feat: 新增LPMM知识库模块及工具支持

- 新增LPMM知识库模块,包括实体提取、RDF构建、Embedding存储、KG管理等功能
- 新增`lpmm_get_knowledge`工具,支持从LPMM知识库中检索相关信息
- 新增OpenIE数据处理模块,支持信息提取、数据导入等功能
- 新增知识库初始化脚本,支持从原始数据到知识库的完整处理流程
- 新增配置文件`lpmm_config.toml`,支持自定义知识库相关参数
- 新增日志模块`LPMM_STYLE_CONFIG`,支持知识库相关日志输出
- 新增`raw_data_preprocessor.py`、`info_extraction.py`、`import_openie.py`等脚本,支持知识库数据预处理
This commit is contained in:
墨梓柒
2025-04-23 10:28:05 +08:00
parent 6265fd6c14
commit 2b07c9e81b
32 changed files with 2940 additions and 60 deletions

View File

@@ -0,0 +1,46 @@
@echo off
CHCP 65001 > nul
setlocal enabledelayedexpansion
REM 查找venv虚拟环境
set "venv_path=%~dp0venv\Scripts\activate.bat"
if not exist "%venv_path%" (
echo 错误: 未找到虚拟环境请确保venv目录存在
pause
exit /b 1
)
REM 激活虚拟环境
call "%venv_path%"
if %ERRORLEVEL% neq 0 (
echo 错误: 虚拟环境激活失败
pause
exit /b 1
)
REM 运行预处理脚本
python "%~dp0raw_data_preprocessor.py"
if %ERRORLEVEL% neq 0 (
echo 错误: raw_data_preprocessor.py 执行失败
pause
exit /b 1
)
REM 运行信息提取脚本
python "%~dp0info_extraction.py"
if %ERRORLEVEL% neq 0 (
echo 错误: info_extraction.py 执行失败
pause
exit /b 1
)
REM 运行OpenIE导入脚本
python "%~dp0import_openie.py"
if %ERRORLEVEL% neq 0 (
echo 错误: import_openie.py 执行失败
pause
exit /b 1
)
echo 所有处理步骤完成!
pause

3
.gitignore vendored
View File

@@ -28,6 +28,8 @@ memory_graph.gml
config/bot_config_dev.toml
config/bot_config.toml
config/bot_config.toml.bak
config/lpmm_config.toml
config/lpmm_config.toml.bak
src/plugins/remote/client_uuid.json
(测试版)麦麦生成人格.bat
(临时版)麦麦开始学习.bat
@@ -240,4 +242,5 @@ logs
/config/*
config/old/bot_config_20250405_212257.toml
temp/

10
bot.py
View File

@@ -52,6 +52,16 @@ def init_config():
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
logger.info("复制完成请修改config/bot_config.toml和.env中的配置后重新启动")
if not os.path.exists("config/lpmm_config.toml"):
logger.warning("检测到lpmm_config.toml不存在正在从模板复制")
# 检查config目录是否存在
if not os.path.exists("config"):
os.makedirs("config")
logger.info("创建config目录")
shutil.copy("template/lpmm_config_template.toml", "config/lpmm_config.toml")
logger.info("复制完成请修改config/lpmm_config.toml和.env中的配置后重新启动")
def init_env():

162
import_openie.py Normal file
View File

@@ -0,0 +1,162 @@
# try:
# import src.plugins.knowledge.lib.quick_algo
# except ImportError:
# print("未找到quick_algo库无法使用quick_algo算法")
# print("请安装quick_algo库 - 在lib.quick_algo中执行命令python setup.py build_ext --inplace")
from typing import Dict, List
from src.plugins.knowledge.src.lpmmconfig import PG_NAMESPACE, global_config
from src.plugins.knowledge.src.embedding_store import EmbeddingManager
from src.plugins.knowledge.src.llm_client import LLMClient
from src.plugins.knowledge.src.open_ie import OpenIE
from src.plugins.knowledge.src.kg_manager import KGManager
from src.common.logger import get_module_logger
from src.plugins.knowledge.src.utils.hash import get_sha256
# 添加在现有导入之后
import sys
logger = get_module_logger("LPMM知识库-OpenIE导入")
def hash_deduplicate(
raw_paragraphs: Dict[str, str],
triple_list_data: Dict[str, List[List[str]]],
stored_pg_hashes: set,
stored_paragraph_hashes: set,
):
"""Hash去重
Args:
raw_paragraphs: 索引的段落原文
triple_list_data: 索引的三元组列表
stored_pg_hashes: 已存储的段落hash集合
stored_paragraph_hashes: 已存储的段落hash集合
Returns:
new_raw_paragraphs: 去重后的段落
new_triple_list_data: 去重后的三元组
"""
# 保存去重后的段落
new_raw_paragraphs = dict()
# 保存去重后的三元组
new_triple_list_data = dict()
for _, (raw_paragraph, triple_list) in enumerate(zip(raw_paragraphs.values(), triple_list_data.values())):
# 段落hash
paragraph_hash = get_sha256(raw_paragraph)
if ((PG_NAMESPACE + "-" + paragraph_hash) in stored_pg_hashes) and (paragraph_hash in stored_paragraph_hashes):
continue
new_raw_paragraphs[paragraph_hash] = raw_paragraph
new_triple_list_data[paragraph_hash] = triple_list
return new_raw_paragraphs, new_triple_list_data
def handle_import_openie(openie_data: OpenIE, embed_manager: EmbeddingManager, kg_manager: KGManager) -> bool:
# 从OpenIE数据中提取段落原文与三元组列表
# 索引的段落原文
raw_paragraphs = openie_data.extract_raw_paragraph_dict()
# 索引的实体列表
entity_list_data = openie_data.extract_entity_dict()
# 索引的三元组列表
triple_list_data = openie_data.extract_triple_dict()
if len(raw_paragraphs) != len(entity_list_data) or len(raw_paragraphs) != len(triple_list_data):
logger.error("OpenIE数据存在异常")
return False
# 将索引换为对应段落的hash值
logger.info("正在进行段落去重与重索引")
raw_paragraphs, triple_list_data = hash_deduplicate(
raw_paragraphs,
triple_list_data,
embed_manager.stored_pg_hashes,
kg_manager.stored_paragraph_hashes,
)
if len(raw_paragraphs) != 0:
# 获取嵌入并保存
logger.info(f"段落去重完成,剩余待处理的段落数量:{len(raw_paragraphs)}")
logger.info("开始Embedding")
embed_manager.store_new_data_set(raw_paragraphs, triple_list_data)
# Embedding-Faiss重索引
logger.info("正在重新构建向量索引")
embed_manager.rebuild_faiss_index()
logger.info("向量索引构建完成")
embed_manager.save_to_file()
logger.info("Embedding完成")
# 构建新段落的RAG
logger.info("开始构建RAG")
kg_manager.build_kg(triple_list_data, embed_manager)
kg_manager.save_to_file()
logger.info("RAG构建完成")
else:
logger.info("无新段落需要处理")
return True
def main():
# 新增确认提示
print("=== 重要操作确认 ===")
print("OpenIE导入时会大量发送请求可能会撞到请求速度上限请注意选用的模型")
print("同之前样例在本地模型下在70分钟内我们发送了约8万条请求在网络允许下速度会更快")
print("推荐使用硅基流动的Pro/BAAI/bge-m3")
print("每百万Token费用为0.7元")
print("知识导入时,会消耗大量系统资源,建议在较好配置电脑上运行")
print("同上样例导入时10700K几乎跑满14900HX占用80%峰值内存占用约3G")
confirm = input("确认继续执行?(y/n): ").strip().lower()
if confirm != "y":
logger.info("用户取消操作")
print("操作已取消")
sys.exit(1)
print("\n" + "=" * 40 + "\n")
logger.info("----开始导入openie数据----\n")
logger.info("创建LLM客户端")
llm_client_list = dict()
for key in global_config["llm_providers"]:
llm_client_list[key] = LLMClient(
global_config["llm_providers"][key]["base_url"],
global_config["llm_providers"][key]["api_key"],
)
# 初始化Embedding库
embed_manager = embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]])
logger.info("正在从文件加载Embedding库")
try:
embed_manager.load_from_file()
except Exception as e:
logger.error("从文件加载Embedding库时发生错误{}".format(e))
logger.info("Embedding库加载完成")
# 初始化KG
kg_manager = KGManager()
logger.info("正在从文件加载KG")
try:
kg_manager.load_from_file()
except Exception as e:
logger.error("从文件加载KG时发生错误{}".format(e))
logger.info("KG加载完成")
logger.info(f"KG节点数量{len(kg_manager.graph.get_node_list())}")
logger.info(f"KG边数量{len(kg_manager.graph.get_edge_list())}")
# 数据比对Embedding库与KG的段落hash集合
for pg_hash in kg_manager.stored_paragraph_hashes:
key = PG_NAMESPACE + "-" + pg_hash
if key not in embed_manager.stored_pg_hashes:
logger.warning(f"KG中存在Embedding库中不存在的段落{key}")
logger.info("正在导入OpenIE数据文件")
try:
openie_data = OpenIE.load()
except Exception as e:
logger.error("导入OpenIE数据文件时发生错误{}".format(e))
return False
if handle_import_openie(openie_data, embed_manager, kg_manager) is False:
logger.error("处理OpenIE数据时发生错误")
return False
if __name__ == "__main__":
main()

175
info_extraction.py Normal file
View File

@@ -0,0 +1,175 @@
import json
import os
import signal
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock, Event
import sys
import tqdm
from src.common.logger import get_module_logger
from src.plugins.knowledge.src.lpmmconfig import global_config
from src.plugins.knowledge.src.ie_process import info_extract_from_str
from src.plugins.knowledge.src.llm_client import LLMClient
from src.plugins.knowledge.src.open_ie import OpenIE
from src.plugins.knowledge.src.raw_processing import load_raw_data
logger = get_module_logger("LPMM知识库-信息提取")
TEMP_DIR = "./temp"
# 创建一个线程安全的锁,用于保护文件操作和共享数据
file_lock = Lock()
open_ie_doc_lock = Lock()
# 创建一个事件标志,用于控制程序终止
shutdown_event = Event()
def process_single_text(pg_hash, raw_data, llm_client_list):
"""处理单个文本的函数,用于线程池"""
temp_file_path = f"{TEMP_DIR}/{pg_hash}.json"
# 使用文件锁检查和读取缓存文件
with file_lock:
if os.path.exists(temp_file_path):
try:
# 存在对应的提取结果
logger.info(f"找到缓存的提取结果:{pg_hash}")
with open(temp_file_path, "r", encoding="utf-8") as f:
return json.load(f), None
except json.JSONDecodeError:
# 如果JSON文件损坏删除它并重新处理
logger.warning(f"缓存文件损坏,重新处理:{pg_hash}")
os.remove(temp_file_path)
entity_list, rdf_triple_list = info_extract_from_str(
llm_client_list[global_config["entity_extract"]["llm"]["provider"]],
llm_client_list[global_config["rdf_build"]["llm"]["provider"]],
raw_data,
)
if entity_list is None or rdf_triple_list is None:
return None, pg_hash
else:
doc_item = {
"idx": pg_hash,
"passage": raw_data,
"extracted_entities": entity_list,
"extracted_triples": rdf_triple_list,
}
# 保存临时提取结果
with file_lock:
try:
with open(temp_file_path, "w", encoding="utf-8") as f:
json.dump(doc_item, f, ensure_ascii=False, indent=4)
except Exception as e:
logger.error(f"保存缓存文件失败:{pg_hash}, 错误:{e}")
# 如果保存失败,确保不会留下损坏的文件
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
# 设置shutdown_event以终止程序
shutdown_event.set()
return None, pg_hash
return doc_item, None
def signal_handler(signum, frame):
"""处理Ctrl+C信号"""
logger.info("\n接收到中断信号,正在优雅地关闭程序...")
shutdown_event.set()
def main():
# 设置信号处理器
signal.signal(signal.SIGINT, signal_handler)
# 新增用户确认提示
print("=== 重要操作确认 ===")
print("实体提取操作将会花费较多资金和时间,建议在空闲时段执行。")
print("举例600万字全剧情提取选用deepseek v3 0324消耗约40元约3小时。")
print("建议使用硅基流动的非Pro模型")
print("或者使用可以用赠金抵扣的Pro模型")
print("请确保账户余额充足,并且在执行前确认无误。")
confirm = input("确认继续执行?(y/n): ").strip().lower()
if confirm != "y":
logger.info("用户取消操作")
print("操作已取消")
sys.exit(1)
print("\n" + "=" * 40 + "\n")
logger.info("--------进行信息提取--------\n")
logger.info("创建LLM客户端")
llm_client_list = dict()
for key in global_config["llm_providers"]:
llm_client_list[key] = LLMClient(
global_config["llm_providers"][key]["base_url"],
global_config["llm_providers"][key]["api_key"],
)
logger.info("正在加载原始数据")
sha256_list, raw_datas = load_raw_data()
logger.info("原始数据加载完成\n")
# 创建临时目录
if not os.path.exists(f"{TEMP_DIR}"):
os.makedirs(f"{TEMP_DIR}")
failed_sha256 = []
open_ie_doc = []
# 创建线程池最大线程数为50
workers = global_config["info_extraction"]["workers"]
with ThreadPoolExecutor(max_workers=workers) as executor:
# 提交所有任务到线程池
future_to_hash = {
executor.submit(process_single_text, pg_hash, raw_data, llm_client_list): pg_hash
for pg_hash, raw_data in zip(sha256_list, raw_datas)
}
# 使用tqdm显示进度
with tqdm.tqdm(total=len(future_to_hash), postfix="正在进行提取:") as pbar:
# 处理完成的任务
try:
for future in as_completed(future_to_hash):
if shutdown_event.is_set():
# 取消所有未完成的任务
for f in future_to_hash:
if not f.done():
f.cancel()
break
doc_item, failed_hash = future.result()
if failed_hash:
failed_sha256.append(failed_hash)
logger.error(f"提取失败:{failed_hash}")
elif doc_item:
with open_ie_doc_lock:
open_ie_doc.append(doc_item)
pbar.update(1)
except KeyboardInterrupt:
# 如果在这里捕获到KeyboardInterrupt说明signal_handler可能没有正常工作
logger.info("\n接收到中断信号,正在优雅地关闭程序...")
shutdown_event.set()
# 取消所有未完成的任务
for f in future_to_hash:
if not f.done():
f.cancel()
# 保存信息提取结果
sum_phrase_chars = sum([len(e) for chunk in open_ie_doc for e in chunk["extracted_entities"]])
sum_phrase_words = sum([len(e.split()) for chunk in open_ie_doc for e in chunk["extracted_entities"]])
num_phrases = sum([len(chunk["extracted_entities"]) for chunk in open_ie_doc])
openie_obj = OpenIE(
open_ie_doc,
round(sum_phrase_chars / num_phrases, 4),
round(sum_phrase_words / num_phrases, 4),
)
OpenIE.save(openie_obj)
logger.info("--------信息提取完成--------")
logger.info(f"提取失败的文段SHA256{failed_sha256}")
if __name__ == "__main__":
main()

88
raw_data_preprocessor.py Normal file
View File

@@ -0,0 +1,88 @@
import json
import os
from pathlib import Path
import sys # 新增系统模块导入
from src.common.logger import get_module_logger
logger = get_module_logger("LPMM数据库-原始数据处理")
def check_and_create_dirs():
"""检查并创建必要的目录"""
required_dirs = ["data/lpmm_raw_data", "data/imported_lpmm_data"]
for dir_path in required_dirs:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info(f"已创建目录: {dir_path}")
def process_text_file(file_path):
"""处理单个文本文件,返回段落列表"""
with open(file_path, "r", encoding="utf-8") as f:
raw = f.read()
paragraphs = []
paragraph = ""
for line in raw.split("\n"):
if line.strip() == "":
if paragraph != "":
paragraphs.append(paragraph.strip())
paragraph = ""
else:
paragraph += line + "\n"
if paragraph != "":
paragraphs.append(paragraph.strip())
return paragraphs
def main():
# 新增用户确认提示
print("=== 重要操作确认 ===")
print("如果你并非第一次导入知识")
print("请先删除data/import.json文件备份data/openie.json文件")
print("在进行知识库导入之前")
print("请修改config/lpmm_config.toml中的配置项")
confirm = input("确认继续执行?(y/n): ").strip().lower()
if confirm != "y":
logger.error("操作已取消")
sys.exit(1)
print("\n" + "=" * 40 + "\n")
# 检查并创建必要的目录
check_and_create_dirs()
# 检查输出文件是否存在
if os.path.exists("data/import.json"):
logger.error("错误: data/import.json 已存在,请先处理或删除该文件")
sys.exit(1)
if os.path.exists("data/openie.json"):
logger.error("错误: data/openie.json 已存在,请先处理或删除该文件")
sys.exit(1)
# 获取所有原始文本文件
raw_files = list(Path("data/lpmm_raw_data").glob("*.txt"))
if not raw_files:
logger.warning("警告: data/lpmm_raw_data 中没有找到任何 .txt 文件")
sys.exit(1)
# 处理所有文件
all_paragraphs = []
for file in raw_files:
logger.info(f"正在处理文件: {file.name}")
paragraphs = process_text_file(file)
all_paragraphs.extend(paragraphs)
# 保存合并后的结果
output_path = "data/import.json"
with open(output_path, "w", encoding="utf-8") as f:
json.dump(all_paragraphs, f, ensure_ascii=False, indent=4)
logger.info(f"处理完成,结果已保存到: {output_path}")
if __name__ == "__main__":
main()

View File

@@ -325,6 +325,26 @@ WILLING_STYLE_CONFIG = {
},
}
# LPMM配置
LPMM_STYLE_CONFIG = {
"advanced": {
"console_format": (
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{extra[module]: <12}</cyan> | "
"<light-yellow>LPMM</light-yellow> | "
"<level>{message}</level>"
),
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | LPMM | {message}",
},
"simple": {
"console_format": (
"<green>{time:MM-DD HH:mm}</green> | <light-green>LPMM</light-green> | <light-green>{message}</light-green>"
),
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | LPMM | {message}",
},
}
CONFIRM_STYLE_CONFIG = {
"console_format": "<RED>{message}</RED>", # noqa: E501
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | EULA与PRIVACY确认 | {message}",
@@ -347,6 +367,7 @@ WILLING_STYLE_CONFIG = WILLING_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else WILL
CONFIG_STYLE_CONFIG = CONFIG_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CONFIG_STYLE_CONFIG["advanced"]
TOOL_USE_STYLE_CONFIG = TOOL_USE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOOL_USE_STYLE_CONFIG["advanced"]
PFC_STYLE_CONFIG = PFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PFC_STYLE_CONFIG["advanced"]
LPMM_STYLE_CONFIG = LPMM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LPMM_STYLE_CONFIG["advanced"]
def is_registered_module(record: dict) -> bool:

View File

@@ -0,0 +1,139 @@
from src.do_tool.tool_can_use.base_tool import BaseTool
from src.plugins.chat.utils import get_embedding
# from src.common.database import db
from src.common.logger import get_module_logger
from typing import Dict, Any
from src.plugins.knowledge.knowledge_lib import qa_manager
logger = get_module_logger("lpmm_get_knowledge_tool")
class SearchKnowledgeFromLPMMTool(BaseTool):
"""从LPMM知识库中搜索相关信息的工具"""
name = "lpmm_search_knowledge"
description = "从知识库中搜索相关信息"
parameters = {
"type": "object",
"properties": {
"query": {"type": "string", "description": "搜索查询关键词"},
"threshold": {"type": "number", "description": "相似度阈值0.0到1.0之间"},
},
"required": ["query"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行知识库搜索
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
query = function_args.get("query", message_txt)
# threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索
embedding = await get_embedding(query, request_type="info_retrieval")
if embedding:
knowledge_info = qa_manager.get_knowledge(query)
logger.debug(f"知识库查询结果: {knowledge_info}")
if knowledge_info:
content = f"你知道这些知识: {knowledge_info}"
else:
content = f"你不太了解有关{query}的知识"
return {"name": "search_knowledge", "content": content}
return {"name": "search_knowledge", "content": f"无法获取关于'{query}'的嵌入向量"}
except Exception as e:
logger.error(f"知识库搜索工具执行失败: {str(e)}")
return {"name": "search_knowledge", "content": f"知识库搜索失败: {str(e)}"}
# def get_info_from_db(
# self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
# ) -> Union[str, list]:
# """从数据库中获取相关信息
# Args:
# query_embedding: 查询的嵌入向量
# limit: 最大返回结果数
# threshold: 相似度阈值
# return_raw: 是否返回原始结果
# Returns:
# Union[str, list]: 格式化的信息字符串或原始结果列表
# """
# if not query_embedding:
# return "" if not return_raw else []
# # 使用余弦相似度计算
# pipeline = [
# {
# "$addFields": {
# "dotProduct": {
# "$reduce": {
# "input": {"$range": [0, {"$size": "$embedding"}]},
# "initialValue": 0,
# "in": {
# "$add": [
# "$$value",
# {
# "$multiply": [
# {"$arrayElemAt": ["$embedding", "$$this"]},
# {"$arrayElemAt": [query_embedding, "$$this"]},
# ]
# },
# ]
# },
# }
# },
# "magnitude1": {
# "$sqrt": {
# "$reduce": {
# "input": "$embedding",
# "initialValue": 0,
# "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
# }
# }
# },
# "magnitude2": {
# "$sqrt": {
# "$reduce": {
# "input": query_embedding,
# "initialValue": 0,
# "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
# }
# }
# },
# }
# },
# {"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
# {
# "$match": {
# "similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
# }
# },
# {"$sort": {"similarity": -1}},
# {"$limit": limit},
# {"$project": {"content": 1, "similarity": 1}},
# ]
# results = list(db.knowledges.aggregate(pipeline))
# logger.debug(f"知识库查询结果数量: {len(results)}")
# if not results:
# return "" if not return_raw else []
# if return_raw:
# return results
# else:
# # 返回所有找到的内容,用换行分隔
# return "\n".join(str(result["content"]) for result in results)
# 注册工具
# register_tool(SearchKnowledgeTool)

View File

@@ -50,6 +50,7 @@ class ToolUser:
prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)

View File

@@ -5,14 +5,15 @@ from ...individuality.individuality import Individuality
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.plugins.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import parse_text_timestamps
from src.plugins.chat.utils import get_embedding, parse_text_timestamps
import time
from typing import Union
from ...common.database import db
from ..chat.utils import get_embedding, get_recent_group_speaker
from ..chat.utils import get_recent_group_speaker
from ..moods.moods import MoodManager
from ..memory_system.Hippocampus import HippocampusManager
from ..schedule.schedule_generator import bot_schedule
from ..knowledge.knowledge_lib import qa_manager
logger = get_module_logger("prompt")
@@ -325,11 +326,10 @@ class PromptBuilder:
return prompt
async def get_prompt_info(self, message: str, threshold: float):
async def get_prompt_info_old(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 1. 先从LLM获取主题类似于记忆系统的做法
topics = []
# try:
@@ -475,6 +475,31 @@ class PromptBuilder:
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}")
return related_info
async def get_prompt_info(self, message: str, threshold: float):
related_info = ""
start_time = time.time()
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 从LPMM知识库获取知识
found_knowledge_from_lpmm = qa_manager.get_knowledge(message)
end_time = time.time()
if found_knowledge_from_lpmm is not None:
logger.debug(f"从LPMM知识库获取知识相关信息{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}")
related_info += found_knowledge_from_lpmm
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}")
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
return related_info
else:
logger.debug("从LPMM知识库获取知识失败使用旧版数据库进行检索")
knowledge_from_old = await self.get_prompt_info_old(message, threshold=0.38)
related_info += knowledge_from_old
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
return related_info
@staticmethod
def get_info_from_db(
query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False

View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

View File

@@ -0,0 +1,62 @@
from .src.lpmmconfig import PG_NAMESPACE, global_config
from .src.embedding_store import EmbeddingManager
from .src.llm_client import LLMClient
from .src.mem_active_manager import MemoryActiveManager
from .src.qa_manager import QAManager
from .src.kg_manager import KGManager
from .src.global_logger import logger
# try:
# import quick_algo
# except ImportError:
# print("quick_algo not found, please install it first")
logger.info("正在初始化Mai-LPMM\n")
logger.info("创建LLM客户端")
llm_client_list = dict()
for key in global_config["llm_providers"]:
llm_client_list[key] = LLMClient(
global_config["llm_providers"][key]["base_url"],
global_config["llm_providers"][key]["api_key"],
)
# 初始化Embedding库
embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]])
logger.info("正在从文件加载Embedding库")
try:
embed_manager.load_from_file()
except Exception as e:
logger.error("从文件加载Embedding库时发生错误{}".format(e))
logger.info("Embedding库加载完成")
# 初始化KG
kg_manager = KGManager()
logger.info("正在从文件加载KG")
try:
kg_manager.load_from_file()
except Exception as e:
logger.error("从文件加载KG时发生错误{}".format(e))
logger.info("KG加载完成")
logger.info(f"KG节点数量{len(kg_manager.graph.get_node_list())}")
logger.info(f"KG边数量{len(kg_manager.graph.get_edge_list())}")
# 数据比对Embedding库与KG的段落hash集合
for pg_hash in kg_manager.stored_paragraph_hashes:
key = PG_NAMESPACE + "-" + pg_hash
if key not in embed_manager.stored_pg_hashes:
logger.warning(f"KG中存在Embedding库中不存在的段落{key}")
# 问答系统(用于知识库)
qa_manager = QAManager(
embed_manager,
kg_manager,
llm_client_list[global_config["embedding"]["provider"]],
llm_client_list[global_config["qa"]["llm"]["provider"]],
llm_client_list[global_config["qa"]["llm"]["provider"]],
)
# 记忆激活(用于记忆库)
inspire_manager = MemoryActiveManager(
embed_manager,
llm_client_list[global_config["embedding"]["provider"]],
)

View File

View File

@@ -0,0 +1,239 @@
from dataclasses import dataclass
import json
import os
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
import tqdm
import faiss
from .llm_client import LLMClient
from .lpmmconfig import ENT_NAMESPACE, PG_NAMESPACE, REL_NAMESPACE, global_config
from .utils.hash import get_sha256
from .global_logger import logger
@dataclass
class EmbeddingStoreItem:
"""嵌入库中的项"""
def __init__(self, item_hash: str, embedding: List[float], content: str):
self.hash = item_hash
self.embedding = embedding
self.str = content
def to_dict(self) -> dict:
"""转为dict"""
return {
"hash": self.hash,
"embedding": self.embedding,
"str": self.str,
}
class EmbeddingStore:
def __init__(self, llm_client: LLMClient, namespace: str, dir_path: str):
self.namespace = namespace
self.llm_client = llm_client
self.dir = dir_path
self.embedding_file_path = dir_path + "/" + namespace + ".parquet"
self.index_file_path = dir_path + "/" + namespace + ".index"
self.idx2hash_file_path = dir_path + "/" + namespace + "_i2h.json"
self.store = dict()
self.faiss_index = None
self.idx2hash = None
def _get_embedding(self, s: str) -> List[float]:
return self.llm_client.send_embedding_request(global_config["embedding"]["model"], s)
def batch_insert_strs(self, strs: List[str]) -> None:
"""向库中存入字符串"""
# 逐项处理
for s in tqdm.tqdm(strs, desc="存入嵌入库", unit="items"):
# 计算hash去重
item_hash = self.namespace + "-" + get_sha256(s)
if item_hash in self.store:
continue
# 获取embedding
embedding = self._get_embedding(s)
# 存入
self.store[item_hash] = EmbeddingStoreItem(item_hash, embedding, s)
def save_to_file(self) -> None:
"""保存到文件"""
data = []
logger.info(f"正在保存{self.namespace}嵌入库到文件{self.embedding_file_path}")
for item in self.store.values():
data.append(item.to_dict())
data_frame = pd.DataFrame(data)
if not os.path.exists(self.dir):
os.makedirs(self.dir, exist_ok=True)
if not os.path.exists(self.embedding_file_path):
open(self.embedding_file_path, "w").close()
data_frame.to_parquet(self.embedding_file_path, engine="pyarrow", index=False)
logger.info(f"{self.namespace}嵌入库保存成功")
if self.faiss_index is not None and self.idx2hash is not None:
logger.info(f"正在保存{self.namespace}嵌入库的FaissIndex到文件{self.index_file_path}")
faiss.write_index(self.faiss_index, self.index_file_path)
logger.info(f"{self.namespace}嵌入库的FaissIndex保存成功")
logger.info(f"正在保存{self.namespace}嵌入库的idx2hash映射到文件{self.idx2hash_file_path}")
with open(self.idx2hash_file_path, "w", encoding="utf-8") as f:
f.write(json.dumps(self.idx2hash, ensure_ascii=False, indent=4))
logger.info(f"{self.namespace}嵌入库的idx2hash映射保存成功")
def load_from_file(self) -> None:
"""从文件中加载"""
if not os.path.exists(self.embedding_file_path):
raise Exception(f"文件{self.embedding_file_path}不存在")
logger.info(f"正在从文件{self.embedding_file_path}中加载{self.namespace}嵌入库")
data_frame = pd.read_parquet(self.embedding_file_path, engine="pyarrow")
for _, row in tqdm.tqdm(data_frame.iterrows(), total=len(data_frame)):
self.store[row["hash"]] = EmbeddingStoreItem(row["hash"], row["embedding"], row["str"])
logger.info(f"{self.namespace}嵌入库加载成功")
try:
if os.path.exists(self.index_file_path):
logger.info(f"正在从文件{self.index_file_path}中加载{self.namespace}嵌入库的FaissIndex")
self.faiss_index = faiss.read_index(self.index_file_path)
logger.info(f"{self.namespace}嵌入库的FaissIndex加载成功")
else:
raise Exception(f"文件{self.index_file_path}不存在")
if os.path.exists(self.idx2hash_file_path):
logger.info(f"正在从文件{self.idx2hash_file_path}中加载{self.namespace}嵌入库的idx2hash映射")
with open(self.idx2hash_file_path, "r") as f:
self.idx2hash = json.load(f)
logger.info(f"{self.namespace}嵌入库的idx2hash映射加载成功")
else:
raise Exception(f"文件{self.idx2hash_file_path}不存在")
except Exception as e:
logger.error(f"加载{self.namespace}嵌入库的FaissIndex时发生错误{e}")
logger.warning("正在重建Faiss索引")
self.build_faiss_index()
logger.info(f"{self.namespace}嵌入库的FaissIndex重建成功")
self.save_to_file()
def build_faiss_index(self) -> None:
"""重新构建Faiss索引以余弦相似度为度量"""
# 获取所有的embedding
array = []
self.idx2hash = dict()
for key in self.store:
array.append(self.store[key].embedding)
self.idx2hash[str(len(array) - 1)] = key
embeddings = np.array(array, dtype=np.float32)
# L2归一化
faiss.normalize_L2(embeddings)
# 构建索引
self.faiss_index = faiss.IndexFlatIP(global_config["embedding"]["dimension"])
self.faiss_index.add(embeddings)
def search_top_k(self, query: List[float], k: int) -> List[Tuple[str, float]]:
"""搜索最相似的k个项以余弦相似度为度量
Args:
query: 查询的embedding
k: 返回的最相似的k个项
Returns:
result: 最相似的k个项的(hash, 余弦相似度)列表
"""
if self.faiss_index is None:
logger.warning("FaissIndex尚未构建,返回None")
return None
if self.idx2hash is None:
logger.warning("idx2hash尚未构建,返回None")
return None
# L2归一化
faiss.normalize_L2(np.array([query], dtype=np.float32))
# 搜索
distances, indices = self.faiss_index.search(np.array([query]), k)
# 整理结果
indices = list(indices.flatten())
distances = list(distances.flatten())
result = [
(self.idx2hash[str(int(idx))], float(sim))
for (idx, sim) in zip(indices, distances)
if idx in range(len(self.idx2hash))
]
return result
class EmbeddingManager:
def __init__(self, llm_client: LLMClient):
self.paragraphs_embedding_store = EmbeddingStore(
llm_client,
PG_NAMESPACE,
global_config["persistence"]["embedding_data_dir"],
)
self.entities_embedding_store = EmbeddingStore(
llm_client,
ENT_NAMESPACE,
global_config["persistence"]["embedding_data_dir"],
)
self.relation_embedding_store = EmbeddingStore(
llm_client,
REL_NAMESPACE,
global_config["persistence"]["embedding_data_dir"],
)
self.stored_pg_hashes = set()
def _store_pg_into_embedding(self, raw_paragraphs: Dict[str, str]):
"""将段落编码存入Embedding库"""
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()))
def _store_ent_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
"""将实体编码存入Embedding库"""
entities = set()
for triple_list in triple_list_data.values():
for triple in triple_list:
entities.add(triple[0])
entities.add(triple[2])
self.entities_embedding_store.batch_insert_strs(list(entities))
def _store_rel_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
"""将关系编码存入Embedding库"""
graph_triples = [] # a list of unique relation triple (in tuple) from all chunks
for triples in triple_list_data.values():
graph_triples.extend([tuple(t) for t in triples])
graph_triples = list(set(graph_triples))
self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples])
def load_from_file(self):
"""从文件加载"""
self.paragraphs_embedding_store.load_from_file()
self.entities_embedding_store.load_from_file()
self.relation_embedding_store.load_from_file()
# 从段落库中获取已存储的hash
self.stored_pg_hashes = set(self.paragraphs_embedding_store.store.keys())
def store_new_data_set(
self,
raw_paragraphs: Dict[str, str],
triple_list_data: Dict[str, List[List[str]]],
):
"""存储新的数据集"""
self._store_pg_into_embedding(raw_paragraphs)
self._store_ent_into_embedding(triple_list_data)
self._store_rel_into_embedding(triple_list_data)
self.stored_pg_hashes.update(raw_paragraphs.keys())
def save_to_file(self):
"""保存到文件"""
self.paragraphs_embedding_store.save_to_file()
self.entities_embedding_store.save_to_file()
self.relation_embedding_store.save_to_file()
def rebuild_faiss_index(self):
"""重建Faiss索引请在添加新数据后调用"""
self.paragraphs_embedding_store.build_faiss_index()
self.entities_embedding_store.build_faiss_index()
self.relation_embedding_store.build_faiss_index()

View File

@@ -0,0 +1,10 @@
# Configure logger
from src.common.logger import get_module_logger, LogConfig, LPMM_STYLE_CONFIG
lpmm_log_config = LogConfig(
console_format=LPMM_STYLE_CONFIG["console_format"],
file_format=LPMM_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("LPMM", config=lpmm_log_config)

View File

@@ -0,0 +1,98 @@
import json
import time
from typing import List
from .global_logger import logger
from . import prompt_template
from .lpmmconfig import global_config, INVALID_ENTITY
from .llm_client import LLMClient
from .utils.json_fix import fix_broken_generated_json
def _entity_extract(llm_client: LLMClient, paragraph: str) -> List[str]:
"""对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
_, request_result = llm_client.send_chat_request(
global_config["entity_extract"]["llm"]["model"], entity_extract_context
)
# 去除‘{’前的内容(结果中可能有多个‘{
if "[" in request_result:
request_result = request_result[request_result.index("[") :]
# 去除最后一个‘}’后的内容(结果中可能有多个‘}
if "]" in request_result:
request_result = request_result[: request_result.rindex("]") + 1]
entity_extract_result = json.loads(fix_broken_generated_json(request_result))
entity_extract_result = [
entity
for entity in entity_extract_result
if (entity is not None) and (entity != "") and (entity not in INVALID_ENTITY)
]
if len(entity_extract_result) == 0:
raise Exception("实体提取结果为空")
return entity_extract_result
def _rdf_triple_extract(llm_client: LLMClient, paragraph: str, entities: list) -> List[List[str]]:
"""对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_rdf_triple_extract_context(
paragraph, entities=json.dumps(entities, ensure_ascii=False)
)
_, request_result = llm_client.send_chat_request(global_config["rdf_build"]["llm"]["model"], entity_extract_context)
# 去除‘{’前的内容(结果中可能有多个‘{
if "[" in request_result:
request_result = request_result[request_result.index("[") :]
# 去除最后一个‘}’后的内容(结果中可能有多个‘}
if "]" in request_result:
request_result = request_result[: request_result.rindex("]") + 1]
entity_extract_result = json.loads(fix_broken_generated_json(request_result))
for triple in entity_extract_result:
if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
raise Exception("RDF提取结果格式错误")
return entity_extract_result
def info_extract_from_str(
llm_client_for_ner: LLMClient, llm_client_for_rdf: LLMClient, paragraph: str
) -> tuple[None, None] | tuple[list[str], list[list[str]]]:
try_count = 0
while True:
try:
entity_extract_result = _entity_extract(llm_client_for_ner, paragraph)
break
except Exception as e:
logger.warning(f"实体提取失败,错误信息:{e}")
try_count += 1
if try_count < 3:
logger.warning("将于5秒后重试")
time.sleep(5)
else:
logger.error("实体提取失败,已达最大重试次数")
return None, None
try_count = 0
while True:
try:
rdf_triple_extract_result = _rdf_triple_extract(llm_client_for_rdf, paragraph, entity_extract_result)
break
except Exception as e:
logger.warning(f"实体提取失败,错误信息:{e}")
try_count += 1
if try_count < 3:
logger.warning("将于5秒后重试")
time.sleep(5)
else:
logger.error("实体提取失败,已达最大重试次数")
return None, None
return entity_extract_result, rdf_triple_extract_result

View File

@@ -0,0 +1,396 @@
import json
import os
import time
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
import tqdm
from quick_algo import di_graph, pagerank
from .utils.hash import get_sha256
from .embedding_store import EmbeddingManager, EmbeddingStoreItem
from .lpmmconfig import (
ENT_NAMESPACE,
PG_NAMESPACE,
RAG_ENT_CNT_NAMESPACE,
RAG_GRAPH_NAMESPACE,
RAG_PG_HASH_NAMESPACE,
global_config,
)
from .global_logger import logger
class KGManager:
def __init__(self):
# 会被保存的字段
# 存储段落的hash值用于去重
self.stored_paragraph_hashes = set()
# 实体出现次数
self.ent_appear_cnt = dict()
# KG
self.graph = di_graph.DiGraph()
# 持久化相关
self.dir_path = global_config["persistence"]["rag_data_dir"]
self.graph_data_path = self.dir_path + "/" + RAG_GRAPH_NAMESPACE + ".graphml"
self.ent_cnt_data_path = self.dir_path + "/" + RAG_ENT_CNT_NAMESPACE + ".parquet"
self.pg_hash_file_path = self.dir_path + "/" + RAG_PG_HASH_NAMESPACE + ".json"
def save_to_file(self):
"""将KG数据保存到文件"""
# 确保目录存在
if not os.path.exists(self.dir_path):
os.makedirs(self.dir_path, exist_ok=True)
# 保存KG
di_graph.save_to_file(self.graph, self.graph_data_path)
# 保存实体计数到文件
ent_cnt_df = pd.DataFrame([{"hash_key": k, "appear_cnt": v} for k, v in self.ent_appear_cnt.items()])
ent_cnt_df.to_parquet(self.ent_cnt_data_path, engine="pyarrow", index=False)
# 保存段落hash到文件
with open(self.pg_hash_file_path, "w", encoding="utf-8") as f:
data = {"stored_paragraph_hashes": list(self.stored_paragraph_hashes)}
f.write(json.dumps(data, ensure_ascii=False, indent=4))
def load_from_file(self):
"""从文件加载KG数据"""
# 确保文件存在
if not os.path.exists(self.pg_hash_file_path):
raise Exception(f"KG段落hash文件{self.pg_hash_file_path}不存在")
if not os.path.exists(self.ent_cnt_data_path):
raise Exception(f"KG实体计数文件{self.ent_cnt_data_path}不存在")
if not os.path.exists(self.graph_data_path):
raise Exception(f"KG图文件{self.graph_data_path}不存在")
# 加载段落hash
with open(self.pg_hash_file_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.stored_paragraph_hashes = set(data["stored_paragraph_hashes"])
# 加载实体计数
ent_cnt_df = pd.read_parquet(self.ent_cnt_data_path, engine="pyarrow")
self.ent_appear_cnt = dict({row["hash_key"]: row["appear_cnt"] for _, row in ent_cnt_df.iterrows()})
# 加载KG
self.graph = di_graph.load_from_file(self.graph_data_path)
def _build_edges_between_ent(
self,
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
):
"""构建实体节点之间的关系,同时统计实体出现次数"""
for triple_list in triple_list_data.values():
entity_set = set()
for triple in triple_list:
if triple[0] == triple[2]:
# 避免自连接
continue
# 一个triple就是一条边同时构建双向联系
hash_key1 = ENT_NAMESPACE + "-" + get_sha256(triple[0])
hash_key2 = ENT_NAMESPACE + "-" + get_sha256(triple[2])
node_to_node[(hash_key1, hash_key2)] = node_to_node.get((hash_key1, hash_key2), 0) + 1.0
node_to_node[(hash_key2, hash_key1)] = node_to_node.get((hash_key2, hash_key1), 0) + 1.0
entity_set.add(hash_key1)
entity_set.add(hash_key2)
# 实体出现次数统计
for hash_key in entity_set:
self.ent_appear_cnt[hash_key] = self.ent_appear_cnt.get(hash_key, 0) + 1.0
@staticmethod
def _build_edges_between_ent_pg(
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
):
"""构建实体节点与文段节点之间的关系"""
for idx in triple_list_data:
for triple in triple_list_data[idx]:
ent_hash_key = ENT_NAMESPACE + "-" + get_sha256(triple[0])
pg_hash_key = PG_NAMESPACE + "-" + str(idx)
node_to_node[(ent_hash_key, pg_hash_key)] = node_to_node.get((ent_hash_key, pg_hash_key), 0) + 1.0
@staticmethod
def _synonym_connect(
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
embedding_manager: EmbeddingManager,
) -> int:
"""同义词连接"""
new_edge_cnt = 0
# 获取所有实体节点的hash值
ent_hash_list = set()
for triple_list in triple_list_data.values():
for triple in triple_list:
ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[0]))
ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[2]))
ent_hash_list = list(ent_hash_list)
synonym_hash_set = set()
synonym_result = dict()
# 对每个实体节点,查找其相似的实体节点,建立扩展连接
for ent_hash in tqdm.tqdm(ent_hash_list):
if ent_hash in synonym_hash_set:
# 避免同一批次内重复添加
continue
ent = embedding_manager.entities_embedding_store.store.get(ent_hash)
assert isinstance(ent, EmbeddingStoreItem)
if ent is None:
continue
# 查询相似实体
similar_ents = embedding_manager.entities_embedding_store.search_top_k(
ent.embedding, global_config["rag"]["params"]["synonym_search_top_k"]
)
res_ent = [] # Debug
for res_ent_hash, similarity in similar_ents:
if res_ent_hash == ent_hash:
# 避免自连接
continue
if similarity < global_config["rag"]["params"]["synonym_threshold"]:
# 相似度阈值
continue
node_to_node[(res_ent_hash, ent_hash)] = similarity
node_to_node[(ent_hash, res_ent_hash)] = similarity
synonym_hash_set.add(res_ent_hash)
new_edge_cnt += 1
res_ent.append(
(
embedding_manager.entities_embedding_store.store[res_ent_hash].str,
similarity,
)
) # Debug
synonym_result[ent.str] = res_ent
for k, v in synonym_result.items():
print(f'"{k}"的相似实体为:{v}')
return new_edge_cnt
def _update_graph(
self,
node_to_node: Dict[Tuple[str, str], float],
embedding_manager: EmbeddingManager,
):
"""更新KG图结构
流程:
1. 更新图结构:遍历所有待添加的新边
- 若是新边,则添加到图中
- 若是已存在的边,则更新边的权重
2. 更新新节点的属性
"""
existed_nodes = self.graph.get_node_list()
existed_edges = [str((edge[0], edge[1])) for edge in self.graph.get_edge_list()]
now_time = time.time()
# 更新图结构
for src_tgt, weight in node_to_node.items():
key = str(src_tgt)
# 检查边是否已存在
if key not in existed_edges:
# 新边
self.graph.add_edge(
di_graph.DiEdge(
src_tgt[0],
src_tgt[1],
{
"weight": weight,
"create_time": now_time,
"update_time": now_time,
},
)
)
else:
# 已存在的边
edge_item = self.graph[src_tgt[0], src_tgt[1]]
edge_item["weight"] += weight
edge_item["update_time"] = now_time
self.graph.update_edge(edge_item)
# 更新新节点属性
for src_tgt in node_to_node.keys():
for node_hash in src_tgt:
if node_hash not in existed_nodes:
if node_hash.startswith(ENT_NAMESPACE):
# 新增实体节点
node = embedding_manager.entities_embedding_store.store[node_hash]
assert isinstance(node, EmbeddingStoreItem)
node_item = self.graph[node_hash]
node_item["content"] = node.str
node_item["type"] = "ent"
node_item["create_time"] = now_time
self.graph.update_node(node_item)
elif node_hash.startswith(PG_NAMESPACE):
# 新增文段节点
node = embedding_manager.paragraphs_embedding_store.store[node_hash]
assert isinstance(node, EmbeddingStoreItem)
content = node.str.replace("\n", " ")
node_item = self.graph[node_hash]
node_item["content"] = content if len(content) < 8 else content[:8] + "..."
node_item["type"] = "pg"
node_item["create_time"] = now_time
self.graph.update_node(node_item)
def build_kg(
self,
triple_list_data: Dict[str, List[List[str]]],
embedding_manager: EmbeddingManager,
):
"""增量式构建KG
注意应当在调用该方法后保存KG
Args:
triple_list_data: 三元组数据
embedding_manager: EmbeddingManager对象
"""
# 实体之间的联系
node_to_node = dict()
# 构建实体节点之间的关系,同时统计实体出现次数
logger.info("正在构建KG实体节点之间的关系同时统计实体出现次数")
# 从三元组提取实体对
self._build_edges_between_ent(node_to_node, triple_list_data)
# 构建实体节点与文段节点之间的关系
logger.info("正在构建KG实体节点与文段节点之间的关系")
self._build_edges_between_ent_pg(node_to_node, triple_list_data)
# 近义词扩展链接
# 对每个实体节点,找到最相似的实体节点,建立扩展连接
logger.info("正在进行近义词扩展链接")
self._synonym_connect(node_to_node, triple_list_data, embedding_manager)
# 构建图
self._update_graph(node_to_node, embedding_manager)
# 记录已处理存储的段落hash
for idx in triple_list_data:
self.stored_paragraph_hashes.add(str(idx))
def kg_search(
self,
relation_search_result: List[Tuple[Tuple[str, str, str], float]],
paragraph_search_result: List[Tuple[str, float]],
embed_manager: EmbeddingManager,
):
"""RAG搜索与PageRank
Args:
relation_search_result: RelationEmbedding的搜索结果relation_tripple, similarity
paragraph_search_result: ParagraphEmbedding的搜索结果paragraph_hash, similarity
embed_manager: EmbeddingManager对象
"""
# 图中存在的节点总集
existed_nodes = self.graph.get_node_list()
# 准备PPR使用的数据
# 节点权重:实体
ent_weights = {}
# 节点权重:文段
pg_weights = {}
# 以下部分处理实体权重ent_weights
# 针对每个关系,提取出其中的主宾短语作为两个实体,并记录对应的三元组的相似度作为权重依据
ent_sim_scores = {}
for relation_hash, similarity, _ in relation_search_result:
# 提取主宾短语
relation = embed_manager.relation_embedding_store.store.get(relation_hash).str
assert relation is not None # 断言relation不为空
# 关系三元组
triple = relation[2:-2].split("', '")
for ent in [(triple[0]), (triple[2])]:
ent_hash = ENT_NAMESPACE + "-" + get_sha256(ent)
if ent_hash in existed_nodes: # 该实体需在KG中存在
if ent_hash not in ent_sim_scores: # 尚未记录的实体
ent_sim_scores[ent_hash] = []
ent_sim_scores[ent_hash].append(similarity)
ent_mean_scores = {} # 记录实体的平均相似度
for ent_hash, scores in ent_sim_scores.items():
# 先对相似度进行累加,然后与实体计数相除获取最终权重
ent_weights[ent_hash] = float(np.sum(scores)) / self.ent_appear_cnt[ent_hash]
# 记录实体的平均相似度用于后续的top_k筛选
ent_mean_scores[ent_hash] = float(np.mean(scores))
del ent_sim_scores
ent_weights_max = max(ent_weights.values())
ent_weights_min = min(ent_weights.values())
if ent_weights_max == ent_weights_min:
# 只有一个相似度则全赋值为1
for ent_hash in ent_weights.keys():
ent_weights[ent_hash] = 1.0
else:
down_edge = global_config["qa"]["params"]["paragraph_node_weight"]
# 缩放取值区间至[down_edge, 1]
for ent_hash, score in ent_weights.items():
# 缩放相似度
ent_weights[ent_hash] = (
(score - ent_weights_min) * (1 - down_edge) / (ent_weights_max - ent_weights_min)
) + down_edge
# 取平均相似度的top_k实体
top_k = global_config["qa"]["params"]["ent_filter_top_k"]
if len(ent_mean_scores) > top_k:
# 从大到小排序取后len - k个
ent_mean_scores = {k: v for k, v in sorted(ent_mean_scores.items(), key=lambda item: item[1], reverse=True)}
for ent_hash, _ in ent_mean_scores.items():
# 删除被淘汰的实体节点权重设置
del ent_weights[ent_hash]
del top_k, ent_mean_scores
# 以下部分处理文段权重pg_weights
# 将搜索结果中文段的相似度归一化作为权重
pg_sim_scores = {}
pg_sim_score_max = 0.0
pg_sim_score_min = 1.0
for pg_hash, similarity in paragraph_search_result:
# 查找最大和最小值
pg_sim_score_max = max(pg_sim_score_max, similarity)
pg_sim_score_min = min(pg_sim_score_min, similarity)
pg_sim_scores[pg_hash] = similarity
# 归一化
for pg_hash, similarity in pg_sim_scores.items():
# 归一化相似度
pg_sim_scores[pg_hash] = (similarity - pg_sim_score_min) / (pg_sim_score_max - pg_sim_score_min)
del pg_sim_score_max, pg_sim_score_min
for pg_hash, score in pg_sim_scores.items():
pg_weights[pg_hash] = (
score * global_config["qa"]["params"]["paragraph_node_weight"]
) # 文段权重 = 归一化相似度 * 文段节点权重参数
del pg_sim_scores
# 最终权重数据 = 实体权重 + 文段权重
ppr_node_weights = {k: v for d in [ent_weights, pg_weights] for k, v in d.items()}
del ent_weights, pg_weights
# PersonalizedPageRank
ppr_res = pagerank.run_pagerank(
self.graph,
personalization=ppr_node_weights,
max_iter=100,
alpha=global_config["qa"]["params"]["ppr_damping"],
)
# 获取最终结果
# 从搜索结果中提取文段节点的结果
passage_node_res = [
(node_key, score) for node_key, score in ppr_res.items() if node_key.startswith(PG_NAMESPACE)
]
del ppr_res
# 排序:按照分数从大到小
passage_node_res = sorted(passage_node_res, key=lambda item: item[1], reverse=True)
return passage_node_res, ppr_node_weights

View File

@@ -0,0 +1,45 @@
from openai import OpenAI
class LLMMessage:
def __init__(self, role, content):
self.role = role
self.content = content
def to_dict(self):
return {"role": self.role, "content": self.content}
class LLMClient:
"""LLM客户端对应一个API服务商"""
def __init__(self, url, api_key):
self.client = OpenAI(
base_url=url,
api_key=api_key,
)
def send_chat_request(self, model, messages):
"""发送对话请求,等待返回结果"""
response = self.client.chat.completions.create(model=model, messages=messages, stream=False)
if hasattr(response.choices[0].message, "reasoning_content"):
# 有单独的推理内容块
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
else:
# 无单独的推理内容块
response = response.choices[0].message.content.split("<think>")[-1].split("</think>")
# 如果有推理内容,则分割推理内容和内容
if len(response) == 2:
reasoning_content = response[0]
content = response[1]
else:
reasoning_content = None
content = response[0]
return reasoning_content, content
def send_embedding_request(self, model, text):
"""发送嵌入请求,等待返回结果"""
text = text.replace("\n", " ")
return self.client.embeddings.create(input=[text], model=model).data[0].embedding

View File

@@ -0,0 +1,142 @@
import os
import toml
import sys
import argparse
PG_NAMESPACE = "paragraph"
ENT_NAMESPACE = "entity"
REL_NAMESPACE = "relation"
RAG_GRAPH_NAMESPACE = "rag-graph"
RAG_ENT_CNT_NAMESPACE = "rag-ent-cnt"
RAG_PG_HASH_NAMESPACE = "rag-pg-hash"
# 无效实体
INVALID_ENTITY = [
"",
"",
"",
"",
"",
"我们",
"你们",
"他们",
"她们",
"它们",
]
def _load_config(config, config_file_path):
"""读取TOML格式的配置文件"""
if not os.path.exists(config_file_path):
return
with open(config_file_path, "r", encoding="utf-8") as f:
file_config = toml.load(f)
# Check if all top-level keys from default config exist in the file config
for key in config.keys():
if key not in file_config:
print(f"警告: 配置文件 '{config_file_path}' 缺少必需的顶级键: '{key}'。请检查配置文件。")
sys.exit(1)
if "llm_providers" in file_config:
for provider in file_config["llm_providers"]:
if provider["name"] not in config["llm_providers"]:
config["llm_providers"][provider["name"]] = dict()
config["llm_providers"][provider["name"]]["base_url"] = provider["base_url"]
config["llm_providers"][provider["name"]]["api_key"] = provider["api_key"]
if "entity_extract" in file_config:
config["entity_extract"] = file_config["entity_extract"]
if "rdf_build" in file_config:
config["rdf_build"] = file_config["rdf_build"]
if "embedding" in file_config:
config["embedding"] = file_config["embedding"]
if "rag" in file_config:
config["rag"] = file_config["rag"]
if "qa" in file_config:
config["qa"] = file_config["qa"]
if "persistence" in file_config:
config["persistence"] = file_config["persistence"]
print(config)
print("Configurations loaded from file: ", config_file_path)
parser = argparse.ArgumentParser(description="Configurations for the pipeline")
parser.add_argument(
"--config_path",
type=str,
default="lpmm_config.toml",
help="Path to the configuration file",
)
global_config = dict(
{
"llm_providers": {
"localhost": {
"base_url": "https://api.siliconflow.cn/v1",
"api_key": "sk-ospynxadyorf",
}
},
"entity_extract": {
"llm": {
"provider": "localhost",
"model": "Pro/deepseek-ai/DeepSeek-V3",
}
},
"rdf_build": {
"llm": {
"provider": "localhost",
"model": "Pro/deepseek-ai/DeepSeek-V3",
}
},
"embedding": {
"provider": "localhost",
"model": "Pro/BAAI/bge-m3",
"dimension": 1024,
},
"rag": {
"params": {
"synonym_search_top_k": 10,
"synonym_threshold": 0.75,
}
},
"qa": {
"params": {
"relation_search_top_k": 10,
"relation_threshold": 0.75,
"paragraph_search_top_k": 10,
"paragraph_node_weight": 0.05,
"ent_filter_top_k": 10,
"ppr_damping": 0.8,
"res_top_k": 10,
},
"llm": {
"provider": "localhost",
"model": "qa",
},
},
"persistence": {
"data_root_path": "data",
"raw_data_path": "data/raw.json",
"openie_data_path": "data/openie.json",
"embedding_data_dir": "data/embedding",
"rag_data_dir": "data/rag",
},
"info_extraction": {
"workers": 10,
},
}
)
# _load_config(global_config, parser.parse_args().config_path)
file_path = os.path.abspath(__file__)
dir_path = os.path.dirname(file_path)
root_path = os.path.join(dir_path, os.pardir, os.pardir, os.pardir, os.pardir)
config_path = os.path.join(root_path, "config", "lpmm_config.toml")
_load_config(global_config, config_path)

View File

@@ -0,0 +1,32 @@
from .lpmmconfig import global_config
from .embedding_store import EmbeddingManager
from .llm_client import LLMClient
from .utils.dyn_topk import dyn_select_top_k
class MemoryActiveManager:
def __init__(
self,
embed_manager: EmbeddingManager,
llm_client_embedding: LLMClient,
):
self.embed_manager = embed_manager
self.embedding_client = llm_client_embedding
def get_activation(self, question: str) -> float:
"""获取记忆激活度"""
# 生成问题的Embedding
question_embedding = self.embedding_client.send_embedding_request("text-embedding", question)
# 查询关系库中的相似度
rel_search_res = self.embed_manager.relation_embedding_store.search_top_k(question_embedding, 10)
# 动态过滤阈值
rel_scores = dyn_select_top_k(rel_search_res, 0.5, 1.0)
if rel_scores[0][1] < global_config["qa"]["params"]["relation_threshold"]:
# 未找到相关关系
return 0.0
# 计算激活度
activation = sum([item[2] for item in rel_scores]) * 10
return activation

View File

@@ -0,0 +1,134 @@
import json
from typing import Any, Dict, List
from .lpmmconfig import INVALID_ENTITY, global_config
def _filter_invalid_entities(entities: List[str]) -> List[str]:
"""过滤无效的实体"""
valid_entities = set()
for entity in entities:
if not isinstance(entity, str) or entity.strip() == "" or entity in INVALID_ENTITY or entity in valid_entities:
# 非字符串/空字符串/在无效实体列表中/重复
continue
valid_entities.add(entity)
return list(valid_entities)
def _filter_invalid_triples(triples: List[List[str]]) -> List[List[str]]:
"""过滤无效的三元组"""
unique_triples = set()
valid_triples = []
for triple in triples:
if len(triple) != 3 or (
(not isinstance(triple[0], str) or triple[0].strip() == "")
or (not isinstance(triple[1], str) or triple[1].strip() == "")
or (not isinstance(triple[2], str) or triple[2].strip() == "")
):
# 三元组长度不为3或其中存在空值
continue
valid_triple = [str(item) for item in triple]
if tuple(valid_triple) not in unique_triples:
unique_triples.add(tuple(valid_triple))
valid_triples.append(valid_triple)
return valid_triples
class OpenIE:
"""
OpenIE规约的数据格式为如下
{
"docs": [
{
"idx": "文档的唯一标识符通常是文本的SHA256哈希值",
"passage": "文档的原始文本",
"extracted_entities": ["实体1", "实体2", ...],
"extracted_triples": [["主语", "谓语", "宾语"], ...]
},
...
],
"avg_ent_chars": "实体平均字符数",
"avg_ent_words": "实体平均词数"
}
"""
def __init__(
self,
docs: List[Dict[str, Any]],
avg_ent_chars,
avg_ent_words,
):
self.docs = docs
self.avg_ent_chars = avg_ent_chars
self.avg_ent_words = avg_ent_words
for doc in self.docs:
# 过滤实体列表
doc["extracted_entities"] = _filter_invalid_entities(doc["extracted_entities"])
# 过滤无效的三元组
doc["extracted_triples"] = _filter_invalid_triples(doc["extracted_triples"])
@staticmethod
def _from_dict(data):
"""从字典中获取OpenIE对象"""
return OpenIE(
docs=data["docs"],
avg_ent_chars=data["avg_ent_chars"],
avg_ent_words=data["avg_ent_words"],
)
def _to_dict(self):
"""转换为字典"""
return {
"docs": self.docs,
"avg_ent_chars": self.avg_ent_chars,
"avg_ent_words": self.avg_ent_words,
}
@staticmethod
def load() -> "OpenIE":
"""从文件中加载OpenIE数据"""
with open(global_config["persistence"]["openie_data_path"], "r", encoding="utf-8") as f:
data = json.loads(f.read())
openie_data = OpenIE._from_dict(data)
return openie_data
@staticmethod
def save(openie_data: "OpenIE"):
"""保存OpenIE数据到文件"""
with open(global_config["persistence"]["openie_data_path"], "w", encoding="utf-8") as f:
f.write(json.dumps(openie_data._to_dict(), ensure_ascii=False, indent=4))
def extract_entity_dict(self):
"""提取实体列表"""
ner_output_dict = dict(
{
doc_item["idx"]: doc_item["extracted_entities"]
for doc_item in self.docs
if len(doc_item["extracted_entities"]) > 0
}
)
return ner_output_dict
def extract_triple_dict(self):
"""提取三元组列表"""
triple_output_dict = dict(
{
doc_item["idx"]: doc_item["extracted_triples"]
for doc_item in self.docs
if len(doc_item["extracted_triples"]) > 0
}
)
return triple_output_dict
def extract_raw_paragraph_dict(self):
"""提取原始段落"""
raw_paragraph_dict = dict({doc_item["idx"]: doc_item["passage"] for doc_item in self.docs})
return raw_paragraph_dict

View File

@@ -0,0 +1,65 @@
from typing import List
from .llm_client import LLMMessage
entity_extract_system_prompt = """你是一个性能优异的实体提取系统。请从段落中提取出所有实体并以JSON列表的形式输出。
输出格式示例:
[ "实体A", "实体B", "实体C" ]
请注意以下要求:
- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
- 尽可能多的提取出段落中的全部实体;
"""
def build_entity_extract_context(paragraph: str) -> List[LLMMessage]:
messages = [
LLMMessage("system", entity_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```""").to_dict(),
]
return messages
rdf_triple_extract_system_prompt = """你是一个性能优异的RDF资源描述框架由节点和边组成节点表示实体/资源、属性边则表示了实体和实体之间的关系以及实体和属性的关系。构造系统。你的任务是根据给定的段落和实体列表构建RDF图。
请使用JSON回复使用三元组的JSON列表输出RDF图中的关系每个三元组代表一个关系
输出格式示例:
[
["某实体","关系","某属性"],
["某实体","关系","某实体"],
["某资源","关系","某属性"]
]
请注意以下要求:
- 每个三元组应包含每个段落的实体命名列表中的至少一个命名实体,但最好是两个。
- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
"""
def build_rdf_triple_extract_context(paragraph: str, entities: str) -> List[LLMMessage]:
messages = [
LLMMessage("system", rdf_triple_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```\n\n实体列表:\n```\n{entities}```""").to_dict(),
]
return messages
qa_system_prompt = """
你是一个性能优异的QA系统。请根据给定的问题和一些可能对你有帮助的信息作出回答。
请注意以下要求:
- 你可以使用给定的信息来回答问题,但请不要直接引用它们。
- 你的回答应该简洁明了,避免冗长的解释。
- 如果你无法回答问题,请直接说“我不知道”。
"""
def build_qa_context(question: str, knowledge: list[(str, str, str)]) -> List[LLMMessage]:
knowledge = "\n".join([f"{i + 1}. 相关性:{k[0]}\n{k[1]}" for i, k in enumerate(knowledge)])
messages = [
LLMMessage("system", qa_system_prompt).to_dict(),
LLMMessage("user", f"问题:\n{question}\n\n可能有帮助的信息:\n{knowledge}").to_dict(),
]
return messages

View File

@@ -0,0 +1,120 @@
import time
from typing import Tuple, List, Dict
from .global_logger import logger
# from . import prompt_template
from .embedding_store import EmbeddingManager
from .llm_client import LLMClient
from .kg_manager import KGManager
from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k
class QAManager:
def __init__(
self,
embed_manager: EmbeddingManager,
kg_manager: KGManager,
llm_client_embedding: LLMClient,
llm_client_filter: LLMClient,
llm_client_qa: LLMClient,
):
self.embed_manager = embed_manager
self.kg_manager = kg_manager
self.llm_client_list = {
"embedding": llm_client_embedding,
"filter": llm_client_filter,
"qa": llm_client_qa,
}
def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Dict[str, float] | None]:
"""处理查询"""
# 生成问题的Embedding
part_start_time = time.perf_counter()
question_embedding = self.llm_client_list["embedding"].send_embedding_request(
global_config["embedding"]["model"], question
)
part_end_time = time.perf_counter()
logger.debug(f"Embedding用时{part_end_time - part_start_time:.5f}s")
# 根据问题Embedding查询Relation Embedding库
part_start_time = time.perf_counter()
relation_search_res = self.embed_manager.relation_embedding_store.search_top_k(
question_embedding,
global_config["qa"]["params"]["relation_search_top_k"],
)
if relation_search_res is not None:
# 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if relation_search_res[0][1] < global_config["qa"]["params"]["relation_threshold"]:
# 未找到相关关系
relation_search_res = []
part_end_time = time.perf_counter()
logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
for res in relation_search_res:
rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
# TODO: 使用LLM过滤三元组结果
# logger.info(f"LLM过滤三元组用时{time.time() - part_start_time:.2f}s")
# part_start_time = time.time()
# 根据问题Embedding查询Paragraph Embedding库
part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding,
global_config["qa"]["params"]["paragraph_search_top_k"],
)
part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
if len(relation_search_res) != 0:
logger.info("找到相关关系将使用RAG进行检索")
# 使用KG检索
part_start_time = time.perf_counter()
result, ppr_node_weights = self.kg_manager.kg_search(
relation_search_res, paragraph_search_res, self.embed_manager
)
part_end_time = time.perf_counter()
logger.info(f"RAG检索用时{part_end_time - part_start_time:.5f}s")
else:
logger.info("未找到相关关系,将使用文段检索结果")
result = paragraph_search_res
ppr_node_weights = None
# 过滤阈值
result = dyn_select_top_k(result, 0.5, 1.0)
for res in result:
raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
return result, ppr_node_weights
else:
return None
def get_knowledge(self, question: str) -> str:
"""获取知识"""
# 处理查询
processed_result = self.process_query(question)
if processed_result is not None:
query_res = processed_result[0]
knowledge = [
(
self.embed_manager.paragraphs_embedding_store.store[res[0]].str,
res[1],
)
for res in query_res
]
found_knowledge = "\n".join(
[f"{i + 1}条知识:{k[1]}\n 该条知识对于问题的相关性:{k[0]}" for i, k in enumerate(knowledge)]
)
return found_knowledge
else:
logger.info("LPMM知识库并未初始化使用旧版数据库进行检索")
return None

View File

@@ -0,0 +1,44 @@
import json
import os
from .global_logger import logger
from .lpmmconfig import global_config
from .utils.hash import get_sha256
def load_raw_data() -> tuple[list[str], list[str]]:
"""加载原始数据文件
读取原始数据文件,将原始数据加载到内存中
Returns:
- raw_data: 原始数据字典
- md5_set: 原始数据的SHA256集合
"""
# 读取import.json文件
if os.path.exists(global_config["persistence"]["raw_data_path"]) is True:
with open(global_config["persistence"]["raw_data_path"], "r", encoding="utf-8") as f:
import_json = json.loads(f.read())
else:
raise Exception("原始数据文件读取失败")
# import_json内容示例
# import_json = [
# "The capital of China is Beijing. The capital of France is Paris.",
# ]
raw_data = []
sha256_list = []
sha256_set = set()
for item in import_json:
if not isinstance(item, str):
logger.warning("数据类型错误:{}".format(item))
continue
pg_hash = get_sha256(item)
if pg_hash in sha256_set:
logger.warning("重复数据:{}".format(item))
continue
sha256_set.add(pg_hash)
sha256_list.append(pg_hash)
raw_data.append(item)
logger.info("共读取到{}条数据".format(len(raw_data)))
return sha256_list, raw_data

View File

@@ -0,0 +1,47 @@
from typing import List, Any, Tuple
def dyn_select_top_k(
score: List[Tuple[Any, float]], jmp_factor: float, var_factor: float
) -> List[Tuple[Any, float, float]]:
"""动态TopK选择"""
# 按照分数排序(降序)
sorted_score = sorted(score, key=lambda x: x[1], reverse=True)
# 归一化
max_score = sorted_score[0][1]
min_score = sorted_score[-1][1]
normalized_score = []
for score_item in sorted_score:
normalized_score.append(
tuple(
[
score_item[0],
score_item[1],
(score_item[1] - min_score) / (max_score - min_score),
]
)
)
# 寻找跳变点score变化最大的位置
jump_idx = 0
for i in range(1, len(normalized_score)):
if abs(normalized_score[i][2] - normalized_score[i - 1][2]) > abs(
normalized_score[jump_idx][2] - normalized_score[jump_idx - 1][2]
):
jump_idx = i
# 跳变阈值
jump_threshold = normalized_score[jump_idx][2]
# 计算均值
mean_score = sum([s[2] for s in normalized_score]) / len(normalized_score)
# 计算方差
var_score = sum([(s[2] - mean_score) ** 2 for s in normalized_score]) / len(normalized_score)
# 动态阈值
threshold = jmp_factor * jump_threshold + (1 - jmp_factor) * (mean_score + var_factor * var_score)
# 重新过滤
res = [s for s in normalized_score if s[2] > threshold]
return res

View File

@@ -0,0 +1,8 @@
import hashlib
def get_sha256(string: str) -> str:
"""获取字符串的SHA256值"""
sha256 = hashlib.sha256()
sha256.update(string.encode("utf-8"))
return sha256.hexdigest()

View File

@@ -0,0 +1,76 @@
import json
def _find_unclosed(json_str):
"""
Identifies the unclosed braces and brackets in the JSON string.
Args:
json_str (str): The JSON string to analyze.
Returns:
list: A list of unclosed elements in the order they were opened.
"""
unclosed = []
inside_string = False
escape_next = False
for char in json_str:
if inside_string:
if escape_next:
escape_next = False
elif char == "\\":
escape_next = True
elif char == '"':
inside_string = False
else:
if char == '"':
inside_string = True
elif char in "{[":
unclosed.append(char)
elif char in "}]":
if unclosed and ((char == "}" and unclosed[-1] == "{") or (char == "]" and unclosed[-1] == "[")):
unclosed.pop()
return unclosed
# The following code is used to fix a broken JSON string.
# From HippoRAG2 (GitHub: OSU-NLP-Group/HippoRAG)
def fix_broken_generated_json(json_str: str) -> str:
"""
Fixes a malformed JSON string by:
- Removing the last comma and any trailing content.
- Iterating over the JSON string once to determine and fix unclosed braces or brackets.
- Ensuring braces and brackets inside string literals are not considered.
If the original json_str string can be successfully loaded by json.loads(), will directly return it without any modification.
Args:
json_str (str): The malformed JSON string to be fixed.
Returns:
str: The corrected JSON string.
"""
try:
# Try to load the JSON to see if it is valid
json.loads(json_str)
return json_str # Return as-is if valid
except json.JSONDecodeError:
pass
# Step 1: Remove trailing content after the last comma.
last_comma_index = json_str.rfind(",")
if last_comma_index != -1:
json_str = json_str[:last_comma_index]
# Step 2: Identify unclosed braces and brackets.
unclosed_elements = _find_unclosed(json_str)
# Step 3: Append the necessary closing elements in reverse order of opening.
closing_map = {"{": "}", "[": "]"}
for open_char in reversed(unclosed_elements):
json_str += closing_map[open_char]
return json_str

View File

@@ -0,0 +1,17 @@
import networkx as nx
from matplotlib import pyplot as plt
def draw_graph_and_show(graph):
"""绘制图并显示画布大小1280*1280"""
fig = plt.figure(1, figsize=(12.8, 12.8), dpi=100)
nx.draw_networkx(
graph,
node_size=100,
width=0.5,
with_labels=True,
labels=nx.get_node_attributes(graph, "content"),
font_family="Sarasa Mono SC",
font_size=8,
)
fig.show()

View File

@@ -0,0 +1,57 @@
# LLM API 服务提供商,可配置多个
[[llm_providers]]
name = "localhost"
base_url = "http://127.0.0.1:8888/v1/"
api_key = "lm_studio"
[[llm_providers]]
name = "siliconflow"
base_url = "https://api.siliconflow.cn/v1/"
api_key = ""
[entity_extract.llm]
# 设置用于实体提取的LLM模型
provider = "siliconflow" # 服务提供商
model = "deepseek-ai/DeepSeek-V3" # 模型名称
[rdf_build.llm]
# 设置用于RDF构建的LLM模型
provider = "siliconflow" # 服务提供商
model = "deepseek-ai/DeepSeek-V3" # 模型名称
[embedding]
# 设置用于文本嵌入的Embedding模型
provider = "siliconflow" # 服务提供商
model = "Pro/BAAI/bge-m3" # 模型名称
dimension = 1024 # 嵌入维度
[rag.params]
# RAG参数配置
synonym_search_top_k = 10 # 同义词搜索TopK
synonym_threshold = 0.8 # 同义词阈值(相似度高于此阈值的词语会被认为是同义词)
[qa.llm]
# 设置用于QA的LLM模型
provider = "siliconflow" # 服务提供商
model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" # 模型名称
[info_extraction]
workers = 10
[qa.params]
# QA参数配置
relation_search_top_k = 10 # 关系搜索TopK
relation_threshold = 0.5 # 关系阈值(相似度高于此阈值的关系会被认为是相关的关系)
paragraph_search_top_k = 1000 # 段落搜索TopK不能过小可能影响搜索结果
paragraph_node_weight = 0.05 # 段落节点权重(在图搜索&PPR计算中的权重当搜索仅使用DPR时此参数不起作用
ent_filter_top_k = 10 # 实体过滤TopK
ppr_damping = 0.8 # PPR阻尼系数
res_top_k = 3 # 最终提供的文段TopK
[persistence]
# 持久化配置(存储中间数据,防止重复计算)
data_root_path = "data" # 数据根目录
raw_data_path = "data/import.json" # 原始数据路径
openie_data_path = "data/openie.json" # OpenIE数据路径
embedding_data_dir = "data/embedding" # 嵌入数据目录
rag_data_dir = "data/rag" # RAG数据目录

View File

@@ -1,56 +0,0 @@
@echo off
chcp 65001 > nul
setlocal enabledelayedexpansion
cd /d %~dp0
title 麦麦学习系统
cls
echo ======================================
echo 警告提示
echo ======================================
echo 1.这是一个demo系统,不完善不稳定,仅用于体验/不要塞入过长过大的文本,这会导致信息提取迟缓
echo ======================================
echo.
echo ======================================
echo 请选择Python环境:
echo 1 - venv (推荐)
echo 2 - conda
echo ======================================
choice /c 12 /n /m "请输入数字选择(1或2): "
if errorlevel 2 (
echo ======================================
set "CONDA_ENV="
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
:: 检查输入是否为空
if "!CONDA_ENV!"=="" (
echo 错误:环境名称不能为空
pause
exit /b 1
)
call conda activate !CONDA_ENV!
if errorlevel 1 (
echo 激活 conda 环境失败
pause
exit /b 1
)
echo Conda 环境 "!CONDA_ENV!" 激活成功
python src/plugins/zhishi/knowledge_library.py
) else (
if exist "venv\Scripts\python.exe" (
venv\Scripts\python src/plugins/zhishi/knowledge_library.py
) else (
echo ======================================
echo 错误: venv环境不存在请先创建虚拟环境
pause
exit /b 1
)
)
endlocal
pause