对象占用 | `--objects` | `python scripts/memory_profiler.py -o --output data.txt` |
| 追踪内存泄漏 | `--objects` | `python scripts/memory_profiler.py -o --output data.txt` |
| 可视化分析趋势 | `--visualize` | `python scripts/memory_profiler.py -v -i data.txt.jsonl` |
## 📊 完整工作流程
### 场景 1: 快速诊断内存问题
```powershell
# 1. 运行进程监控(查看总体情况)
python scripts/memory_profiler.py --monitor --interval 5
# 观察输出,如果发现内存异常,进入场景 2
```
### 场景 2: 深度分析对象占用
```powershell
# 1. 启动对象分析(保存数据)
python scripts/memory_profiler.py --objects \
--interval 10 \
--output data/memory_diagnostics/analysis_$(Get-Date -Format 'yyyyMMdd_HHmmss').txt
# 2. 运行一段时间(建议至少 5-10 分钟),按 Ctrl+C 停止
# 3. 生成可视化图表
python scripts/memory_profiler.py --visualize \
--input data/memory_diagnostics/analysis_<timestamp>.txt.jsonl \
--top 15 \
--plot-output data/memory_diagnostics/plot_<timestamp>.png
# 4. 查看图表,分析哪些对象类型随时间增长
```
### 场景 3: 持续监控
```powershell
# 在后台运行对象分析Windows
Start-Process powershell -ArgumentList "-Command", "python scripts/memory_profiler.py -o -i 30 --output logs/memory_continuous.txt" -WindowStyle Minimized
# 定期查看 JSONL 并生成图表
python scripts/memory_profiler.py -v -i logs/memory_continuous.txt.jsonl -t 20
```
## 🎯 参数参考
### 通用参数
| 参数 | 简写 | 默认值 | 说明 |
|------|------|--------|------|
| `--interval` | `-i` | 10 | 监控间隔(秒) |
### 对象分析模式参数
| 参数 | 简写 | 默认值 | 说明 |
|------|------|--------|------|
| `--output` | - | 无 | 输出文件路径(强烈推荐) |
| `--object-limit` | `-l` | 20 | 显示的对象类型数量 |
### 可视化模式参数
| 参数 | 简写 | 默认值 | 说明 |
|------|------|--------|------|
| `--input` | - | **必需** | 输入 JSONL 文件路径 |
| `--top` | `-t` | 10 | 展示前 N 个对象类型 |
| `--plot-output` | - | `memory_analysis_plot.png` | 输出图表路径 |
## ⚠️ 注意事项
### 性能影响
| 模式 | 性能影响 | 说明 |
|------|----------|------|
| `--monitor` | < 1% | 几乎无影响适合生产环境 |
| `--objects` | 5-15% | 有一定影响建议在测试环境使用 |
| `--visualize` | 0% | 离线分析无影响 |
### 常见问题
**Q: 对象分析模式报错 "pympler 未安装"**
```powershell
pip install pympler
```
**Q: 可视化模式报错 "matplotlib 未安装"**
```powershell
pip install matplotlib
```
**Q: 对象分析模式提示 "bot.py 未找到 main_async() 或 main() 函数"**
这是正常的如果你的 bot.py 的主逻辑在 `if __name__ == "__main__":` 监控线程仍会在后台运行你可以
- 保持 bot 运行监控会持续统计
- 或者在 bot.py 中添加一个 `main_async()` `main()` 函数
**Q: 进程监控模式看不到子进程?**
确保 bot.py 已经启动了子进程例如 ChromaDB)。如果刚启动就查看可能还没有创建子进程
**Q: JSONL 文件在哪里?**
当你使用 `--output <file>` 会生成
- `<file>`: 人类可读的文本
- `<file>.jsonl`: 结构化数据用于可视化
## 📁 输出文件说明
### 进程监控输出
**位置**: `data/memory_diagnostics/process_monitor_<timestamp>_pid<PID>.txt`
**内容**: 每次检查点的进程内存信息
### 对象分析输出
**文本文件**: `<output>`
- 人类可读格式
- 包含每次迭代的对象统计
**JSONL 文件**: `<output>.jsonl`
- 每行一个 JSON 对象
- 包含: timestamp, iteration, total_objects, summary, threads, gc_stats
- 用于可视化分析
### 可视化输出
**PNG 图像**: 默认 `memory_analysis_plot.png`
- 折线图展示对象类型随时间的内存变化
- 高清 150 DPI
## 🔍 诊断技巧
### 1. 识别内存泄漏
使用对象分析模式运行较长时间观察
- 某个对象类型的数量或大小持续增长
- 对象变化 diff 中始终为正数
### 2. 定位大内存对象
**查看对象统计**:
- 如果 `<class 'dict'>` 占用很大可能是缓存未清理
- 如果看到特定类 `AsyncOpenAI`检查该类的实例数
**查看模块统计**推荐:
- 查看 📚 模块内存占用部分
- 如果 `src` 模块占用很大说明你的代码中有大量对象
- 如果 `openai``chromadb` 等第三方模块占用大可能是这些库的使用问题
- 对比不同时间点看哪个模块的内存持续增长
### 3. 分析子进程占用
使用进程监控模式
- 查看子进程详情中的命令行
- 识别哪个子进程占用大量内存 ChromaDB
### 4. 对比不同时间点
使用可视化模式
- 生成图表后观察哪些对象类型的曲线持续上升
- 对比不同功能运行时的内存变化
## 🎓 高级用法
### 长期监控脚本
创建 `monitor_continuously.ps1`:
```powershell
# 持续监控脚本
$timestamp = Get-Date -Format "yyyyMMdd_HHmmss"
$logPath = "logs/memory_analysis_$timestamp.txt"
Write-Host "开始持续监控,数据保存到: $logPath"
Write-Host "按 Ctrl+C 停止监控"
python scripts/memory_profiler.py --objects --interval 30 --output $logPath
```
### 自动生成日报
创建 `generate_daily_report.ps1`:
```powershell
# 生成内存分析日报
$date = Get-Date -Format "yyyyMMdd"
$jsonlFiles = Get-ChildItem "logs" -Filter "*$date*.jsonl"
foreach ($file in $jsonlFiles) {
$outputPlot = $file.FullName -replace ".jsonl", "_plot.png"
python scripts/memory_profiler.py --visualize --input $file.FullName --plot-output $outputPlot --top 20
Write-Host "生成图表: $outputPlot"
}
```
## 📚 扩展阅读
- **Python 内存管理**: https://docs.python.org/3/c-api/memory.html
- **psutil 文档**: https://psutil.readthedocs.io/
- **Pympler 文档**: https://pympler.readthedocs.io/
- **Matplotlib 文档**: https://matplotlib.org/
## 🆘 获取帮助
```powershell
# 查看完整帮助信息
python scripts/memory_profiler.py --help
# 查看特定模式示例
python scripts/memory_profiler.py --help | Select-String "示例"
```
---
**快速开始提醒**:
```powershell
# 使用虚拟环境(推荐)
.\.venv\Scripts\python.exe scripts/memory_profiler.py --monitor
# 或者使用系统 Python
python scripts/memory_profiler.py --monitor
# 深度分析
.\.venv\Scripts\python.exe scripts/memory_profiler.py --objects --output memory.txt
# 可视化
.\.venv\Scripts\python.exe scripts/memory_profiler.py --visualize --input memory.txt.jsonl
```
### 💡 虚拟环境说明
**Windows**:
```powershell
.\.venv\Scripts\python.exe scripts/memory_profiler.py [选项]
```
**Linux/Mac**:
```bash
./.venv/bin/python scripts/memory_profiler.py [选项]
```
脚本会自动检测并使用项目虚拟环境来启动 bot进程监控模式对象分析模式会自动添加项目根目录到 Python 路径
🎉 现在你已经掌握了完整的内存分析工具