From 2b07c9e81b1af0f633117991652d2bd7fad18872 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=A2=A8=E6=A2=93=E6=9F=92?= <1787882683@qq.com>
Date: Wed, 23 Apr 2025 10:28:05 +0800
Subject: [PATCH] =?UTF-8?q?feat:=20=E6=96=B0=E5=A2=9ELPMM=E7=9F=A5?=
=?UTF-8?q?=E8=AF=86=E5=BA=93=E6=A8=A1=E5=9D=97=E5=8F=8A=E5=B7=A5=E5=85=B7?=
=?UTF-8?q?=E6=94=AF=E6=8C=81?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
- 新增LPMM知识库模块,包括实体提取、RDF构建、Embedding存储、KG管理等功能
- 新增`lpmm_get_knowledge`工具,支持从LPMM知识库中检索相关信息
- 新增OpenIE数据处理模块,支持信息提取、数据导入等功能
- 新增知识库初始化脚本,支持从原始数据到知识库的完整处理流程
- 新增配置文件`lpmm_config.toml`,支持自定义知识库相关参数
- 新增日志模块`LPMM_STYLE_CONFIG`,支持知识库相关日志输出
- 新增`raw_data_preprocessor.py`、`info_extraction.py`、`import_openie.py`等脚本,支持知识库数据预处理
---
![新版麦麦开始学习.bat | 46 ++
.gitignore | 3 +
bot.py | 10 +
import_openie.py | 162 +++++
info_extraction.py | 175 +++++
raw_data_preprocessor.py | 88 +++
src/common/logger.py | 21 +
.../tool_can_use/lpmm_get_knowledge.py | 139 ++++
src/do_tool/tool_use.py | 1 +
.../heartFC_chat/heartflow_prompt_builder.py | 33 +-
src/plugins/knowledge/LICENSE | 674 ++++++++++++++++++
src/plugins/knowledge/__init__.py | 0
src/plugins/knowledge/knowledge_lib.py | 62 ++
src/plugins/knowledge/src/__init__.py | 0
src/plugins/knowledge/src/embedding_store.py | 239 +++++++
src/plugins/knowledge/src/global_logger.py | 10 +
src/plugins/knowledge/src/ie_process.py | 98 +++
src/plugins/knowledge/src/kg_manager.py | 396 ++++++++++
src/plugins/knowledge/src/llm_client.py | 45 ++
src/plugins/knowledge/src/lpmmconfig.py | 142 ++++
.../knowledge/src/mem_active_manager.py | 32 +
src/plugins/knowledge/src/open_ie.py | 134 ++++
src/plugins/knowledge/src/prompt_template.py | 65 ++
src/plugins/knowledge/src/qa_manager.py | 120 ++++
src/plugins/knowledge/src/raw_processing.py | 44 ++
src/plugins/knowledge/src/utils/__init__.py | 0
src/plugins/knowledge/src/utils/dyn_topk.py | 47 ++
src/plugins/knowledge/src/utils/hash.py | 8 +
src/plugins/knowledge/src/utils/json_fix.py | 76 ++
.../knowledge/src/utils/visualize_graph.py | 17 +
template/lpmm_config_template.toml | 57 ++
(临时版)麦麦开始学习.bat | 56 --
32 files changed, 2940 insertions(+), 60 deletions(-)
create mode 100644 ![新版麦麦开始学习.bat
create mode 100644 import_openie.py
create mode 100644 info_extraction.py
create mode 100644 raw_data_preprocessor.py
create mode 100644 src/do_tool/tool_can_use/lpmm_get_knowledge.py
create mode 100644 src/plugins/knowledge/LICENSE
create mode 100644 src/plugins/knowledge/__init__.py
create mode 100644 src/plugins/knowledge/knowledge_lib.py
create mode 100644 src/plugins/knowledge/src/__init__.py
create mode 100644 src/plugins/knowledge/src/embedding_store.py
create mode 100644 src/plugins/knowledge/src/global_logger.py
create mode 100644 src/plugins/knowledge/src/ie_process.py
create mode 100644 src/plugins/knowledge/src/kg_manager.py
create mode 100644 src/plugins/knowledge/src/llm_client.py
create mode 100644 src/plugins/knowledge/src/lpmmconfig.py
create mode 100644 src/plugins/knowledge/src/mem_active_manager.py
create mode 100644 src/plugins/knowledge/src/open_ie.py
create mode 100644 src/plugins/knowledge/src/prompt_template.py
create mode 100644 src/plugins/knowledge/src/qa_manager.py
create mode 100644 src/plugins/knowledge/src/raw_processing.py
create mode 100644 src/plugins/knowledge/src/utils/__init__.py
create mode 100644 src/plugins/knowledge/src/utils/dyn_topk.py
create mode 100644 src/plugins/knowledge/src/utils/hash.py
create mode 100644 src/plugins/knowledge/src/utils/json_fix.py
create mode 100644 src/plugins/knowledge/src/utils/visualize_graph.py
create mode 100644 template/lpmm_config_template.toml
delete mode 100644 (临时版)麦麦开始学习.bat
diff --git a/![新版麦麦开始学习.bat b/![新版麦麦开始学习.bat
new file mode 100644
index 000000000..ca38689cf
--- /dev/null
+++ b/![新版麦麦开始学习.bat
@@ -0,0 +1,46 @@
+@echo off
+CHCP 65001 > nul
+setlocal enabledelayedexpansion
+
+REM 查找venv虚拟环境
+set "venv_path=%~dp0venv\Scripts\activate.bat"
+if not exist "%venv_path%" (
+ echo 错误: 未找到虚拟环境,请确保venv目录存在
+ pause
+ exit /b 1
+)
+
+REM 激活虚拟环境
+call "%venv_path%"
+if %ERRORLEVEL% neq 0 (
+ echo 错误: 虚拟环境激活失败
+ pause
+ exit /b 1
+)
+
+REM 运行预处理脚本
+python "%~dp0raw_data_preprocessor.py"
+if %ERRORLEVEL% neq 0 (
+ echo 错误: raw_data_preprocessor.py 执行失败
+ pause
+ exit /b 1
+)
+
+REM 运行信息提取脚本
+python "%~dp0info_extraction.py"
+if %ERRORLEVEL% neq 0 (
+ echo 错误: info_extraction.py 执行失败
+ pause
+ exit /b 1
+)
+
+REM 运行OpenIE导入脚本
+python "%~dp0import_openie.py"
+if %ERRORLEVEL% neq 0 (
+ echo 错误: import_openie.py 执行失败
+ pause
+ exit /b 1
+)
+
+echo 所有处理步骤完成!
+pause
\ No newline at end of file
diff --git a/.gitignore b/.gitignore
index 9bf54a1dc..d4e0988b4 100644
--- a/.gitignore
+++ b/.gitignore
@@ -28,6 +28,8 @@ memory_graph.gml
config/bot_config_dev.toml
config/bot_config.toml
config/bot_config.toml.bak
+config/lpmm_config.toml
+config/lpmm_config.toml.bak
src/plugins/remote/client_uuid.json
(测试版)麦麦生成人格.bat
(临时版)麦麦开始学习.bat
@@ -240,4 +242,5 @@ logs
/config/*
config/old/bot_config_20250405_212257.toml
+temp/
diff --git a/bot.py b/bot.py
index 4e062dbf6..53dbc9be1 100644
--- a/bot.py
+++ b/bot.py
@@ -52,6 +52,16 @@ def init_config():
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
logger.info("复制完成,请修改config/bot_config.toml和.env中的配置后重新启动")
+ if not os.path.exists("config/lpmm_config.toml"):
+ logger.warning("检测到lpmm_config.toml不存在,正在从模板复制")
+
+ # 检查config目录是否存在
+ if not os.path.exists("config"):
+ os.makedirs("config")
+ logger.info("创建config目录")
+
+ shutil.copy("template/lpmm_config_template.toml", "config/lpmm_config.toml")
+ logger.info("复制完成,请修改config/lpmm_config.toml和.env中的配置后重新启动")
def init_env():
diff --git a/import_openie.py b/import_openie.py
new file mode 100644
index 000000000..5e347ef53
--- /dev/null
+++ b/import_openie.py
@@ -0,0 +1,162 @@
+# try:
+# import src.plugins.knowledge.lib.quick_algo
+# except ImportError:
+# print("未找到quick_algo库,无法使用quick_algo算法")
+# print("请安装quick_algo库 - 在lib.quick_algo中,执行命令:python setup.py build_ext --inplace")
+
+
+from typing import Dict, List
+
+from src.plugins.knowledge.src.lpmmconfig import PG_NAMESPACE, global_config
+from src.plugins.knowledge.src.embedding_store import EmbeddingManager
+from src.plugins.knowledge.src.llm_client import LLMClient
+from src.plugins.knowledge.src.open_ie import OpenIE
+from src.plugins.knowledge.src.kg_manager import KGManager
+from src.common.logger import get_module_logger
+from src.plugins.knowledge.src.utils.hash import get_sha256
+
+# 添加在现有导入之后
+import sys
+
+logger = get_module_logger("LPMM知识库-OpenIE导入")
+
+
+def hash_deduplicate(
+ raw_paragraphs: Dict[str, str],
+ triple_list_data: Dict[str, List[List[str]]],
+ stored_pg_hashes: set,
+ stored_paragraph_hashes: set,
+):
+ """Hash去重
+
+ Args:
+ raw_paragraphs: 索引的段落原文
+ triple_list_data: 索引的三元组列表
+ stored_pg_hashes: 已存储的段落hash集合
+ stored_paragraph_hashes: 已存储的段落hash集合
+
+ Returns:
+ new_raw_paragraphs: 去重后的段落
+ new_triple_list_data: 去重后的三元组
+ """
+ # 保存去重后的段落
+ new_raw_paragraphs = dict()
+ # 保存去重后的三元组
+ new_triple_list_data = dict()
+
+ for _, (raw_paragraph, triple_list) in enumerate(zip(raw_paragraphs.values(), triple_list_data.values())):
+ # 段落hash
+ paragraph_hash = get_sha256(raw_paragraph)
+ if ((PG_NAMESPACE + "-" + paragraph_hash) in stored_pg_hashes) and (paragraph_hash in stored_paragraph_hashes):
+ continue
+ new_raw_paragraphs[paragraph_hash] = raw_paragraph
+ new_triple_list_data[paragraph_hash] = triple_list
+
+ return new_raw_paragraphs, new_triple_list_data
+
+
+def handle_import_openie(openie_data: OpenIE, embed_manager: EmbeddingManager, kg_manager: KGManager) -> bool:
+ # 从OpenIE数据中提取段落原文与三元组列表
+ # 索引的段落原文
+ raw_paragraphs = openie_data.extract_raw_paragraph_dict()
+ # 索引的实体列表
+ entity_list_data = openie_data.extract_entity_dict()
+ # 索引的三元组列表
+ triple_list_data = openie_data.extract_triple_dict()
+ if len(raw_paragraphs) != len(entity_list_data) or len(raw_paragraphs) != len(triple_list_data):
+ logger.error("OpenIE数据存在异常")
+ return False
+ # 将索引换为对应段落的hash值
+ logger.info("正在进行段落去重与重索引")
+ raw_paragraphs, triple_list_data = hash_deduplicate(
+ raw_paragraphs,
+ triple_list_data,
+ embed_manager.stored_pg_hashes,
+ kg_manager.stored_paragraph_hashes,
+ )
+ if len(raw_paragraphs) != 0:
+ # 获取嵌入并保存
+ logger.info(f"段落去重完成,剩余待处理的段落数量:{len(raw_paragraphs)}")
+ logger.info("开始Embedding")
+ embed_manager.store_new_data_set(raw_paragraphs, triple_list_data)
+ # Embedding-Faiss重索引
+ logger.info("正在重新构建向量索引")
+ embed_manager.rebuild_faiss_index()
+ logger.info("向量索引构建完成")
+ embed_manager.save_to_file()
+ logger.info("Embedding完成")
+ # 构建新段落的RAG
+ logger.info("开始构建RAG")
+ kg_manager.build_kg(triple_list_data, embed_manager)
+ kg_manager.save_to_file()
+ logger.info("RAG构建完成")
+ else:
+ logger.info("无新段落需要处理")
+ return True
+
+
+def main():
+ # 新增确认提示
+ print("=== 重要操作确认 ===")
+ print("OpenIE导入时会大量发送请求,可能会撞到请求速度上限,请注意选用的模型")
+ print("同之前样例:在本地模型下,在70分钟内我们发送了约8万条请求,在网络允许下,速度会更快")
+ print("推荐使用硅基流动的Pro/BAAI/bge-m3")
+ print("每百万Token费用为0.7元")
+ print("知识导入时,会消耗大量系统资源,建议在较好配置电脑上运行")
+ print("同上样例,导入时10700K几乎跑满,14900HX占用80%,峰值内存占用约3G")
+ confirm = input("确认继续执行?(y/n): ").strip().lower()
+ if confirm != "y":
+ logger.info("用户取消操作")
+ print("操作已取消")
+ sys.exit(1)
+ print("\n" + "=" * 40 + "\n")
+
+ logger.info("----开始导入openie数据----\n")
+
+ logger.info("创建LLM客户端")
+ llm_client_list = dict()
+ for key in global_config["llm_providers"]:
+ llm_client_list[key] = LLMClient(
+ global_config["llm_providers"][key]["base_url"],
+ global_config["llm_providers"][key]["api_key"],
+ )
+
+ # 初始化Embedding库
+ embed_manager = embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]])
+ logger.info("正在从文件加载Embedding库")
+ try:
+ embed_manager.load_from_file()
+ except Exception as e:
+ logger.error("从文件加载Embedding库时发生错误:{}".format(e))
+ logger.info("Embedding库加载完成")
+ # 初始化KG
+ kg_manager = KGManager()
+ logger.info("正在从文件加载KG")
+ try:
+ kg_manager.load_from_file()
+ except Exception as e:
+ logger.error("从文件加载KG时发生错误:{}".format(e))
+ logger.info("KG加载完成")
+
+ logger.info(f"KG节点数量:{len(kg_manager.graph.get_node_list())}")
+ logger.info(f"KG边数量:{len(kg_manager.graph.get_edge_list())}")
+
+ # 数据比对:Embedding库与KG的段落hash集合
+ for pg_hash in kg_manager.stored_paragraph_hashes:
+ key = PG_NAMESPACE + "-" + pg_hash
+ if key not in embed_manager.stored_pg_hashes:
+ logger.warning(f"KG中存在Embedding库中不存在的段落:{key}")
+
+ logger.info("正在导入OpenIE数据文件")
+ try:
+ openie_data = OpenIE.load()
+ except Exception as e:
+ logger.error("导入OpenIE数据文件时发生错误:{}".format(e))
+ return False
+ if handle_import_openie(openie_data, embed_manager, kg_manager) is False:
+ logger.error("处理OpenIE数据时发生错误")
+ return False
+
+
+if __name__ == "__main__":
+ main()
diff --git a/info_extraction.py b/info_extraction.py
new file mode 100644
index 000000000..b6ad8a9c2
--- /dev/null
+++ b/info_extraction.py
@@ -0,0 +1,175 @@
+import json
+import os
+import signal
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from threading import Lock, Event
+import sys
+
+import tqdm
+
+from src.common.logger import get_module_logger
+from src.plugins.knowledge.src.lpmmconfig import global_config
+from src.plugins.knowledge.src.ie_process import info_extract_from_str
+from src.plugins.knowledge.src.llm_client import LLMClient
+from src.plugins.knowledge.src.open_ie import OpenIE
+from src.plugins.knowledge.src.raw_processing import load_raw_data
+
+logger = get_module_logger("LPMM知识库-信息提取")
+
+TEMP_DIR = "./temp"
+
+# 创建一个线程安全的锁,用于保护文件操作和共享数据
+file_lock = Lock()
+open_ie_doc_lock = Lock()
+
+# 创建一个事件标志,用于控制程序终止
+shutdown_event = Event()
+
+
+def process_single_text(pg_hash, raw_data, llm_client_list):
+ """处理单个文本的函数,用于线程池"""
+ temp_file_path = f"{TEMP_DIR}/{pg_hash}.json"
+
+ # 使用文件锁检查和读取缓存文件
+ with file_lock:
+ if os.path.exists(temp_file_path):
+ try:
+ # 存在对应的提取结果
+ logger.info(f"找到缓存的提取结果:{pg_hash}")
+ with open(temp_file_path, "r", encoding="utf-8") as f:
+ return json.load(f), None
+ except json.JSONDecodeError:
+ # 如果JSON文件损坏,删除它并重新处理
+ logger.warning(f"缓存文件损坏,重新处理:{pg_hash}")
+ os.remove(temp_file_path)
+
+ entity_list, rdf_triple_list = info_extract_from_str(
+ llm_client_list[global_config["entity_extract"]["llm"]["provider"]],
+ llm_client_list[global_config["rdf_build"]["llm"]["provider"]],
+ raw_data,
+ )
+ if entity_list is None or rdf_triple_list is None:
+ return None, pg_hash
+ else:
+ doc_item = {
+ "idx": pg_hash,
+ "passage": raw_data,
+ "extracted_entities": entity_list,
+ "extracted_triples": rdf_triple_list,
+ }
+ # 保存临时提取结果
+ with file_lock:
+ try:
+ with open(temp_file_path, "w", encoding="utf-8") as f:
+ json.dump(doc_item, f, ensure_ascii=False, indent=4)
+ except Exception as e:
+ logger.error(f"保存缓存文件失败:{pg_hash}, 错误:{e}")
+ # 如果保存失败,确保不会留下损坏的文件
+ if os.path.exists(temp_file_path):
+ os.remove(temp_file_path)
+ # 设置shutdown_event以终止程序
+ shutdown_event.set()
+ return None, pg_hash
+ return doc_item, None
+
+
+def signal_handler(signum, frame):
+ """处理Ctrl+C信号"""
+ logger.info("\n接收到中断信号,正在优雅地关闭程序...")
+ shutdown_event.set()
+
+
+def main():
+ # 设置信号处理器
+ signal.signal(signal.SIGINT, signal_handler)
+
+ # 新增用户确认提示
+ print("=== 重要操作确认 ===")
+ print("实体提取操作将会花费较多资金和时间,建议在空闲时段执行。")
+ print("举例:600万字全剧情,提取选用deepseek v3 0324,消耗约40元,约3小时。")
+ print("建议使用硅基流动的非Pro模型")
+ print("或者使用可以用赠金抵扣的Pro模型")
+ print("请确保账户余额充足,并且在执行前确认无误。")
+ confirm = input("确认继续执行?(y/n): ").strip().lower()
+ if confirm != "y":
+ logger.info("用户取消操作")
+ print("操作已取消")
+ sys.exit(1)
+ print("\n" + "=" * 40 + "\n")
+
+ logger.info("--------进行信息提取--------\n")
+
+ logger.info("创建LLM客户端")
+ llm_client_list = dict()
+ for key in global_config["llm_providers"]:
+ llm_client_list[key] = LLMClient(
+ global_config["llm_providers"][key]["base_url"],
+ global_config["llm_providers"][key]["api_key"],
+ )
+
+ logger.info("正在加载原始数据")
+ sha256_list, raw_datas = load_raw_data()
+ logger.info("原始数据加载完成\n")
+
+ # 创建临时目录
+ if not os.path.exists(f"{TEMP_DIR}"):
+ os.makedirs(f"{TEMP_DIR}")
+
+ failed_sha256 = []
+ open_ie_doc = []
+
+ # 创建线程池,最大线程数为50
+ workers = global_config["info_extraction"]["workers"]
+ with ThreadPoolExecutor(max_workers=workers) as executor:
+ # 提交所有任务到线程池
+ future_to_hash = {
+ executor.submit(process_single_text, pg_hash, raw_data, llm_client_list): pg_hash
+ for pg_hash, raw_data in zip(sha256_list, raw_datas)
+ }
+
+ # 使用tqdm显示进度
+ with tqdm.tqdm(total=len(future_to_hash), postfix="正在进行提取:") as pbar:
+ # 处理完成的任务
+ try:
+ for future in as_completed(future_to_hash):
+ if shutdown_event.is_set():
+ # 取消所有未完成的任务
+ for f in future_to_hash:
+ if not f.done():
+ f.cancel()
+ break
+
+ doc_item, failed_hash = future.result()
+ if failed_hash:
+ failed_sha256.append(failed_hash)
+ logger.error(f"提取失败:{failed_hash}")
+ elif doc_item:
+ with open_ie_doc_lock:
+ open_ie_doc.append(doc_item)
+ pbar.update(1)
+ except KeyboardInterrupt:
+ # 如果在这里捕获到KeyboardInterrupt,说明signal_handler可能没有正常工作
+ logger.info("\n接收到中断信号,正在优雅地关闭程序...")
+ shutdown_event.set()
+ # 取消所有未完成的任务
+ for f in future_to_hash:
+ if not f.done():
+ f.cancel()
+
+ # 保存信息提取结果
+ sum_phrase_chars = sum([len(e) for chunk in open_ie_doc for e in chunk["extracted_entities"]])
+ sum_phrase_words = sum([len(e.split()) for chunk in open_ie_doc for e in chunk["extracted_entities"]])
+ num_phrases = sum([len(chunk["extracted_entities"]) for chunk in open_ie_doc])
+ openie_obj = OpenIE(
+ open_ie_doc,
+ round(sum_phrase_chars / num_phrases, 4),
+ round(sum_phrase_words / num_phrases, 4),
+ )
+ OpenIE.save(openie_obj)
+
+ logger.info("--------信息提取完成--------")
+ logger.info(f"提取失败的文段SHA256:{failed_sha256}")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/raw_data_preprocessor.py b/raw_data_preprocessor.py
new file mode 100644
index 000000000..7b8d400cf
--- /dev/null
+++ b/raw_data_preprocessor.py
@@ -0,0 +1,88 @@
+import json
+import os
+from pathlib import Path
+import sys # 新增系统模块导入
+from src.common.logger import get_module_logger
+
+logger = get_module_logger("LPMM数据库-原始数据处理")
+
+
+def check_and_create_dirs():
+ """检查并创建必要的目录"""
+ required_dirs = ["data/lpmm_raw_data", "data/imported_lpmm_data"]
+
+ for dir_path in required_dirs:
+ if not os.path.exists(dir_path):
+ os.makedirs(dir_path)
+ logger.info(f"已创建目录: {dir_path}")
+
+
+def process_text_file(file_path):
+ """处理单个文本文件,返回段落列表"""
+ with open(file_path, "r", encoding="utf-8") as f:
+ raw = f.read()
+
+ paragraphs = []
+ paragraph = ""
+ for line in raw.split("\n"):
+ if line.strip() == "":
+ if paragraph != "":
+ paragraphs.append(paragraph.strip())
+ paragraph = ""
+ else:
+ paragraph += line + "\n"
+
+ if paragraph != "":
+ paragraphs.append(paragraph.strip())
+
+ return paragraphs
+
+
+def main():
+ # 新增用户确认提示
+ print("=== 重要操作确认 ===")
+ print("如果你并非第一次导入知识")
+ print("请先删除data/import.json文件,备份data/openie.json文件")
+ print("在进行知识库导入之前")
+ print("请修改config/lpmm_config.toml中的配置项")
+ confirm = input("确认继续执行?(y/n): ").strip().lower()
+ if confirm != "y":
+ logger.error("操作已取消")
+ sys.exit(1)
+ print("\n" + "=" * 40 + "\n")
+
+ # 检查并创建必要的目录
+ check_and_create_dirs()
+
+ # 检查输出文件是否存在
+ if os.path.exists("data/import.json"):
+ logger.error("错误: data/import.json 已存在,请先处理或删除该文件")
+ sys.exit(1)
+
+ if os.path.exists("data/openie.json"):
+ logger.error("错误: data/openie.json 已存在,请先处理或删除该文件")
+ sys.exit(1)
+
+ # 获取所有原始文本文件
+ raw_files = list(Path("data/lpmm_raw_data").glob("*.txt"))
+ if not raw_files:
+ logger.warning("警告: data/lpmm_raw_data 中没有找到任何 .txt 文件")
+ sys.exit(1)
+
+ # 处理所有文件
+ all_paragraphs = []
+ for file in raw_files:
+ logger.info(f"正在处理文件: {file.name}")
+ paragraphs = process_text_file(file)
+ all_paragraphs.extend(paragraphs)
+
+ # 保存合并后的结果
+ output_path = "data/import.json"
+ with open(output_path, "w", encoding="utf-8") as f:
+ json.dump(all_paragraphs, f, ensure_ascii=False, indent=4)
+
+ logger.info(f"处理完成,结果已保存到: {output_path}")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/src/common/logger.py b/src/common/logger.py
index 8f5e3cbff..4bdbb5e06 100644
--- a/src/common/logger.py
+++ b/src/common/logger.py
@@ -325,6 +325,26 @@ WILLING_STYLE_CONFIG = {
},
}
+# LPMM配置
+LPMM_STYLE_CONFIG = {
+ "advanced": {
+ "console_format": (
+ "{time:YYYY-MM-DD HH:mm:ss} | "
+ "{level: <8} | "
+ "{extra[module]: <12} | "
+ "LPMM | "
+ "{message}"
+ ),
+ "file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | LPMM | {message}",
+ },
+ "simple": {
+ "console_format": (
+ "{time:MM-DD HH:mm} | LPMM | {message}"
+ ),
+ "file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | LPMM | {message}",
+ },
+}
+
CONFIRM_STYLE_CONFIG = {
"console_format": "{message}", # noqa: E501
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | EULA与PRIVACY确认 | {message}",
@@ -347,6 +367,7 @@ WILLING_STYLE_CONFIG = WILLING_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else WILL
CONFIG_STYLE_CONFIG = CONFIG_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CONFIG_STYLE_CONFIG["advanced"]
TOOL_USE_STYLE_CONFIG = TOOL_USE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOOL_USE_STYLE_CONFIG["advanced"]
PFC_STYLE_CONFIG = PFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PFC_STYLE_CONFIG["advanced"]
+LPMM_STYLE_CONFIG = LPMM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LPMM_STYLE_CONFIG["advanced"]
def is_registered_module(record: dict) -> bool:
diff --git a/src/do_tool/tool_can_use/lpmm_get_knowledge.py b/src/do_tool/tool_can_use/lpmm_get_knowledge.py
new file mode 100644
index 000000000..601d6083b
--- /dev/null
+++ b/src/do_tool/tool_can_use/lpmm_get_knowledge.py
@@ -0,0 +1,139 @@
+from src.do_tool.tool_can_use.base_tool import BaseTool
+from src.plugins.chat.utils import get_embedding
+
+# from src.common.database import db
+from src.common.logger import get_module_logger
+from typing import Dict, Any
+from src.plugins.knowledge.knowledge_lib import qa_manager
+
+
+logger = get_module_logger("lpmm_get_knowledge_tool")
+
+
+class SearchKnowledgeFromLPMMTool(BaseTool):
+ """从LPMM知识库中搜索相关信息的工具"""
+
+ name = "lpmm_search_knowledge"
+ description = "从知识库中搜索相关信息"
+ parameters = {
+ "type": "object",
+ "properties": {
+ "query": {"type": "string", "description": "搜索查询关键词"},
+ "threshold": {"type": "number", "description": "相似度阈值,0.0到1.0之间"},
+ },
+ "required": ["query"],
+ }
+
+ async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
+ """执行知识库搜索
+
+ Args:
+ function_args: 工具参数
+ message_txt: 原始消息文本
+
+ Returns:
+ Dict: 工具执行结果
+ """
+ try:
+ query = function_args.get("query", message_txt)
+ # threshold = function_args.get("threshold", 0.4)
+
+ # 调用知识库搜索
+ embedding = await get_embedding(query, request_type="info_retrieval")
+ if embedding:
+ knowledge_info = qa_manager.get_knowledge(query)
+ logger.debug(f"知识库查询结果: {knowledge_info}")
+ if knowledge_info:
+ content = f"你知道这些知识: {knowledge_info}"
+ else:
+ content = f"你不太了解有关{query}的知识"
+ return {"name": "search_knowledge", "content": content}
+ return {"name": "search_knowledge", "content": f"无法获取关于'{query}'的嵌入向量"}
+ except Exception as e:
+ logger.error(f"知识库搜索工具执行失败: {str(e)}")
+ return {"name": "search_knowledge", "content": f"知识库搜索失败: {str(e)}"}
+
+ # def get_info_from_db(
+ # self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
+ # ) -> Union[str, list]:
+ # """从数据库中获取相关信息
+
+ # Args:
+ # query_embedding: 查询的嵌入向量
+ # limit: 最大返回结果数
+ # threshold: 相似度阈值
+ # return_raw: 是否返回原始结果
+
+ # Returns:
+ # Union[str, list]: 格式化的信息字符串或原始结果列表
+ # """
+ # if not query_embedding:
+ # return "" if not return_raw else []
+
+ # # 使用余弦相似度计算
+ # pipeline = [
+ # {
+ # "$addFields": {
+ # "dotProduct": {
+ # "$reduce": {
+ # "input": {"$range": [0, {"$size": "$embedding"}]},
+ # "initialValue": 0,
+ # "in": {
+ # "$add": [
+ # "$$value",
+ # {
+ # "$multiply": [
+ # {"$arrayElemAt": ["$embedding", "$$this"]},
+ # {"$arrayElemAt": [query_embedding, "$$this"]},
+ # ]
+ # },
+ # ]
+ # },
+ # }
+ # },
+ # "magnitude1": {
+ # "$sqrt": {
+ # "$reduce": {
+ # "input": "$embedding",
+ # "initialValue": 0,
+ # "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
+ # }
+ # }
+ # },
+ # "magnitude2": {
+ # "$sqrt": {
+ # "$reduce": {
+ # "input": query_embedding,
+ # "initialValue": 0,
+ # "in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
+ # }
+ # }
+ # },
+ # }
+ # },
+ # {"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
+ # {
+ # "$match": {
+ # "similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
+ # }
+ # },
+ # {"$sort": {"similarity": -1}},
+ # {"$limit": limit},
+ # {"$project": {"content": 1, "similarity": 1}},
+ # ]
+
+ # results = list(db.knowledges.aggregate(pipeline))
+ # logger.debug(f"知识库查询结果数量: {len(results)}")
+
+ # if not results:
+ # return "" if not return_raw else []
+
+ # if return_raw:
+ # return results
+ # else:
+ # # 返回所有找到的内容,用换行分隔
+ # return "\n".join(str(result["content"]) for result in results)
+
+
+# 注册工具
+# register_tool(SearchKnowledgeTool)
diff --git a/src/do_tool/tool_use.py b/src/do_tool/tool_use.py
index 4134f83bb..019294ec5 100644
--- a/src/do_tool/tool_use.py
+++ b/src/do_tool/tool_use.py
@@ -50,6 +50,7 @@ class ToolUser:
prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name},{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
+ prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
diff --git a/src/plugins/heartFC_chat/heartflow_prompt_builder.py b/src/plugins/heartFC_chat/heartflow_prompt_builder.py
index 53c4e575a..86c0d3cff 100644
--- a/src/plugins/heartFC_chat/heartflow_prompt_builder.py
+++ b/src/plugins/heartFC_chat/heartflow_prompt_builder.py
@@ -5,14 +5,15 @@ from ...individuality.individuality import Individuality
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.plugins.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.plugins.person_info.relationship_manager import relationship_manager
-from src.plugins.chat.utils import parse_text_timestamps
+from src.plugins.chat.utils import get_embedding, parse_text_timestamps
import time
from typing import Union
from ...common.database import db
-from ..chat.utils import get_embedding, get_recent_group_speaker
+from ..chat.utils import get_recent_group_speaker
from ..moods.moods import MoodManager
from ..memory_system.Hippocampus import HippocampusManager
from ..schedule.schedule_generator import bot_schedule
+from ..knowledge.knowledge_lib import qa_manager
logger = get_module_logger("prompt")
@@ -325,11 +326,10 @@ class PromptBuilder:
return prompt
- async def get_prompt_info(self, message: str, threshold: float):
+ async def get_prompt_info_old(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
-
# 1. 先从LLM获取主题,类似于记忆系统的做法
topics = []
# try:
@@ -475,6 +475,31 @@ class PromptBuilder:
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
return related_info
+ async def get_prompt_info(self, message: str, threshold: float):
+
+ related_info = ""
+ start_time = time.time()
+
+ logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
+ # 从LPMM知识库获取知识
+ found_knowledge_from_lpmm = qa_manager.get_knowledge(message)
+
+ end_time = time.time()
+ if found_knowledge_from_lpmm is not None:
+ logger.debug(f"从LPMM知识库获取知识,相关信息:{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}")
+ related_info += found_knowledge_from_lpmm
+ logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
+ logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
+ return related_info
+ else:
+ logger.debug("从LPMM知识库获取知识失败,使用旧版数据库进行检索")
+ knowledge_from_old = await self.get_prompt_info_old(message, threshold=0.38)
+ related_info += knowledge_from_old
+ logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
+ return related_info
+
+
+
@staticmethod
def get_info_from_db(
query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
diff --git a/src/plugins/knowledge/LICENSE b/src/plugins/knowledge/LICENSE
new file mode 100644
index 000000000..f288702d2
--- /dev/null
+++ b/src/plugins/knowledge/LICENSE
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/src/plugins/knowledge/__init__.py b/src/plugins/knowledge/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/src/plugins/knowledge/knowledge_lib.py b/src/plugins/knowledge/knowledge_lib.py
new file mode 100644
index 000000000..c0d2fe610
--- /dev/null
+++ b/src/plugins/knowledge/knowledge_lib.py
@@ -0,0 +1,62 @@
+from .src.lpmmconfig import PG_NAMESPACE, global_config
+from .src.embedding_store import EmbeddingManager
+from .src.llm_client import LLMClient
+from .src.mem_active_manager import MemoryActiveManager
+from .src.qa_manager import QAManager
+from .src.kg_manager import KGManager
+from .src.global_logger import logger
+# try:
+# import quick_algo
+# except ImportError:
+# print("quick_algo not found, please install it first")
+
+logger.info("正在初始化Mai-LPMM\n")
+logger.info("创建LLM客户端")
+llm_client_list = dict()
+for key in global_config["llm_providers"]:
+ llm_client_list[key] = LLMClient(
+ global_config["llm_providers"][key]["base_url"],
+ global_config["llm_providers"][key]["api_key"],
+ )
+
+# 初始化Embedding库
+embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]])
+logger.info("正在从文件加载Embedding库")
+try:
+ embed_manager.load_from_file()
+except Exception as e:
+ logger.error("从文件加载Embedding库时发生错误:{}".format(e))
+logger.info("Embedding库加载完成")
+# 初始化KG
+kg_manager = KGManager()
+logger.info("正在从文件加载KG")
+try:
+ kg_manager.load_from_file()
+except Exception as e:
+ logger.error("从文件加载KG时发生错误:{}".format(e))
+logger.info("KG加载完成")
+
+logger.info(f"KG节点数量:{len(kg_manager.graph.get_node_list())}")
+logger.info(f"KG边数量:{len(kg_manager.graph.get_edge_list())}")
+
+
+# 数据比对:Embedding库与KG的段落hash集合
+for pg_hash in kg_manager.stored_paragraph_hashes:
+ key = PG_NAMESPACE + "-" + pg_hash
+ if key not in embed_manager.stored_pg_hashes:
+ logger.warning(f"KG中存在Embedding库中不存在的段落:{key}")
+
+# 问答系统(用于知识库)
+qa_manager = QAManager(
+ embed_manager,
+ kg_manager,
+ llm_client_list[global_config["embedding"]["provider"]],
+ llm_client_list[global_config["qa"]["llm"]["provider"]],
+ llm_client_list[global_config["qa"]["llm"]["provider"]],
+)
+
+# 记忆激活(用于记忆库)
+inspire_manager = MemoryActiveManager(
+ embed_manager,
+ llm_client_list[global_config["embedding"]["provider"]],
+)
diff --git a/src/plugins/knowledge/src/__init__.py b/src/plugins/knowledge/src/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/src/plugins/knowledge/src/embedding_store.py b/src/plugins/knowledge/src/embedding_store.py
new file mode 100644
index 000000000..9e60b8e1f
--- /dev/null
+++ b/src/plugins/knowledge/src/embedding_store.py
@@ -0,0 +1,239 @@
+from dataclasses import dataclass
+import json
+import os
+from typing import Dict, List, Tuple
+
+import numpy as np
+import pandas as pd
+import tqdm
+import faiss
+
+from .llm_client import LLMClient
+from .lpmmconfig import ENT_NAMESPACE, PG_NAMESPACE, REL_NAMESPACE, global_config
+from .utils.hash import get_sha256
+from .global_logger import logger
+
+
+@dataclass
+class EmbeddingStoreItem:
+ """嵌入库中的项"""
+
+ def __init__(self, item_hash: str, embedding: List[float], content: str):
+ self.hash = item_hash
+ self.embedding = embedding
+ self.str = content
+
+ def to_dict(self) -> dict:
+ """转为dict"""
+ return {
+ "hash": self.hash,
+ "embedding": self.embedding,
+ "str": self.str,
+ }
+
+
+class EmbeddingStore:
+ def __init__(self, llm_client: LLMClient, namespace: str, dir_path: str):
+ self.namespace = namespace
+ self.llm_client = llm_client
+ self.dir = dir_path
+ self.embedding_file_path = dir_path + "/" + namespace + ".parquet"
+ self.index_file_path = dir_path + "/" + namespace + ".index"
+ self.idx2hash_file_path = dir_path + "/" + namespace + "_i2h.json"
+
+ self.store = dict()
+
+ self.faiss_index = None
+ self.idx2hash = None
+
+ def _get_embedding(self, s: str) -> List[float]:
+ return self.llm_client.send_embedding_request(global_config["embedding"]["model"], s)
+
+ def batch_insert_strs(self, strs: List[str]) -> None:
+ """向库中存入字符串"""
+ # 逐项处理
+ for s in tqdm.tqdm(strs, desc="存入嵌入库", unit="items"):
+ # 计算hash去重
+ item_hash = self.namespace + "-" + get_sha256(s)
+ if item_hash in self.store:
+ continue
+
+ # 获取embedding
+ embedding = self._get_embedding(s)
+
+ # 存入
+ self.store[item_hash] = EmbeddingStoreItem(item_hash, embedding, s)
+
+ def save_to_file(self) -> None:
+ """保存到文件"""
+ data = []
+ logger.info(f"正在保存{self.namespace}嵌入库到文件{self.embedding_file_path}")
+ for item in self.store.values():
+ data.append(item.to_dict())
+ data_frame = pd.DataFrame(data)
+
+ if not os.path.exists(self.dir):
+ os.makedirs(self.dir, exist_ok=True)
+ if not os.path.exists(self.embedding_file_path):
+ open(self.embedding_file_path, "w").close()
+
+ data_frame.to_parquet(self.embedding_file_path, engine="pyarrow", index=False)
+ logger.info(f"{self.namespace}嵌入库保存成功")
+
+ if self.faiss_index is not None and self.idx2hash is not None:
+ logger.info(f"正在保存{self.namespace}嵌入库的FaissIndex到文件{self.index_file_path}")
+ faiss.write_index(self.faiss_index, self.index_file_path)
+ logger.info(f"{self.namespace}嵌入库的FaissIndex保存成功")
+ logger.info(f"正在保存{self.namespace}嵌入库的idx2hash映射到文件{self.idx2hash_file_path}")
+ with open(self.idx2hash_file_path, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.idx2hash, ensure_ascii=False, indent=4))
+ logger.info(f"{self.namespace}嵌入库的idx2hash映射保存成功")
+
+ def load_from_file(self) -> None:
+ """从文件中加载"""
+ if not os.path.exists(self.embedding_file_path):
+ raise Exception(f"文件{self.embedding_file_path}不存在")
+
+ logger.info(f"正在从文件{self.embedding_file_path}中加载{self.namespace}嵌入库")
+ data_frame = pd.read_parquet(self.embedding_file_path, engine="pyarrow")
+ for _, row in tqdm.tqdm(data_frame.iterrows(), total=len(data_frame)):
+ self.store[row["hash"]] = EmbeddingStoreItem(row["hash"], row["embedding"], row["str"])
+ logger.info(f"{self.namespace}嵌入库加载成功")
+
+ try:
+ if os.path.exists(self.index_file_path):
+ logger.info(f"正在从文件{self.index_file_path}中加载{self.namespace}嵌入库的FaissIndex")
+ self.faiss_index = faiss.read_index(self.index_file_path)
+ logger.info(f"{self.namespace}嵌入库的FaissIndex加载成功")
+ else:
+ raise Exception(f"文件{self.index_file_path}不存在")
+ if os.path.exists(self.idx2hash_file_path):
+ logger.info(f"正在从文件{self.idx2hash_file_path}中加载{self.namespace}嵌入库的idx2hash映射")
+ with open(self.idx2hash_file_path, "r") as f:
+ self.idx2hash = json.load(f)
+ logger.info(f"{self.namespace}嵌入库的idx2hash映射加载成功")
+ else:
+ raise Exception(f"文件{self.idx2hash_file_path}不存在")
+ except Exception as e:
+ logger.error(f"加载{self.namespace}嵌入库的FaissIndex时发生错误:{e}")
+ logger.warning("正在重建Faiss索引")
+ self.build_faiss_index()
+ logger.info(f"{self.namespace}嵌入库的FaissIndex重建成功")
+ self.save_to_file()
+
+ def build_faiss_index(self) -> None:
+ """重新构建Faiss索引,以余弦相似度为度量"""
+ # 获取所有的embedding
+ array = []
+ self.idx2hash = dict()
+ for key in self.store:
+ array.append(self.store[key].embedding)
+ self.idx2hash[str(len(array) - 1)] = key
+ embeddings = np.array(array, dtype=np.float32)
+ # L2归一化
+ faiss.normalize_L2(embeddings)
+ # 构建索引
+ self.faiss_index = faiss.IndexFlatIP(global_config["embedding"]["dimension"])
+ self.faiss_index.add(embeddings)
+
+ def search_top_k(self, query: List[float], k: int) -> List[Tuple[str, float]]:
+ """搜索最相似的k个项,以余弦相似度为度量
+ Args:
+ query: 查询的embedding
+ k: 返回的最相似的k个项
+ Returns:
+ result: 最相似的k个项的(hash, 余弦相似度)列表
+ """
+ if self.faiss_index is None:
+ logger.warning("FaissIndex尚未构建,返回None")
+ return None
+ if self.idx2hash is None:
+ logger.warning("idx2hash尚未构建,返回None")
+ return None
+
+ # L2归一化
+ faiss.normalize_L2(np.array([query], dtype=np.float32))
+ # 搜索
+ distances, indices = self.faiss_index.search(np.array([query]), k)
+ # 整理结果
+ indices = list(indices.flatten())
+ distances = list(distances.flatten())
+ result = [
+ (self.idx2hash[str(int(idx))], float(sim))
+ for (idx, sim) in zip(indices, distances)
+ if idx in range(len(self.idx2hash))
+ ]
+
+ return result
+
+
+class EmbeddingManager:
+ def __init__(self, llm_client: LLMClient):
+ self.paragraphs_embedding_store = EmbeddingStore(
+ llm_client,
+ PG_NAMESPACE,
+ global_config["persistence"]["embedding_data_dir"],
+ )
+ self.entities_embedding_store = EmbeddingStore(
+ llm_client,
+ ENT_NAMESPACE,
+ global_config["persistence"]["embedding_data_dir"],
+ )
+ self.relation_embedding_store = EmbeddingStore(
+ llm_client,
+ REL_NAMESPACE,
+ global_config["persistence"]["embedding_data_dir"],
+ )
+ self.stored_pg_hashes = set()
+
+ def _store_pg_into_embedding(self, raw_paragraphs: Dict[str, str]):
+ """将段落编码存入Embedding库"""
+ self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()))
+
+ def _store_ent_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
+ """将实体编码存入Embedding库"""
+ entities = set()
+ for triple_list in triple_list_data.values():
+ for triple in triple_list:
+ entities.add(triple[0])
+ entities.add(triple[2])
+ self.entities_embedding_store.batch_insert_strs(list(entities))
+
+ def _store_rel_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
+ """将关系编码存入Embedding库"""
+ graph_triples = [] # a list of unique relation triple (in tuple) from all chunks
+ for triples in triple_list_data.values():
+ graph_triples.extend([tuple(t) for t in triples])
+ graph_triples = list(set(graph_triples))
+ self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples])
+
+ def load_from_file(self):
+ """从文件加载"""
+ self.paragraphs_embedding_store.load_from_file()
+ self.entities_embedding_store.load_from_file()
+ self.relation_embedding_store.load_from_file()
+ # 从段落库中获取已存储的hash
+ self.stored_pg_hashes = set(self.paragraphs_embedding_store.store.keys())
+
+ def store_new_data_set(
+ self,
+ raw_paragraphs: Dict[str, str],
+ triple_list_data: Dict[str, List[List[str]]],
+ ):
+ """存储新的数据集"""
+ self._store_pg_into_embedding(raw_paragraphs)
+ self._store_ent_into_embedding(triple_list_data)
+ self._store_rel_into_embedding(triple_list_data)
+ self.stored_pg_hashes.update(raw_paragraphs.keys())
+
+ def save_to_file(self):
+ """保存到文件"""
+ self.paragraphs_embedding_store.save_to_file()
+ self.entities_embedding_store.save_to_file()
+ self.relation_embedding_store.save_to_file()
+
+ def rebuild_faiss_index(self):
+ """重建Faiss索引(请在添加新数据后调用)"""
+ self.paragraphs_embedding_store.build_faiss_index()
+ self.entities_embedding_store.build_faiss_index()
+ self.relation_embedding_store.build_faiss_index()
diff --git a/src/plugins/knowledge/src/global_logger.py b/src/plugins/knowledge/src/global_logger.py
new file mode 100644
index 000000000..0868428f5
--- /dev/null
+++ b/src/plugins/knowledge/src/global_logger.py
@@ -0,0 +1,10 @@
+# Configure logger
+
+from src.common.logger import get_module_logger, LogConfig, LPMM_STYLE_CONFIG
+
+lpmm_log_config = LogConfig(
+ console_format=LPMM_STYLE_CONFIG["console_format"],
+ file_format=LPMM_STYLE_CONFIG["file_format"],
+)
+
+logger = get_module_logger("LPMM", config=lpmm_log_config)
diff --git a/src/plugins/knowledge/src/ie_process.py b/src/plugins/knowledge/src/ie_process.py
new file mode 100644
index 000000000..3e53e4b2d
--- /dev/null
+++ b/src/plugins/knowledge/src/ie_process.py
@@ -0,0 +1,98 @@
+import json
+import time
+from typing import List
+
+from .global_logger import logger
+from . import prompt_template
+from .lpmmconfig import global_config, INVALID_ENTITY
+from .llm_client import LLMClient
+from .utils.json_fix import fix_broken_generated_json
+
+
+def _entity_extract(llm_client: LLMClient, paragraph: str) -> List[str]:
+ """对段落进行实体提取,返回提取出的实体列表(JSON格式)"""
+ entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
+ _, request_result = llm_client.send_chat_request(
+ global_config["entity_extract"]["llm"]["model"], entity_extract_context
+ )
+
+ # 去除‘{’前的内容(结果中可能有多个‘{’)
+ if "[" in request_result:
+ request_result = request_result[request_result.index("[") :]
+
+ # 去除最后一个‘}’后的内容(结果中可能有多个‘}’)
+ if "]" in request_result:
+ request_result = request_result[: request_result.rindex("]") + 1]
+
+ entity_extract_result = json.loads(fix_broken_generated_json(request_result))
+
+ entity_extract_result = [
+ entity
+ for entity in entity_extract_result
+ if (entity is not None) and (entity != "") and (entity not in INVALID_ENTITY)
+ ]
+
+ if len(entity_extract_result) == 0:
+ raise Exception("实体提取结果为空")
+
+ return entity_extract_result
+
+
+def _rdf_triple_extract(llm_client: LLMClient, paragraph: str, entities: list) -> List[List[str]]:
+ """对段落进行实体提取,返回提取出的实体列表(JSON格式)"""
+ entity_extract_context = prompt_template.build_rdf_triple_extract_context(
+ paragraph, entities=json.dumps(entities, ensure_ascii=False)
+ )
+ _, request_result = llm_client.send_chat_request(global_config["rdf_build"]["llm"]["model"], entity_extract_context)
+
+ # 去除‘{’前的内容(结果中可能有多个‘{’)
+ if "[" in request_result:
+ request_result = request_result[request_result.index("[") :]
+
+ # 去除最后一个‘}’后的内容(结果中可能有多个‘}’)
+ if "]" in request_result:
+ request_result = request_result[: request_result.rindex("]") + 1]
+
+ entity_extract_result = json.loads(fix_broken_generated_json(request_result))
+
+ for triple in entity_extract_result:
+ if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
+ raise Exception("RDF提取结果格式错误")
+
+ return entity_extract_result
+
+
+def info_extract_from_str(
+ llm_client_for_ner: LLMClient, llm_client_for_rdf: LLMClient, paragraph: str
+) -> tuple[None, None] | tuple[list[str], list[list[str]]]:
+ try_count = 0
+ while True:
+ try:
+ entity_extract_result = _entity_extract(llm_client_for_ner, paragraph)
+ break
+ except Exception as e:
+ logger.warning(f"实体提取失败,错误信息:{e}")
+ try_count += 1
+ if try_count < 3:
+ logger.warning("将于5秒后重试")
+ time.sleep(5)
+ else:
+ logger.error("实体提取失败,已达最大重试次数")
+ return None, None
+
+ try_count = 0
+ while True:
+ try:
+ rdf_triple_extract_result = _rdf_triple_extract(llm_client_for_rdf, paragraph, entity_extract_result)
+ break
+ except Exception as e:
+ logger.warning(f"实体提取失败,错误信息:{e}")
+ try_count += 1
+ if try_count < 3:
+ logger.warning("将于5秒后重试")
+ time.sleep(5)
+ else:
+ logger.error("实体提取失败,已达最大重试次数")
+ return None, None
+
+ return entity_extract_result, rdf_triple_extract_result
diff --git a/src/plugins/knowledge/src/kg_manager.py b/src/plugins/knowledge/src/kg_manager.py
new file mode 100644
index 000000000..71ce65ef2
--- /dev/null
+++ b/src/plugins/knowledge/src/kg_manager.py
@@ -0,0 +1,396 @@
+import json
+import os
+import time
+from typing import Dict, List, Tuple
+
+import numpy as np
+import pandas as pd
+import tqdm
+from quick_algo import di_graph, pagerank
+
+
+from .utils.hash import get_sha256
+from .embedding_store import EmbeddingManager, EmbeddingStoreItem
+from .lpmmconfig import (
+ ENT_NAMESPACE,
+ PG_NAMESPACE,
+ RAG_ENT_CNT_NAMESPACE,
+ RAG_GRAPH_NAMESPACE,
+ RAG_PG_HASH_NAMESPACE,
+ global_config,
+)
+
+from .global_logger import logger
+
+
+class KGManager:
+ def __init__(self):
+ # 会被保存的字段
+ # 存储段落的hash值,用于去重
+ self.stored_paragraph_hashes = set()
+ # 实体出现次数
+ self.ent_appear_cnt = dict()
+ # KG
+ self.graph = di_graph.DiGraph()
+
+ # 持久化相关
+ self.dir_path = global_config["persistence"]["rag_data_dir"]
+ self.graph_data_path = self.dir_path + "/" + RAG_GRAPH_NAMESPACE + ".graphml"
+ self.ent_cnt_data_path = self.dir_path + "/" + RAG_ENT_CNT_NAMESPACE + ".parquet"
+ self.pg_hash_file_path = self.dir_path + "/" + RAG_PG_HASH_NAMESPACE + ".json"
+
+ def save_to_file(self):
+ """将KG数据保存到文件"""
+ # 确保目录存在
+ if not os.path.exists(self.dir_path):
+ os.makedirs(self.dir_path, exist_ok=True)
+
+ # 保存KG
+ di_graph.save_to_file(self.graph, self.graph_data_path)
+
+ # 保存实体计数到文件
+ ent_cnt_df = pd.DataFrame([{"hash_key": k, "appear_cnt": v} for k, v in self.ent_appear_cnt.items()])
+ ent_cnt_df.to_parquet(self.ent_cnt_data_path, engine="pyarrow", index=False)
+
+ # 保存段落hash到文件
+ with open(self.pg_hash_file_path, "w", encoding="utf-8") as f:
+ data = {"stored_paragraph_hashes": list(self.stored_paragraph_hashes)}
+ f.write(json.dumps(data, ensure_ascii=False, indent=4))
+
+ def load_from_file(self):
+ """从文件加载KG数据"""
+ # 确保文件存在
+ if not os.path.exists(self.pg_hash_file_path):
+ raise Exception(f"KG段落hash文件{self.pg_hash_file_path}不存在")
+ if not os.path.exists(self.ent_cnt_data_path):
+ raise Exception(f"KG实体计数文件{self.ent_cnt_data_path}不存在")
+ if not os.path.exists(self.graph_data_path):
+ raise Exception(f"KG图文件{self.graph_data_path}不存在")
+
+ # 加载段落hash
+ with open(self.pg_hash_file_path, "r", encoding="utf-8") as f:
+ data = json.load(f)
+ self.stored_paragraph_hashes = set(data["stored_paragraph_hashes"])
+
+ # 加载实体计数
+ ent_cnt_df = pd.read_parquet(self.ent_cnt_data_path, engine="pyarrow")
+ self.ent_appear_cnt = dict({row["hash_key"]: row["appear_cnt"] for _, row in ent_cnt_df.iterrows()})
+
+ # 加载KG
+ self.graph = di_graph.load_from_file(self.graph_data_path)
+
+ def _build_edges_between_ent(
+ self,
+ node_to_node: Dict[Tuple[str, str], float],
+ triple_list_data: Dict[str, List[List[str]]],
+ ):
+ """构建实体节点之间的关系,同时统计实体出现次数"""
+ for triple_list in triple_list_data.values():
+ entity_set = set()
+ for triple in triple_list:
+ if triple[0] == triple[2]:
+ # 避免自连接
+ continue
+ # 一个triple就是一条边(同时构建双向联系)
+ hash_key1 = ENT_NAMESPACE + "-" + get_sha256(triple[0])
+ hash_key2 = ENT_NAMESPACE + "-" + get_sha256(triple[2])
+ node_to_node[(hash_key1, hash_key2)] = node_to_node.get((hash_key1, hash_key2), 0) + 1.0
+ node_to_node[(hash_key2, hash_key1)] = node_to_node.get((hash_key2, hash_key1), 0) + 1.0
+ entity_set.add(hash_key1)
+ entity_set.add(hash_key2)
+
+ # 实体出现次数统计
+ for hash_key in entity_set:
+ self.ent_appear_cnt[hash_key] = self.ent_appear_cnt.get(hash_key, 0) + 1.0
+
+ @staticmethod
+ def _build_edges_between_ent_pg(
+ node_to_node: Dict[Tuple[str, str], float],
+ triple_list_data: Dict[str, List[List[str]]],
+ ):
+ """构建实体节点与文段节点之间的关系"""
+ for idx in triple_list_data:
+ for triple in triple_list_data[idx]:
+ ent_hash_key = ENT_NAMESPACE + "-" + get_sha256(triple[0])
+ pg_hash_key = PG_NAMESPACE + "-" + str(idx)
+ node_to_node[(ent_hash_key, pg_hash_key)] = node_to_node.get((ent_hash_key, pg_hash_key), 0) + 1.0
+
+ @staticmethod
+ def _synonym_connect(
+ node_to_node: Dict[Tuple[str, str], float],
+ triple_list_data: Dict[str, List[List[str]]],
+ embedding_manager: EmbeddingManager,
+ ) -> int:
+ """同义词连接"""
+ new_edge_cnt = 0
+ # 获取所有实体节点的hash值
+ ent_hash_list = set()
+ for triple_list in triple_list_data.values():
+ for triple in triple_list:
+ ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[0]))
+ ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[2]))
+ ent_hash_list = list(ent_hash_list)
+
+ synonym_hash_set = set()
+
+ synonym_result = dict()
+
+ # 对每个实体节点,查找其相似的实体节点,建立扩展连接
+ for ent_hash in tqdm.tqdm(ent_hash_list):
+ if ent_hash in synonym_hash_set:
+ # 避免同一批次内重复添加
+ continue
+ ent = embedding_manager.entities_embedding_store.store.get(ent_hash)
+ assert isinstance(ent, EmbeddingStoreItem)
+ if ent is None:
+ continue
+ # 查询相似实体
+ similar_ents = embedding_manager.entities_embedding_store.search_top_k(
+ ent.embedding, global_config["rag"]["params"]["synonym_search_top_k"]
+ )
+ res_ent = [] # Debug
+ for res_ent_hash, similarity in similar_ents:
+ if res_ent_hash == ent_hash:
+ # 避免自连接
+ continue
+ if similarity < global_config["rag"]["params"]["synonym_threshold"]:
+ # 相似度阈值
+ continue
+ node_to_node[(res_ent_hash, ent_hash)] = similarity
+ node_to_node[(ent_hash, res_ent_hash)] = similarity
+ synonym_hash_set.add(res_ent_hash)
+ new_edge_cnt += 1
+ res_ent.append(
+ (
+ embedding_manager.entities_embedding_store.store[res_ent_hash].str,
+ similarity,
+ )
+ ) # Debug
+ synonym_result[ent.str] = res_ent
+
+ for k, v in synonym_result.items():
+ print(f'"{k}"的相似实体为:{v}')
+ return new_edge_cnt
+
+ def _update_graph(
+ self,
+ node_to_node: Dict[Tuple[str, str], float],
+ embedding_manager: EmbeddingManager,
+ ):
+ """更新KG图结构
+
+ 流程:
+ 1. 更新图结构:遍历所有待添加的新边
+ - 若是新边,则添加到图中
+ - 若是已存在的边,则更新边的权重
+ 2. 更新新节点的属性
+ """
+ existed_nodes = self.graph.get_node_list()
+ existed_edges = [str((edge[0], edge[1])) for edge in self.graph.get_edge_list()]
+
+ now_time = time.time()
+
+ # 更新图结构
+ for src_tgt, weight in node_to_node.items():
+ key = str(src_tgt)
+ # 检查边是否已存在
+ if key not in existed_edges:
+ # 新边
+ self.graph.add_edge(
+ di_graph.DiEdge(
+ src_tgt[0],
+ src_tgt[1],
+ {
+ "weight": weight,
+ "create_time": now_time,
+ "update_time": now_time,
+ },
+ )
+ )
+ else:
+ # 已存在的边
+ edge_item = self.graph[src_tgt[0], src_tgt[1]]
+ edge_item["weight"] += weight
+ edge_item["update_time"] = now_time
+ self.graph.update_edge(edge_item)
+
+ # 更新新节点属性
+ for src_tgt in node_to_node.keys():
+ for node_hash in src_tgt:
+ if node_hash not in existed_nodes:
+ if node_hash.startswith(ENT_NAMESPACE):
+ # 新增实体节点
+ node = embedding_manager.entities_embedding_store.store[node_hash]
+ assert isinstance(node, EmbeddingStoreItem)
+ node_item = self.graph[node_hash]
+ node_item["content"] = node.str
+ node_item["type"] = "ent"
+ node_item["create_time"] = now_time
+ self.graph.update_node(node_item)
+ elif node_hash.startswith(PG_NAMESPACE):
+ # 新增文段节点
+ node = embedding_manager.paragraphs_embedding_store.store[node_hash]
+ assert isinstance(node, EmbeddingStoreItem)
+ content = node.str.replace("\n", " ")
+ node_item = self.graph[node_hash]
+ node_item["content"] = content if len(content) < 8 else content[:8] + "..."
+ node_item["type"] = "pg"
+ node_item["create_time"] = now_time
+ self.graph.update_node(node_item)
+
+ def build_kg(
+ self,
+ triple_list_data: Dict[str, List[List[str]]],
+ embedding_manager: EmbeddingManager,
+ ):
+ """增量式构建KG
+
+ 注意:应当在调用该方法后保存KG
+
+ Args:
+ triple_list_data: 三元组数据
+ embedding_manager: EmbeddingManager对象
+ """
+ # 实体之间的联系
+ node_to_node = dict()
+
+ # 构建实体节点之间的关系,同时统计实体出现次数
+ logger.info("正在构建KG实体节点之间的关系,同时统计实体出现次数")
+ # 从三元组提取实体对
+ self._build_edges_between_ent(node_to_node, triple_list_data)
+
+ # 构建实体节点与文段节点之间的关系
+ logger.info("正在构建KG实体节点与文段节点之间的关系")
+ self._build_edges_between_ent_pg(node_to_node, triple_list_data)
+
+ # 近义词扩展链接
+ # 对每个实体节点,找到最相似的实体节点,建立扩展连接
+ logger.info("正在进行近义词扩展链接")
+ self._synonym_connect(node_to_node, triple_list_data, embedding_manager)
+
+ # 构建图
+ self._update_graph(node_to_node, embedding_manager)
+
+ # 记录已处理(存储)的段落hash
+ for idx in triple_list_data:
+ self.stored_paragraph_hashes.add(str(idx))
+
+ def kg_search(
+ self,
+ relation_search_result: List[Tuple[Tuple[str, str, str], float]],
+ paragraph_search_result: List[Tuple[str, float]],
+ embed_manager: EmbeddingManager,
+ ):
+ """RAG搜索与PageRank
+
+ Args:
+ relation_search_result: RelationEmbedding的搜索结果(relation_tripple, similarity)
+ paragraph_search_result: ParagraphEmbedding的搜索结果(paragraph_hash, similarity)
+ embed_manager: EmbeddingManager对象
+ """
+ # 图中存在的节点总集
+ existed_nodes = self.graph.get_node_list()
+
+ # 准备PPR使用的数据
+ # 节点权重:实体
+ ent_weights = {}
+ # 节点权重:文段
+ pg_weights = {}
+
+ # 以下部分处理实体权重ent_weights
+
+ # 针对每个关系,提取出其中的主宾短语作为两个实体,并记录对应的三元组的相似度作为权重依据
+ ent_sim_scores = {}
+ for relation_hash, similarity, _ in relation_search_result:
+ # 提取主宾短语
+ relation = embed_manager.relation_embedding_store.store.get(relation_hash).str
+ assert relation is not None # 断言:relation不为空
+ # 关系三元组
+ triple = relation[2:-2].split("', '")
+ for ent in [(triple[0]), (triple[2])]:
+ ent_hash = ENT_NAMESPACE + "-" + get_sha256(ent)
+ if ent_hash in existed_nodes: # 该实体需在KG中存在
+ if ent_hash not in ent_sim_scores: # 尚未记录的实体
+ ent_sim_scores[ent_hash] = []
+ ent_sim_scores[ent_hash].append(similarity)
+
+ ent_mean_scores = {} # 记录实体的平均相似度
+ for ent_hash, scores in ent_sim_scores.items():
+ # 先对相似度进行累加,然后与实体计数相除获取最终权重
+ ent_weights[ent_hash] = float(np.sum(scores)) / self.ent_appear_cnt[ent_hash]
+ # 记录实体的平均相似度,用于后续的top_k筛选
+ ent_mean_scores[ent_hash] = float(np.mean(scores))
+ del ent_sim_scores
+
+ ent_weights_max = max(ent_weights.values())
+ ent_weights_min = min(ent_weights.values())
+ if ent_weights_max == ent_weights_min:
+ # 只有一个相似度,则全赋值为1
+ for ent_hash in ent_weights.keys():
+ ent_weights[ent_hash] = 1.0
+ else:
+ down_edge = global_config["qa"]["params"]["paragraph_node_weight"]
+ # 缩放取值区间至[down_edge, 1]
+ for ent_hash, score in ent_weights.items():
+ # 缩放相似度
+ ent_weights[ent_hash] = (
+ (score - ent_weights_min) * (1 - down_edge) / (ent_weights_max - ent_weights_min)
+ ) + down_edge
+
+ # 取平均相似度的top_k实体
+ top_k = global_config["qa"]["params"]["ent_filter_top_k"]
+ if len(ent_mean_scores) > top_k:
+ # 从大到小排序,取后len - k个
+ ent_mean_scores = {k: v for k, v in sorted(ent_mean_scores.items(), key=lambda item: item[1], reverse=True)}
+ for ent_hash, _ in ent_mean_scores.items():
+ # 删除被淘汰的实体节点权重设置
+ del ent_weights[ent_hash]
+ del top_k, ent_mean_scores
+
+ # 以下部分处理文段权重pg_weights
+
+ # 将搜索结果中文段的相似度归一化作为权重
+ pg_sim_scores = {}
+ pg_sim_score_max = 0.0
+ pg_sim_score_min = 1.0
+ for pg_hash, similarity in paragraph_search_result:
+ # 查找最大和最小值
+ pg_sim_score_max = max(pg_sim_score_max, similarity)
+ pg_sim_score_min = min(pg_sim_score_min, similarity)
+ pg_sim_scores[pg_hash] = similarity
+
+ # 归一化
+ for pg_hash, similarity in pg_sim_scores.items():
+ # 归一化相似度
+ pg_sim_scores[pg_hash] = (similarity - pg_sim_score_min) / (pg_sim_score_max - pg_sim_score_min)
+ del pg_sim_score_max, pg_sim_score_min
+
+ for pg_hash, score in pg_sim_scores.items():
+ pg_weights[pg_hash] = (
+ score * global_config["qa"]["params"]["paragraph_node_weight"]
+ ) # 文段权重 = 归一化相似度 * 文段节点权重参数
+ del pg_sim_scores
+
+ # 最终权重数据 = 实体权重 + 文段权重
+ ppr_node_weights = {k: v for d in [ent_weights, pg_weights] for k, v in d.items()}
+ del ent_weights, pg_weights
+
+ # PersonalizedPageRank
+ ppr_res = pagerank.run_pagerank(
+ self.graph,
+ personalization=ppr_node_weights,
+ max_iter=100,
+ alpha=global_config["qa"]["params"]["ppr_damping"],
+ )
+
+ # 获取最终结果
+ # 从搜索结果中提取文段节点的结果
+ passage_node_res = [
+ (node_key, score) for node_key, score in ppr_res.items() if node_key.startswith(PG_NAMESPACE)
+ ]
+ del ppr_res
+
+ # 排序:按照分数从大到小
+ passage_node_res = sorted(passage_node_res, key=lambda item: item[1], reverse=True)
+
+ return passage_node_res, ppr_node_weights
diff --git a/src/plugins/knowledge/src/llm_client.py b/src/plugins/knowledge/src/llm_client.py
new file mode 100644
index 000000000..52d0dca06
--- /dev/null
+++ b/src/plugins/knowledge/src/llm_client.py
@@ -0,0 +1,45 @@
+from openai import OpenAI
+
+
+class LLMMessage:
+ def __init__(self, role, content):
+ self.role = role
+ self.content = content
+
+ def to_dict(self):
+ return {"role": self.role, "content": self.content}
+
+
+class LLMClient:
+ """LLM客户端,对应一个API服务商"""
+
+ def __init__(self, url, api_key):
+ self.client = OpenAI(
+ base_url=url,
+ api_key=api_key,
+ )
+
+ def send_chat_request(self, model, messages):
+ """发送对话请求,等待返回结果"""
+ response = self.client.chat.completions.create(model=model, messages=messages, stream=False)
+ if hasattr(response.choices[0].message, "reasoning_content"):
+ # 有单独的推理内容块
+ reasoning_content = response.choices[0].message.reasoning_content
+ content = response.choices[0].message.content
+ else:
+ # 无单独的推理内容块
+ response = response.choices[0].message.content.split("")[-1].split("")
+ # 如果有推理内容,则分割推理内容和内容
+ if len(response) == 2:
+ reasoning_content = response[0]
+ content = response[1]
+ else:
+ reasoning_content = None
+ content = response[0]
+
+ return reasoning_content, content
+
+ def send_embedding_request(self, model, text):
+ """发送嵌入请求,等待返回结果"""
+ text = text.replace("\n", " ")
+ return self.client.embeddings.create(input=[text], model=model).data[0].embedding
diff --git a/src/plugins/knowledge/src/lpmmconfig.py b/src/plugins/knowledge/src/lpmmconfig.py
new file mode 100644
index 000000000..7f59bc897
--- /dev/null
+++ b/src/plugins/knowledge/src/lpmmconfig.py
@@ -0,0 +1,142 @@
+import os
+import toml
+import sys
+import argparse
+
+PG_NAMESPACE = "paragraph"
+ENT_NAMESPACE = "entity"
+REL_NAMESPACE = "relation"
+
+RAG_GRAPH_NAMESPACE = "rag-graph"
+RAG_ENT_CNT_NAMESPACE = "rag-ent-cnt"
+RAG_PG_HASH_NAMESPACE = "rag-pg-hash"
+
+# 无效实体
+INVALID_ENTITY = [
+ "",
+ "你",
+ "他",
+ "她",
+ "它",
+ "我们",
+ "你们",
+ "他们",
+ "她们",
+ "它们",
+]
+
+
+def _load_config(config, config_file_path):
+ """读取TOML格式的配置文件"""
+ if not os.path.exists(config_file_path):
+ return
+ with open(config_file_path, "r", encoding="utf-8") as f:
+ file_config = toml.load(f)
+
+ # Check if all top-level keys from default config exist in the file config
+ for key in config.keys():
+ if key not in file_config:
+ print(f"警告: 配置文件 '{config_file_path}' 缺少必需的顶级键: '{key}'。请检查配置文件。")
+ sys.exit(1)
+
+ if "llm_providers" in file_config:
+ for provider in file_config["llm_providers"]:
+ if provider["name"] not in config["llm_providers"]:
+ config["llm_providers"][provider["name"]] = dict()
+ config["llm_providers"][provider["name"]]["base_url"] = provider["base_url"]
+ config["llm_providers"][provider["name"]]["api_key"] = provider["api_key"]
+
+ if "entity_extract" in file_config:
+ config["entity_extract"] = file_config["entity_extract"]
+
+ if "rdf_build" in file_config:
+ config["rdf_build"] = file_config["rdf_build"]
+
+ if "embedding" in file_config:
+ config["embedding"] = file_config["embedding"]
+
+ if "rag" in file_config:
+ config["rag"] = file_config["rag"]
+
+ if "qa" in file_config:
+ config["qa"] = file_config["qa"]
+
+ if "persistence" in file_config:
+ config["persistence"] = file_config["persistence"]
+ print(config)
+ print("Configurations loaded from file: ", config_file_path)
+
+
+parser = argparse.ArgumentParser(description="Configurations for the pipeline")
+parser.add_argument(
+ "--config_path",
+ type=str,
+ default="lpmm_config.toml",
+ help="Path to the configuration file",
+)
+
+global_config = dict(
+ {
+ "llm_providers": {
+ "localhost": {
+ "base_url": "https://api.siliconflow.cn/v1",
+ "api_key": "sk-ospynxadyorf",
+ }
+ },
+ "entity_extract": {
+ "llm": {
+ "provider": "localhost",
+ "model": "Pro/deepseek-ai/DeepSeek-V3",
+ }
+ },
+ "rdf_build": {
+ "llm": {
+ "provider": "localhost",
+ "model": "Pro/deepseek-ai/DeepSeek-V3",
+ }
+ },
+ "embedding": {
+ "provider": "localhost",
+ "model": "Pro/BAAI/bge-m3",
+ "dimension": 1024,
+ },
+ "rag": {
+ "params": {
+ "synonym_search_top_k": 10,
+ "synonym_threshold": 0.75,
+ }
+ },
+ "qa": {
+ "params": {
+ "relation_search_top_k": 10,
+ "relation_threshold": 0.75,
+ "paragraph_search_top_k": 10,
+ "paragraph_node_weight": 0.05,
+ "ent_filter_top_k": 10,
+ "ppr_damping": 0.8,
+ "res_top_k": 10,
+ },
+ "llm": {
+ "provider": "localhost",
+ "model": "qa",
+ },
+ },
+ "persistence": {
+ "data_root_path": "data",
+ "raw_data_path": "data/raw.json",
+ "openie_data_path": "data/openie.json",
+ "embedding_data_dir": "data/embedding",
+ "rag_data_dir": "data/rag",
+ },
+ "info_extraction": {
+ "workers": 10,
+ },
+ }
+)
+
+# _load_config(global_config, parser.parse_args().config_path)
+file_path = os.path.abspath(__file__)
+dir_path = os.path.dirname(file_path)
+root_path = os.path.join(dir_path, os.pardir, os.pardir, os.pardir, os.pardir)
+config_path = os.path.join(root_path, "config", "lpmm_config.toml")
+_load_config(global_config, config_path)
diff --git a/src/plugins/knowledge/src/mem_active_manager.py b/src/plugins/knowledge/src/mem_active_manager.py
new file mode 100644
index 000000000..3998c0664
--- /dev/null
+++ b/src/plugins/knowledge/src/mem_active_manager.py
@@ -0,0 +1,32 @@
+from .lpmmconfig import global_config
+from .embedding_store import EmbeddingManager
+from .llm_client import LLMClient
+from .utils.dyn_topk import dyn_select_top_k
+
+
+class MemoryActiveManager:
+ def __init__(
+ self,
+ embed_manager: EmbeddingManager,
+ llm_client_embedding: LLMClient,
+ ):
+ self.embed_manager = embed_manager
+ self.embedding_client = llm_client_embedding
+
+ def get_activation(self, question: str) -> float:
+ """获取记忆激活度"""
+ # 生成问题的Embedding
+ question_embedding = self.embedding_client.send_embedding_request("text-embedding", question)
+ # 查询关系库中的相似度
+ rel_search_res = self.embed_manager.relation_embedding_store.search_top_k(question_embedding, 10)
+
+ # 动态过滤阈值
+ rel_scores = dyn_select_top_k(rel_search_res, 0.5, 1.0)
+ if rel_scores[0][1] < global_config["qa"]["params"]["relation_threshold"]:
+ # 未找到相关关系
+ return 0.0
+
+ # 计算激活度
+ activation = sum([item[2] for item in rel_scores]) * 10
+
+ return activation
diff --git a/src/plugins/knowledge/src/open_ie.py b/src/plugins/knowledge/src/open_ie.py
new file mode 100644
index 000000000..5fe163bb2
--- /dev/null
+++ b/src/plugins/knowledge/src/open_ie.py
@@ -0,0 +1,134 @@
+import json
+from typing import Any, Dict, List
+
+
+from .lpmmconfig import INVALID_ENTITY, global_config
+
+
+def _filter_invalid_entities(entities: List[str]) -> List[str]:
+ """过滤无效的实体"""
+ valid_entities = set()
+ for entity in entities:
+ if not isinstance(entity, str) or entity.strip() == "" or entity in INVALID_ENTITY or entity in valid_entities:
+ # 非字符串/空字符串/在无效实体列表中/重复
+ continue
+ valid_entities.add(entity)
+
+ return list(valid_entities)
+
+
+def _filter_invalid_triples(triples: List[List[str]]) -> List[List[str]]:
+ """过滤无效的三元组"""
+ unique_triples = set()
+ valid_triples = []
+
+ for triple in triples:
+ if len(triple) != 3 or (
+ (not isinstance(triple[0], str) or triple[0].strip() == "")
+ or (not isinstance(triple[1], str) or triple[1].strip() == "")
+ or (not isinstance(triple[2], str) or triple[2].strip() == "")
+ ):
+ # 三元组长度不为3,或其中存在空值
+ continue
+
+ valid_triple = [str(item) for item in triple]
+ if tuple(valid_triple) not in unique_triples:
+ unique_triples.add(tuple(valid_triple))
+ valid_triples.append(valid_triple)
+
+ return valid_triples
+
+
+class OpenIE:
+ """
+ OpenIE规约的数据格式为如下
+ {
+ "docs": [
+ {
+ "idx": "文档的唯一标识符(通常是文本的SHA256哈希值)",
+ "passage": "文档的原始文本",
+ "extracted_entities": ["实体1", "实体2", ...],
+ "extracted_triples": [["主语", "谓语", "宾语"], ...]
+ },
+ ...
+ ],
+ "avg_ent_chars": "实体平均字符数",
+ "avg_ent_words": "实体平均词数"
+ }
+ """
+
+ def __init__(
+ self,
+ docs: List[Dict[str, Any]],
+ avg_ent_chars,
+ avg_ent_words,
+ ):
+ self.docs = docs
+ self.avg_ent_chars = avg_ent_chars
+ self.avg_ent_words = avg_ent_words
+
+ for doc in self.docs:
+ # 过滤实体列表
+ doc["extracted_entities"] = _filter_invalid_entities(doc["extracted_entities"])
+ # 过滤无效的三元组
+ doc["extracted_triples"] = _filter_invalid_triples(doc["extracted_triples"])
+
+ @staticmethod
+ def _from_dict(data):
+ """从字典中获取OpenIE对象"""
+ return OpenIE(
+ docs=data["docs"],
+ avg_ent_chars=data["avg_ent_chars"],
+ avg_ent_words=data["avg_ent_words"],
+ )
+
+ def _to_dict(self):
+ """转换为字典"""
+ return {
+ "docs": self.docs,
+ "avg_ent_chars": self.avg_ent_chars,
+ "avg_ent_words": self.avg_ent_words,
+ }
+
+ @staticmethod
+ def load() -> "OpenIE":
+ """从文件中加载OpenIE数据"""
+ with open(global_config["persistence"]["openie_data_path"], "r", encoding="utf-8") as f:
+ data = json.loads(f.read())
+
+ openie_data = OpenIE._from_dict(data)
+
+ return openie_data
+
+ @staticmethod
+ def save(openie_data: "OpenIE"):
+ """保存OpenIE数据到文件"""
+ with open(global_config["persistence"]["openie_data_path"], "w", encoding="utf-8") as f:
+ f.write(json.dumps(openie_data._to_dict(), ensure_ascii=False, indent=4))
+
+ def extract_entity_dict(self):
+ """提取实体列表"""
+ ner_output_dict = dict(
+ {
+ doc_item["idx"]: doc_item["extracted_entities"]
+ for doc_item in self.docs
+ if len(doc_item["extracted_entities"]) > 0
+ }
+ )
+ return ner_output_dict
+
+ def extract_triple_dict(self):
+ """提取三元组列表"""
+ triple_output_dict = dict(
+ {
+ doc_item["idx"]: doc_item["extracted_triples"]
+ for doc_item in self.docs
+ if len(doc_item["extracted_triples"]) > 0
+ }
+ )
+ return triple_output_dict
+
+ def extract_raw_paragraph_dict(self):
+ """提取原始段落"""
+ raw_paragraph_dict = dict({doc_item["idx"]: doc_item["passage"] for doc_item in self.docs})
+ return raw_paragraph_dict
diff --git a/src/plugins/knowledge/src/prompt_template.py b/src/plugins/knowledge/src/prompt_template.py
new file mode 100644
index 000000000..18a5002eb
--- /dev/null
+++ b/src/plugins/knowledge/src/prompt_template.py
@@ -0,0 +1,65 @@
+from typing import List
+
+from .llm_client import LLMMessage
+
+entity_extract_system_prompt = """你是一个性能优异的实体提取系统。请从段落中提取出所有实体,并以JSON列表的形式输出。
+
+输出格式示例:
+[ "实体A", "实体B", "实体C" ]
+
+请注意以下要求:
+- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
+- 尽可能多的提取出段落中的全部实体;
+"""
+
+
+def build_entity_extract_context(paragraph: str) -> List[LLMMessage]:
+ messages = [
+ LLMMessage("system", entity_extract_system_prompt).to_dict(),
+ LLMMessage("user", f"""段落:\n```\n{paragraph}```""").to_dict(),
+ ]
+ return messages
+
+
+rdf_triple_extract_system_prompt = """你是一个性能优异的RDF(资源描述框架,由节点和边组成,节点表示实体/资源、属性,边则表示了实体和实体之间的关系以及实体和属性的关系。)构造系统。你的任务是根据给定的段落和实体列表构建RDF图。
+
+请使用JSON回复,使用三元组的JSON列表输出RDF图中的关系(每个三元组代表一个关系)。
+
+输出格式示例:
+[
+ ["某实体","关系","某属性"],
+ ["某实体","关系","某实体"],
+ ["某资源","关系","某属性"]
+]
+
+请注意以下要求:
+- 每个三元组应包含每个段落的实体命名列表中的至少一个命名实体,但最好是两个。
+- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
+"""
+
+
+def build_rdf_triple_extract_context(paragraph: str, entities: str) -> List[LLMMessage]:
+ messages = [
+ LLMMessage("system", rdf_triple_extract_system_prompt).to_dict(),
+ LLMMessage("user", f"""段落:\n```\n{paragraph}```\n\n实体列表:\n```\n{entities}```""").to_dict(),
+ ]
+ return messages
+
+
+qa_system_prompt = """
+你是一个性能优异的QA系统。请根据给定的问题和一些可能对你有帮助的信息作出回答。
+
+请注意以下要求:
+- 你可以使用给定的信息来回答问题,但请不要直接引用它们。
+- 你的回答应该简洁明了,避免冗长的解释。
+- 如果你无法回答问题,请直接说“我不知道”。
+"""
+
+
+def build_qa_context(question: str, knowledge: list[(str, str, str)]) -> List[LLMMessage]:
+ knowledge = "\n".join([f"{i + 1}. 相关性:{k[0]}\n{k[1]}" for i, k in enumerate(knowledge)])
+ messages = [
+ LLMMessage("system", qa_system_prompt).to_dict(),
+ LLMMessage("user", f"问题:\n{question}\n\n可能有帮助的信息:\n{knowledge}").to_dict(),
+ ]
+ return messages
diff --git a/src/plugins/knowledge/src/qa_manager.py b/src/plugins/knowledge/src/qa_manager.py
new file mode 100644
index 000000000..22460651a
--- /dev/null
+++ b/src/plugins/knowledge/src/qa_manager.py
@@ -0,0 +1,120 @@
+import time
+from typing import Tuple, List, Dict
+
+from .global_logger import logger
+
+# from . import prompt_template
+from .embedding_store import EmbeddingManager
+from .llm_client import LLMClient
+from .kg_manager import KGManager
+from .lpmmconfig import global_config
+from .utils.dyn_topk import dyn_select_top_k
+
+
+class QAManager:
+ def __init__(
+ self,
+ embed_manager: EmbeddingManager,
+ kg_manager: KGManager,
+ llm_client_embedding: LLMClient,
+ llm_client_filter: LLMClient,
+ llm_client_qa: LLMClient,
+ ):
+ self.embed_manager = embed_manager
+ self.kg_manager = kg_manager
+ self.llm_client_list = {
+ "embedding": llm_client_embedding,
+ "filter": llm_client_filter,
+ "qa": llm_client_qa,
+ }
+
+ def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Dict[str, float] | None]:
+ """处理查询"""
+
+ # 生成问题的Embedding
+ part_start_time = time.perf_counter()
+ question_embedding = self.llm_client_list["embedding"].send_embedding_request(
+ global_config["embedding"]["model"], question
+ )
+ part_end_time = time.perf_counter()
+ logger.debug(f"Embedding用时:{part_end_time - part_start_time:.5f}s")
+
+ # 根据问题Embedding查询Relation Embedding库
+ part_start_time = time.perf_counter()
+ relation_search_res = self.embed_manager.relation_embedding_store.search_top_k(
+ question_embedding,
+ global_config["qa"]["params"]["relation_search_top_k"],
+ )
+ if relation_search_res is not None:
+ # 过滤阈值
+ # 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
+ relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
+ if relation_search_res[0][1] < global_config["qa"]["params"]["relation_threshold"]:
+ # 未找到相关关系
+ relation_search_res = []
+
+ part_end_time = time.perf_counter()
+ logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
+
+ for res in relation_search_res:
+ rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
+ print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
+
+ # TODO: 使用LLM过滤三元组结果
+ # logger.info(f"LLM过滤三元组用时:{time.time() - part_start_time:.2f}s")
+ # part_start_time = time.time()
+
+ # 根据问题Embedding查询Paragraph Embedding库
+ part_start_time = time.perf_counter()
+ paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
+ question_embedding,
+ global_config["qa"]["params"]["paragraph_search_top_k"],
+ )
+ part_end_time = time.perf_counter()
+ logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
+
+ if len(relation_search_res) != 0:
+ logger.info("找到相关关系,将使用RAG进行检索")
+ # 使用KG检索
+ part_start_time = time.perf_counter()
+ result, ppr_node_weights = self.kg_manager.kg_search(
+ relation_search_res, paragraph_search_res, self.embed_manager
+ )
+ part_end_time = time.perf_counter()
+ logger.info(f"RAG检索用时:{part_end_time - part_start_time:.5f}s")
+ else:
+ logger.info("未找到相关关系,将使用文段检索结果")
+ result = paragraph_search_res
+ ppr_node_weights = None
+
+ # 过滤阈值
+ result = dyn_select_top_k(result, 0.5, 1.0)
+
+ for res in result:
+ raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
+ print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
+
+ return result, ppr_node_weights
+ else:
+ return None
+
+ def get_knowledge(self, question: str) -> str:
+ """获取知识"""
+ # 处理查询
+ processed_result = self.process_query(question)
+ if processed_result is not None:
+ query_res = processed_result[0]
+ knowledge = [
+ (
+ self.embed_manager.paragraphs_embedding_store.store[res[0]].str,
+ res[1],
+ )
+ for res in query_res
+ ]
+ found_knowledge = "\n".join(
+ [f"第{i + 1}条知识:{k[1]}\n 该条知识对于问题的相关性:{k[0]}" for i, k in enumerate(knowledge)]
+ )
+ return found_knowledge
+ else:
+ logger.info("LPMM知识库并未初始化,使用旧版数据库进行检索")
+ return None
diff --git a/src/plugins/knowledge/src/raw_processing.py b/src/plugins/knowledge/src/raw_processing.py
new file mode 100644
index 000000000..91e681c7c
--- /dev/null
+++ b/src/plugins/knowledge/src/raw_processing.py
@@ -0,0 +1,44 @@
+import json
+import os
+
+from .global_logger import logger
+from .lpmmconfig import global_config
+from .utils.hash import get_sha256
+
+
+def load_raw_data() -> tuple[list[str], list[str]]:
+ """加载原始数据文件
+
+ 读取原始数据文件,将原始数据加载到内存中
+
+ Returns:
+ - raw_data: 原始数据字典
+ - md5_set: 原始数据的SHA256集合
+ """
+ # 读取import.json文件
+ if os.path.exists(global_config["persistence"]["raw_data_path"]) is True:
+ with open(global_config["persistence"]["raw_data_path"], "r", encoding="utf-8") as f:
+ import_json = json.loads(f.read())
+ else:
+ raise Exception("原始数据文件读取失败")
+ # import_json内容示例:
+ # import_json = [
+ # "The capital of China is Beijing. The capital of France is Paris.",
+ # ]
+ raw_data = []
+ sha256_list = []
+ sha256_set = set()
+ for item in import_json:
+ if not isinstance(item, str):
+ logger.warning("数据类型错误:{}".format(item))
+ continue
+ pg_hash = get_sha256(item)
+ if pg_hash in sha256_set:
+ logger.warning("重复数据:{}".format(item))
+ continue
+ sha256_set.add(pg_hash)
+ sha256_list.append(pg_hash)
+ raw_data.append(item)
+ logger.info("共读取到{}条数据".format(len(raw_data)))
+
+ return sha256_list, raw_data
diff --git a/src/plugins/knowledge/src/utils/__init__.py b/src/plugins/knowledge/src/utils/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/src/plugins/knowledge/src/utils/dyn_topk.py b/src/plugins/knowledge/src/utils/dyn_topk.py
new file mode 100644
index 000000000..eb40ef3a8
--- /dev/null
+++ b/src/plugins/knowledge/src/utils/dyn_topk.py
@@ -0,0 +1,47 @@
+from typing import List, Any, Tuple
+
+
+def dyn_select_top_k(
+ score: List[Tuple[Any, float]], jmp_factor: float, var_factor: float
+) -> List[Tuple[Any, float, float]]:
+ """动态TopK选择"""
+ # 按照分数排序(降序)
+ sorted_score = sorted(score, key=lambda x: x[1], reverse=True)
+
+ # 归一化
+ max_score = sorted_score[0][1]
+ min_score = sorted_score[-1][1]
+ normalized_score = []
+ for score_item in sorted_score:
+ normalized_score.append(
+ tuple(
+ [
+ score_item[0],
+ score_item[1],
+ (score_item[1] - min_score) / (max_score - min_score),
+ ]
+ )
+ )
+
+ # 寻找跳变点:score变化最大的位置
+ jump_idx = 0
+ for i in range(1, len(normalized_score)):
+ if abs(normalized_score[i][2] - normalized_score[i - 1][2]) > abs(
+ normalized_score[jump_idx][2] - normalized_score[jump_idx - 1][2]
+ ):
+ jump_idx = i
+ # 跳变阈值
+ jump_threshold = normalized_score[jump_idx][2]
+
+ # 计算均值
+ mean_score = sum([s[2] for s in normalized_score]) / len(normalized_score)
+ # 计算方差
+ var_score = sum([(s[2] - mean_score) ** 2 for s in normalized_score]) / len(normalized_score)
+
+ # 动态阈值
+ threshold = jmp_factor * jump_threshold + (1 - jmp_factor) * (mean_score + var_factor * var_score)
+
+ # 重新过滤
+ res = [s for s in normalized_score if s[2] > threshold]
+
+ return res
diff --git a/src/plugins/knowledge/src/utils/hash.py b/src/plugins/knowledge/src/utils/hash.py
new file mode 100644
index 000000000..b3e12b873
--- /dev/null
+++ b/src/plugins/knowledge/src/utils/hash.py
@@ -0,0 +1,8 @@
+import hashlib
+
+
+def get_sha256(string: str) -> str:
+ """获取字符串的SHA256值"""
+ sha256 = hashlib.sha256()
+ sha256.update(string.encode("utf-8"))
+ return sha256.hexdigest()
diff --git a/src/plugins/knowledge/src/utils/json_fix.py b/src/plugins/knowledge/src/utils/json_fix.py
new file mode 100644
index 000000000..a83eb4914
--- /dev/null
+++ b/src/plugins/knowledge/src/utils/json_fix.py
@@ -0,0 +1,76 @@
+import json
+
+
+def _find_unclosed(json_str):
+ """
+ Identifies the unclosed braces and brackets in the JSON string.
+
+ Args:
+ json_str (str): The JSON string to analyze.
+
+ Returns:
+ list: A list of unclosed elements in the order they were opened.
+ """
+ unclosed = []
+ inside_string = False
+ escape_next = False
+
+ for char in json_str:
+ if inside_string:
+ if escape_next:
+ escape_next = False
+ elif char == "\\":
+ escape_next = True
+ elif char == '"':
+ inside_string = False
+ else:
+ if char == '"':
+ inside_string = True
+ elif char in "{[":
+ unclosed.append(char)
+ elif char in "}]":
+ if unclosed and ((char == "}" and unclosed[-1] == "{") or (char == "]" and unclosed[-1] == "[")):
+ unclosed.pop()
+
+ return unclosed
+
+
+# The following code is used to fix a broken JSON string.
+# From HippoRAG2 (GitHub: OSU-NLP-Group/HippoRAG)
+def fix_broken_generated_json(json_str: str) -> str:
+ """
+ Fixes a malformed JSON string by:
+ - Removing the last comma and any trailing content.
+ - Iterating over the JSON string once to determine and fix unclosed braces or brackets.
+ - Ensuring braces and brackets inside string literals are not considered.
+
+ If the original json_str string can be successfully loaded by json.loads(), will directly return it without any modification.
+
+ Args:
+ json_str (str): The malformed JSON string to be fixed.
+
+ Returns:
+ str: The corrected JSON string.
+ """
+
+ try:
+ # Try to load the JSON to see if it is valid
+ json.loads(json_str)
+ return json_str # Return as-is if valid
+ except json.JSONDecodeError:
+ pass
+
+ # Step 1: Remove trailing content after the last comma.
+ last_comma_index = json_str.rfind(",")
+ if last_comma_index != -1:
+ json_str = json_str[:last_comma_index]
+
+ # Step 2: Identify unclosed braces and brackets.
+ unclosed_elements = _find_unclosed(json_str)
+
+ # Step 3: Append the necessary closing elements in reverse order of opening.
+ closing_map = {"{": "}", "[": "]"}
+ for open_char in reversed(unclosed_elements):
+ json_str += closing_map[open_char]
+
+ return json_str
diff --git a/src/plugins/knowledge/src/utils/visualize_graph.py b/src/plugins/knowledge/src/utils/visualize_graph.py
new file mode 100644
index 000000000..7ca9b7e68
--- /dev/null
+++ b/src/plugins/knowledge/src/utils/visualize_graph.py
@@ -0,0 +1,17 @@
+import networkx as nx
+from matplotlib import pyplot as plt
+
+
+def draw_graph_and_show(graph):
+ """绘制图并显示,画布大小1280*1280"""
+ fig = plt.figure(1, figsize=(12.8, 12.8), dpi=100)
+ nx.draw_networkx(
+ graph,
+ node_size=100,
+ width=0.5,
+ with_labels=True,
+ labels=nx.get_node_attributes(graph, "content"),
+ font_family="Sarasa Mono SC",
+ font_size=8,
+ )
+ fig.show()
diff --git a/template/lpmm_config_template.toml b/template/lpmm_config_template.toml
new file mode 100644
index 000000000..43785e794
--- /dev/null
+++ b/template/lpmm_config_template.toml
@@ -0,0 +1,57 @@
+# LLM API 服务提供商,可配置多个
+[[llm_providers]]
+name = "localhost"
+base_url = "http://127.0.0.1:8888/v1/"
+api_key = "lm_studio"
+
+[[llm_providers]]
+name = "siliconflow"
+base_url = "https://api.siliconflow.cn/v1/"
+api_key = ""
+
+[entity_extract.llm]
+# 设置用于实体提取的LLM模型
+provider = "siliconflow" # 服务提供商
+model = "deepseek-ai/DeepSeek-V3" # 模型名称
+
+[rdf_build.llm]
+# 设置用于RDF构建的LLM模型
+provider = "siliconflow" # 服务提供商
+model = "deepseek-ai/DeepSeek-V3" # 模型名称
+
+[embedding]
+# 设置用于文本嵌入的Embedding模型
+provider = "siliconflow" # 服务提供商
+model = "Pro/BAAI/bge-m3" # 模型名称
+dimension = 1024 # 嵌入维度
+
+[rag.params]
+# RAG参数配置
+synonym_search_top_k = 10 # 同义词搜索TopK
+synonym_threshold = 0.8 # 同义词阈值(相似度高于此阈值的词语会被认为是同义词)
+
+[qa.llm]
+# 设置用于QA的LLM模型
+provider = "siliconflow" # 服务提供商
+model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" # 模型名称
+
+[info_extraction]
+workers = 10
+
+[qa.params]
+# QA参数配置
+relation_search_top_k = 10 # 关系搜索TopK
+relation_threshold = 0.5 # 关系阈值(相似度高于此阈值的关系会被认为是相关的关系)
+paragraph_search_top_k = 1000 # 段落搜索TopK(不能过小,可能影响搜索结果)
+paragraph_node_weight = 0.05 # 段落节点权重(在图搜索&PPR计算中的权重,当搜索仅使用DPR时,此参数不起作用)
+ent_filter_top_k = 10 # 实体过滤TopK
+ppr_damping = 0.8 # PPR阻尼系数
+res_top_k = 3 # 最终提供的文段TopK
+
+[persistence]
+# 持久化配置(存储中间数据,防止重复计算)
+data_root_path = "data" # 数据根目录
+raw_data_path = "data/import.json" # 原始数据路径
+openie_data_path = "data/openie.json" # OpenIE数据路径
+embedding_data_dir = "data/embedding" # 嵌入数据目录
+rag_data_dir = "data/rag" # RAG数据目录
diff --git a/(临时版)麦麦开始学习.bat b/(临时版)麦麦开始学习.bat
deleted file mode 100644
index f96d7cfdc..000000000
--- a/(临时版)麦麦开始学习.bat
+++ /dev/null
@@ -1,56 +0,0 @@
-@echo off
-chcp 65001 > nul
-setlocal enabledelayedexpansion
-cd /d %~dp0
-
-title 麦麦学习系统
-
-cls
-echo ======================================
-echo 警告提示
-echo ======================================
-echo 1.这是一个demo系统,不完善不稳定,仅用于体验/不要塞入过长过大的文本,这会导致信息提取迟缓
-echo ======================================
-
-echo.
-echo ======================================
-echo 请选择Python环境:
-echo 1 - venv (推荐)
-echo 2 - conda
-echo ======================================
-choice /c 12 /n /m "请输入数字选择(1或2): "
-
-if errorlevel 2 (
- echo ======================================
- set "CONDA_ENV="
- set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
-
- :: 检查输入是否为空
- if "!CONDA_ENV!"=="" (
- echo 错误:环境名称不能为空
- pause
- exit /b 1
- )
-
- call conda activate !CONDA_ENV!
- if errorlevel 1 (
- echo 激活 conda 环境失败
- pause
- exit /b 1
- )
-
- echo Conda 环境 "!CONDA_ENV!" 激活成功
- python src/plugins/zhishi/knowledge_library.py
-) else (
- if exist "venv\Scripts\python.exe" (
- venv\Scripts\python src/plugins/zhishi/knowledge_library.py
- ) else (
- echo ======================================
- echo 错误: venv环境不存在,请先创建虚拟环境
- pause
- exit /b 1
- )
-)
-
-endlocal
-pause