feat(memory): 实现灵活搜索模式并重构记忆格式化系统

- 新增灵活匹配模式(flexible_mode),支持2/4项匹配即可的记忆检索策略
- 删除冗余的memory_formatter模块,简化记忆系统架构
- 增强枚举值解析机制,支持字符串、整数和枚举实例的自动转换
- 优化元数据索引搜索逻辑,分离严格模式和灵活模式的实现路径
- 改进向量存储的搜索回退机制,当元数据筛选无结果时自动回退到全量搜索
- 统一记忆类型映射管理,避免重复的格式化函数定义

这些变更提升了记忆检索的准确性和灵活性,同时简化了代码结构,提高了系统可维护性。
This commit is contained in:
Windpicker-owo
2025-10-02 11:27:06 +08:00
parent 82bb2df369
commit 1f2d7d9ee5
6 changed files with 508 additions and 463 deletions

View File

@@ -51,14 +51,6 @@ from .enhanced_memory_activator import (
enhanced_memory_activator
)
# 格式化器
from .memory_formatter import (
MemoryFormatter,
FormatterConfig,
format_memories_for_llm,
format_memories_bracket_style
)
# 兼容性别名
from .memory_chunk import MemoryChunk as Memory
@@ -98,12 +90,6 @@ __all__ = [
"MemoryActivator",
"memory_activator",
"enhanced_memory_activator", # 兼容性别名
# 格式化器
"MemoryFormatter",
"FormatterConfig",
"format_memories_for_llm",
"format_memories_bracket_style",
]
# 版本信息

View File

@@ -1,331 +0,0 @@
# -*- coding: utf-8 -*-
"""
记忆格式化器
将召回的记忆转化为LLM友好的Markdown格式
"""
from typing import List, Dict, Any, Optional
from datetime import datetime
from dataclasses import dataclass
from src.common.logger import get_logger
from src.chat.memory_system.memory_chunk import MemoryChunk, MemoryType
logger = get_logger(__name__)
@dataclass
class FormatterConfig:
"""格式化器配置"""
include_timestamps: bool = True # 是否包含时间信息
include_memory_types: bool = True # 是否包含记忆类型
include_confidence: bool = False # 是否包含置信度信息
max_display_length: int = 200 # 单条记忆最大显示长度
datetime_format: str = "%Y年%m月%d" # 时间格式
use_emoji_icons: bool = True # 是否使用emoji图标
group_by_type: bool = False # 是否按类型分组
use_bracket_format: bool = False # 是否使用方括号格式 [类型] 内容
compact_format: bool = False # 是否使用紧凑格式
class MemoryFormatter:
"""记忆格式化器 - 将记忆转化为提示词友好的格式"""
# 记忆类型对应的emoji图标
TYPE_EMOJI_MAP = {
MemoryType.PERSONAL_FACT: "👤",
MemoryType.EVENT: "📅",
MemoryType.PREFERENCE: "❤️",
MemoryType.OPINION: "💭",
MemoryType.RELATIONSHIP: "👥",
MemoryType.EMOTION: "😊",
MemoryType.KNOWLEDGE: "📚",
MemoryType.SKILL: "🛠️",
MemoryType.GOAL: "🎯",
MemoryType.EXPERIENCE: "🌟",
MemoryType.CONTEXTUAL: "💬"
}
# 记忆类型的中文标签 - 优化格式
TYPE_LABELS = {
MemoryType.PERSONAL_FACT: "个人事实",
MemoryType.EVENT: "事件",
MemoryType.PREFERENCE: "偏好",
MemoryType.OPINION: "观点",
MemoryType.RELATIONSHIP: "关系",
MemoryType.EMOTION: "情感",
MemoryType.KNOWLEDGE: "知识",
MemoryType.SKILL: "技能",
MemoryType.GOAL: "目标",
MemoryType.EXPERIENCE: "经验",
MemoryType.CONTEXTUAL: "上下文"
}
def __init__(self, config: Optional[FormatterConfig] = None):
self.config = config or FormatterConfig()
def format_memories_for_prompt(
self,
memories: List[MemoryChunk],
query_context: Optional[str] = None
) -> str:
"""
将记忆列表格式化为LLM提示词
Args:
memories: 记忆列表
query_context: 查询上下文(可选)
Returns:
格式化的Markdown文本
"""
if not memories:
return ""
lines = ["## 🧠 相关记忆回顾", ""]
if self.config.group_by_type:
lines.extend(self._format_memories_by_type(memories))
else:
lines.extend(self._format_memories_chronologically(memories))
return "\n".join(lines)
def _format_memories_by_type(self, memories: List[MemoryChunk]) -> List[str]:
"""按类型分组格式化记忆"""
# 按类型分组
grouped_memories = {}
for memory in memories:
memory_type = memory.memory_type
if memory_type not in grouped_memories:
grouped_memories[memory_type] = []
grouped_memories[memory_type].append(memory)
lines = []
# 为每个类型生成格式化文本
for memory_type, type_memories in grouped_memories.items():
emoji = self.TYPE_EMOJI_MAP.get(memory_type, "📝")
label = self.TYPE_LABELS.get(memory_type, memory_type.value)
lines.extend([
f"### {emoji} {label}",
""
])
for memory in type_memories:
formatted_item = self._format_single_memory(memory, include_type=False)
lines.append(formatted_item)
lines.append("") # 类型间空行
return lines
def _format_memories_chronologically(self, memories: List[MemoryChunk]) -> List[str]:
"""按时间顺序格式化记忆"""
lines = []
for i, memory in enumerate(memories, 1):
formatted_item = self._format_single_memory(memory, include_type=True, index=i)
lines.append(formatted_item)
return lines
def _format_single_memory(
self,
memory: MemoryChunk,
include_type: bool = True,
index: Optional[int] = None
) -> str:
"""格式化单条记忆"""
# 如果启用方括号格式,使用新格式
if self.config.use_bracket_format:
return self._format_single_memory_bracket(memory)
# 获取显示文本
display_text = memory.display or memory.text_content
if len(display_text) > self.config.max_display_length:
display_text = display_text[:self.config.max_display_length - 3] + "..."
# 构建前缀
prefix_parts = []
# 添加序号
if index is not None:
prefix_parts.append(f"{index}.")
# 添加类型标签
if include_type and self.config.include_memory_types:
if self.config.use_emoji_icons:
emoji = self.TYPE_EMOJI_MAP.get(memory.memory_type, "📝")
prefix_parts.append(f"**{emoji}")
else:
label = self.TYPE_LABELS.get(memory.memory_type, memory.memory_type.value)
prefix_parts.append(f"**[{label}]")
# 添加时间信息
if self.config.include_timestamps:
timestamp = memory.metadata.created_at
if timestamp > 0:
dt = datetime.fromtimestamp(timestamp)
time_str = dt.strftime(self.config.datetime_format)
if self.config.use_emoji_icons:
prefix_parts.append(f"{time_str}")
else:
prefix_parts.append(f"({time_str})")
# 添加置信度信息
if self.config.include_confidence:
confidence = memory.metadata.confidence.value
confidence_stars = "" * confidence + "" * (4 - confidence)
prefix_parts.append(f"信度:{confidence_stars}")
# 构建完整格式
if prefix_parts:
if self.config.include_memory_types and self.config.use_emoji_icons:
prefix = " ".join(prefix_parts) + "** "
else:
prefix = " ".join(prefix_parts) + " "
return f"- {prefix}{display_text}"
else:
return f"- {display_text}"
def _format_single_memory_bracket(self, memory: MemoryChunk) -> str:
"""格式化单条记忆 - 使用方括号格式 [类型] 内容"""
# 获取显示文本
display_text = memory.display or memory.text_content
# 如果启用紧凑格式,只显示核心内容
if self.config.compact_format:
if len(display_text) > self.config.max_display_length:
display_text = display_text[:self.config.max_display_length - 3] + "..."
else:
# 非紧凑格式可以包含时间信息
if self.config.include_timestamps:
timestamp = memory.metadata.created_at
if timestamp > 0:
dt = datetime.fromtimestamp(timestamp)
time_str = dt.strftime("%Y年%m月%d")
# 将时间信息自然地整合到内容中
if "" not in display_text and "" not in display_text:
display_text = f"{time_str}{display_text}"
# 获取类型标签
label = self.TYPE_LABELS.get(memory.memory_type, memory.memory_type.value)
# 构建方括号格式: **[类型]** 内容
return f"- **[{label}]** {display_text}"
def format_memory_summary(self, memories: List[MemoryChunk]) -> str:
"""生成记忆摘要统计"""
if not memories:
return "暂无相关记忆。"
# 统计信息
total_count = len(memories)
type_counts = {}
for memory in memories:
memory_type = memory.memory_type
type_counts[memory_type] = type_counts.get(memory_type, 0) + 1
# 生成摘要
lines = [f"**记忆摘要**: 共找到 {total_count} 条相关记忆"]
if len(type_counts) > 1:
type_summaries = []
for memory_type, count in type_counts.items():
emoji = self.TYPE_EMOJI_MAP.get(memory_type, "📝")
label = self.TYPE_LABELS.get(memory_type, memory_type.value)
type_summaries.append(f"{emoji}{label} {count}")
lines.append(f"包括: {', '.join(type_summaries)}")
return " | ".join(lines)
def format_for_debug(self, memories: List[MemoryChunk]) -> str:
"""生成调试格式的记忆列表"""
if not memories:
return "无记忆数据"
lines = ["### 记忆调试信息", ""]
for i, memory in enumerate(memories, 1):
lines.extend([
f"**记忆 {i}** (ID: {memory.memory_id[:8]})",
f"- 类型: {memory.memory_type.value}",
f"- 内容: {memory.display[:100]}{'...' if len(memory.display) > 100 else ''}",
f"- 访问次数: {memory.metadata.access_count}",
f"- 置信度: {memory.metadata.confidence.value}/4",
f"- 重要性: {memory.metadata.importance.value}/4",
f"- 创建时间: {datetime.fromtimestamp(memory.metadata.created_at).strftime('%Y-%m-%d %H:%M')}",
""
])
return "\n".join(lines)
# 创建默认格式化器实例
default_formatter = MemoryFormatter()
def format_memories_for_llm(
memories: List[MemoryChunk],
query_context: Optional[str] = None,
config: Optional[FormatterConfig] = None
) -> str:
"""
便捷函数将记忆格式化为LLM提示词
"""
if config:
formatter = MemoryFormatter(config)
else:
formatter = default_formatter
return formatter.format_memories_for_prompt(memories, query_context)
def format_memory_summary(
memories: List[MemoryChunk],
config: Optional[FormatterConfig] = None
) -> str:
"""
便捷函数:生成记忆摘要
"""
if config:
formatter = MemoryFormatter(config)
else:
formatter = default_formatter
return formatter.format_memory_summary(memories)
def format_memories_bracket_style(
memories: List[MemoryChunk],
query_context: Optional[str] = None,
compact: bool = True,
include_timestamps: bool = True
) -> str:
"""
便捷函数:使用方括号格式格式化记忆
Args:
memories: 记忆列表
query_context: 查询上下文
compact: 是否使用紧凑格式
include_timestamps: 是否包含时间信息
Returns:
格式化的Markdown文本
"""
config = FormatterConfig(
use_bracket_format=True,
compact_format=compact,
include_timestamps=include_timestamps,
include_memory_types=True,
use_emoji_icons=False,
group_by_type=False
)
formatter = MemoryFormatter(config)
return formatter.format_memories_for_prompt(memories, query_context)

View File

@@ -200,7 +200,8 @@ class MemoryMetadataIndex:
created_after: Optional[float] = None,
created_before: Optional[float] = None,
user_id: Optional[str] = None,
limit: Optional[int] = None
limit: Optional[int] = None,
flexible_mode: bool = True # 新增:灵活匹配模式
) -> List[str]:
"""
搜索符合条件的记忆ID列表支持模糊匹配
@@ -209,96 +210,275 @@ class MemoryMetadataIndex:
List[str]: 符合条件的 memory_id 列表
"""
with self.lock:
# 初始候选集(所有记忆)
candidate_ids: Optional[Set[str]] = None
# 用户过滤(必选)
if user_id:
candidate_ids = {
mid for mid, entry in self.index.items()
if entry.user_id == user_id
}
if flexible_mode:
return self._search_flexible(
memory_types=memory_types,
subjects=subjects,
keywords=keywords, # 保留用于兼容性
tags=tags, # 保留用于兼容性
created_after=created_after,
created_before=created_before,
user_id=user_id,
limit=limit
)
else:
candidate_ids = set(self.index.keys())
# 类型过滤OR关系
return self._search_strict(
memory_types=memory_types,
subjects=subjects,
keywords=keywords,
tags=tags,
importance_min=importance_min,
importance_max=importance_max,
created_after=created_after,
created_before=created_before,
user_id=user_id,
limit=limit
)
def _search_flexible(
self,
memory_types: Optional[List[str]] = None,
subjects: Optional[List[str]] = None,
created_after: Optional[float] = None,
created_before: Optional[float] = None,
user_id: Optional[str] = None,
limit: Optional[int] = None,
**kwargs # 接受但不使用的参数
) -> List[str]:
"""
灵活搜索模式2/4项匹配即可支持部分匹配
评分维度:
1. 记忆类型匹配 (0-1分)
2. 主语匹配 (0-1分)
3. 宾语匹配 (0-1分)
4. 时间范围匹配 (0-1分)
总分 >= 2分即视为有效
"""
# 用户过滤(必选)
if user_id:
base_candidates = {
mid for mid, entry in self.index.items()
if entry.user_id == user_id
}
else:
base_candidates = set(self.index.keys())
scored_candidates = []
for memory_id in base_candidates:
entry = self.index[memory_id]
score = 0
match_details = []
# 1. 记忆类型匹配
if memory_types:
type_ids = set()
type_score = 0
for mtype in memory_types:
type_ids.update(self.type_index.get(mtype, set()))
candidate_ids &= type_ids
# 主语过滤OR关系支持模糊匹配
if entry.memory_type == mtype:
type_score = 1
break
# 部分匹配:类型名称包含
if mtype.lower() in entry.memory_type.lower() or entry.memory_type.lower() in mtype.lower():
type_score = 0.5
break
score += type_score
if type_score > 0:
match_details.append(f"类型:{entry.memory_type}")
else:
match_details.append("类型:未指定")
# 2. 主语匹配(支持部分匹配)
if subjects:
subject_ids = set()
subject_score = 0
for subject in subjects:
subject_norm = subject.strip().lower()
# 精确匹配
if subject_norm in self.subject_index:
subject_ids.update(self.subject_index[subject_norm])
# 模糊匹配(包含)
for indexed_subject, ids in self.subject_index.items():
if subject_norm in indexed_subject or indexed_subject in subject_norm:
subject_ids.update(ids)
candidate_ids &= subject_ids
# 关键词过滤OR关系支持模糊匹配
if keywords:
keyword_ids = set()
for keyword in keywords:
keyword_norm = keyword.strip().lower()
# 精确匹配
if keyword_norm in self.keyword_index:
keyword_ids.update(self.keyword_index[keyword_norm])
# 模糊匹配(包含)
for indexed_keyword, ids in self.keyword_index.items():
if keyword_norm in indexed_keyword or indexed_keyword in keyword_norm:
keyword_ids.update(ids)
candidate_ids &= keyword_ids
# 标签过滤OR关系
if tags:
tag_ids = set()
for tag in tags:
tag_norm = tag.strip().lower()
tag_ids.update(self.tag_index.get(tag_norm, set()))
candidate_ids &= tag_ids
# 重要性过滤
if importance_min is not None or importance_max is not None:
importance_ids = {
mid for mid in candidate_ids
if (importance_min is None or self.index[mid].importance >= importance_min)
and (importance_max is None or self.index[mid].importance <= importance_max)
}
candidate_ids &= importance_ids
# 时间范围过滤
for entry_subject in entry.subjects:
entry_subject_norm = entry_subject.strip().lower()
# 精确匹配
if subject_norm == entry_subject_norm:
subject_score = 1
break
# 部分匹配:包含关系
if subject_norm in entry_subject_norm or entry_subject_norm in subject_norm:
subject_score = 0.6
break
if subject_score == 1:
break
score += subject_score
if subject_score > 0:
match_details.append("主语:匹配")
else:
match_details.append("主语:未指定")
# 3. 宾语匹配(支持部分匹配)
object_score = 0
if entry.objects:
for entry_object in entry.objects:
entry_object_norm = str(entry_object).strip().lower()
# 检查是否与主语相关(主宾关联
for subject in subjects or []:
subject_norm = subject.strip().lower()
if subject_norm in entry_object_norm or entry_object_norm in subject_norm:
object_score = 0.8
match_details.append("宾语:主宾关联")
break
if object_score > 0:
break
score += object_score
if object_score > 0:
match_details.append("宾语:匹配")
elif not entry.objects:
match_details.append("宾语:无")
# 4. 时间范围匹配
time_score = 0
if created_after is not None or created_before is not None:
time_ids = {
mid for mid in candidate_ids
if (created_after is None or self.index[mid].created_at >= created_after)
and (created_before is None or self.index[mid].created_at <= created_before)
}
candidate_ids &= time_ids
# 转换为列表并排序(按创建时间倒序)
result_ids = sorted(
candidate_ids,
key=lambda mid: self.index[mid].created_at,
reverse=True
)
# 限制数量
if limit:
result_ids = result_ids[:limit]
logger.debug(
f"元数据索引搜索: types={memory_types}, subjects={subjects}, "
f"keywords={keywords}, 返回={len(result_ids)}"
)
return result_ids
time_match = True
if created_after is not None and entry.created_at < created_after:
time_match = False
if created_before is not None and entry.created_at > created_before:
time_match = False
if time_match:
time_score = 1
match_details.append("时间:匹配")
else:
match_details.append("时间:不匹配")
else:
match_details.append("时间:未指定")
score += time_score
# 只有总分 >= 2 的记忆才会被返回
if score >= 2:
scored_candidates.append((memory_id, score, match_details))
# 按分数和时间排序
scored_candidates.sort(key=lambda x: (x[1], self.index[x[0]].created_at), reverse=True)
if limit:
result_ids = [mid for mid, _, _ in scored_candidates[:limit]]
else:
result_ids = [mid for mid, _, _ in scored_candidates]
logger.debug(
f"[灵活搜索] 过滤条件: types={memory_types}, subjects={subjects}, "
f"time_range=[{created_after}, {created_before}], 返回={len(result_ids)}"
)
# 记录匹配统计
if scored_candidates and len(scored_candidates) > 0:
avg_score = sum(score for _, score, _ in scored_candidates) / len(scored_candidates)
logger.debug(f"[灵活搜索] 平均匹配分数: {avg_score:.2f}, 最高分: {scored_candidates[0][1]:.2f}")
return result_ids
def _search_strict(
self,
memory_types: Optional[List[str]] = None,
subjects: Optional[List[str]] = None,
keywords: Optional[List[str]] = None,
tags: Optional[List[str]] = None,
importance_min: Optional[int] = None,
importance_max: Optional[int] = None,
created_after: Optional[float] = None,
created_before: Optional[float] = None,
user_id: Optional[str] = None,
limit: Optional[int] = None
) -> List[str]:
"""严格搜索模式(原有逻辑)"""
# 初始候选集(所有记忆)
candidate_ids: Optional[Set[str]] = None
# 用户过滤(必选)
if user_id:
candidate_ids = {
mid for mid, entry in self.index.items()
if entry.user_id == user_id
}
else:
candidate_ids = set(self.index.keys())
# 类型过滤OR关系
if memory_types:
type_ids = set()
for mtype in memory_types:
type_ids.update(self.type_index.get(mtype, set()))
candidate_ids &= type_ids
# 主语过滤OR关系支持模糊匹配
if subjects:
subject_ids = set()
for subject in subjects:
subject_norm = subject.strip().lower()
# 精确匹配
if subject_norm in self.subject_index:
subject_ids.update(self.subject_index[subject_norm])
# 模糊匹配(包含)
for indexed_subject, ids in self.subject_index.items():
if subject_norm in indexed_subject or indexed_subject in subject_norm:
subject_ids.update(ids)
candidate_ids &= subject_ids
# 关键词过滤OR关系支持模糊匹配
if keywords:
keyword_ids = set()
for keyword in keywords:
keyword_norm = keyword.strip().lower()
# 精确匹配
if keyword_norm in self.keyword_index:
keyword_ids.update(self.keyword_index[keyword_norm])
# 模糊匹配(包含)
for indexed_keyword, ids in self.keyword_index.items():
if keyword_norm in indexed_keyword or indexed_keyword in keyword_norm:
keyword_ids.update(ids)
candidate_ids &= keyword_ids
# 标签过滤OR关系
if tags:
tag_ids = set()
for tag in tags:
tag_norm = tag.strip().lower()
tag_ids.update(self.tag_index.get(tag_norm, set()))
candidate_ids &= tag_ids
# 重要性过滤
if importance_min is not None or importance_max is not None:
importance_ids = {
mid for mid in candidate_ids
if (importance_min is None or self.index[mid].importance >= importance_min)
and (importance_max is None or self.index[mid].importance <= importance_max)
}
candidate_ids &= importance_ids
# 时间范围过滤
if created_after is not None or created_before is not None:
time_ids = {
mid for mid in candidate_ids
if (created_after is None or self.index[mid].created_at >= created_after)
and (created_before is None or self.index[mid].created_at <= created_before)
}
candidate_ids &= time_ids
# 转换为列表并排序(按创建时间倒序)
result_ids = sorted(
candidate_ids,
key=lambda mid: self.index[mid].created_at,
reverse=True
)
# 限制数量
if limit:
result_ids = result_ids[:limit]
logger.debug(
f"[严格搜索] types={memory_types}, subjects={subjects}, "
f"keywords={keywords}, 返回={len(result_ids)}"
)
return result_ids
def get_entry(self, memory_id: str) -> Optional[MemoryMetadataIndexEntry]:
"""获取单个索引条目"""

View File

@@ -24,12 +24,63 @@ import numpy as np
from src.common.logger import get_logger
from src.common.vector_db import vector_db_service
from src.chat.utils.utils import get_embedding
from src.chat.memory_system.memory_chunk import MemoryChunk
from src.chat.memory_system.memory_chunk import MemoryChunk, ConfidenceLevel, ImportanceLevel
from src.chat.memory_system.memory_forgetting_engine import MemoryForgettingEngine
from src.chat.memory_system.memory_metadata_index import MemoryMetadataIndex, MemoryMetadataIndexEntry
logger = get_logger(__name__)
# 全局枚举映射表缓存
_ENUM_MAPPINGS_CACHE = {}
def _build_enum_mapping(enum_class: type) -> Dict[str, Any]:
"""构建枚举类的完整映射表
Args:
enum_class: 枚举类
Returns:
Dict[str, Any]: 包含各种映射格式的字典
"""
cache_key = f"{enum_class.__module__}.{enum_class.__name__}"
# 如果已经缓存过,直接返回
if cache_key in _ENUM_MAPPINGS_CACHE:
return _ENUM_MAPPINGS_CACHE[cache_key]
mapping = {
"name_to_enum": {}, # 枚举名称 -> 枚举实例 (HIGH -> ImportanceLevel.HIGH)
"value_to_enum": {}, # 整数值 -> 枚举实例 (3 -> ImportanceLevel.HIGH)
"value_str_to_enum": {}, # 字符串value -> 枚举实例 ("3" -> ImportanceLevel.HIGH)
"enum_value_to_name": {}, # 枚举实例 -> 名称映射 (反向)
"all_possible_strings": set(), # 所有可能的字符串表示
}
for member in enum_class:
# 名称映射 (支持大小写)
mapping["name_to_enum"][member.name] = member
mapping["name_to_enum"][member.name.lower()] = member
mapping["name_to_enum"][member.name.upper()] = member
# 值映射
mapping["value_to_enum"][member.value] = member
mapping["value_str_to_enum"][str(member.value)] = member
# 反向映射
mapping["enum_value_to_name"][member] = member.name
# 收集所有可能的字符串表示
mapping["all_possible_strings"].add(member.name)
mapping["all_possible_strings"].add(member.name.lower())
mapping["all_possible_strings"].add(member.name.upper())
mapping["all_possible_strings"].add(str(member.value))
# 缓存结果
_ENUM_MAPPINGS_CACHE[cache_key] = mapping
logger.debug(f"构建枚举映射表: {enum_class.__name__} -> {len(mapping['name_to_enum'])} 个名称映射, {len(mapping['value_to_enum'])} 个值映射")
return mapping
@dataclass
class VectorStorageConfig:
@@ -294,8 +345,8 @@ class VectorMemoryStorage:
"last_modified": metadata.get("timestamp", time.time()),
"access_count": metadata.get("access_count", 0),
"relevance_score": 0.0,
"confidence": int(metadata.get("confidence", 2)), # MEDIUM
"importance": int(metadata.get("importance", 2)), # NORMAL
"confidence": self._parse_enum_value(metadata.get("confidence", 2), ConfidenceLevel, ConfidenceLevel.MEDIUM),
"importance": self._parse_enum_value(metadata.get("importance", 2), ImportanceLevel, ImportanceLevel.NORMAL),
"source_context": None,
},
"content": {
@@ -313,12 +364,76 @@ class VectorMemoryStorage:
"related_memories": [],
"temporal_context": None
}
return MemoryChunk.from_dict(memory_dict)
except Exception as e:
logger.error(f"转换Vector结果到MemoryChunk失败: {e}", exc_info=True)
return None
def _parse_enum_value(self, value: Any, enum_class: type, default: Any) -> Any:
"""解析枚举值,支持字符串、整数和枚举实例
Args:
value: 要解析的值(可能是字符串、整数或枚举实例)
enum_class: 目标枚举类
default: 默认值
Returns:
解析后的枚举实例
"""
if value is None:
return default
# 如果已经是枚举实例,直接返回
if isinstance(value, enum_class):
return value
# 如果是整数尝试按value值匹配
if isinstance(value, int):
try:
for member in enum_class:
if member.value == value:
return member
# 如果没找到匹配的,返回默认值
logger.warning(f"无法找到{enum_class.__name__}中value={value}的枚举项,使用默认值")
return default
except Exception as e:
logger.warning(f"解析{enum_class.__name__}整数值{value}时出错: {e},使用默认值")
return default
# 如果是字符串尝试按名称或value值匹配
if isinstance(value, str):
str_value = value.strip().upper()
# 先尝试按枚举名称匹配
try:
if hasattr(enum_class, str_value):
return getattr(enum_class, str_value)
except AttributeError:
pass
# 再尝试按value值匹配如果value是字符串形式的数字
try:
int_value = int(str_value)
return self._parse_enum_value(int_value, enum_class, default)
except ValueError:
pass
# 最后尝试按小写名称匹配
try:
for member in enum_class:
if member.value.upper() == str_value:
return member
logger.warning(f"无法找到{enum_class.__name__}中名称或value为'{value}'的枚举项,使用默认值")
return default
except Exception as e:
logger.warning(f"解析{enum_class.__name__}字符串值'{value}'时出错: {e},使用默认值")
return default
# 其他类型,返回默认值
logger.warning(f"不支持的{enum_class.__name__}值类型: {type(value)},使用默认值")
return default
def _get_from_cache(self, memory_id: str) -> Optional[MemoryChunk]:
"""从缓存获取记忆"""
@@ -518,14 +633,19 @@ class VectorMemoryStorage:
created_after=metadata_filters.get('created_after'),
created_before=metadata_filters.get('created_before'),
user_id=metadata_filters.get('user_id'),
limit=self.config.search_limit * 2 # 粗筛返回更多候选
limit=self.config.search_limit * 2, # 粗筛返回更多候选
flexible_mode=True # 使用灵活匹配模式
)
logger.info(f"[JSON元数据粗筛] 完成,筛选出 {len(candidate_ids)} 个候选ID")
# 如果粗筛后没有结果,直接返
# 如果粗筛后没有结果,回退到全部记忆搜索
if not candidate_ids:
logger.warning("JSON元数据粗筛后无候选返回空结果")
return []
total_memories = len(self.metadata_index.index)
logger.warning(f"JSON元数据粗筛后无候选启用回退机制在全部 {total_memories} 条记忆中进行向量搜索")
logger.info("💡 提示:这可能是因为查询条件过于严格,或相关记忆的元数据与查询条件不完全匹配")
candidate_ids = None # 设为None表示不限制候选ID
else:
logger.debug(f"[JSON元数据粗筛] 成功筛选出候选,进入向量精筛阶段")
# === 阶段二:向量精筛 ===
# 生成查询向量
@@ -543,6 +663,8 @@ class VectorMemoryStorage:
# ChromaDB的where条件需要使用$in操作符
where_conditions["memory_id"] = {"$in": candidate_ids}
logger.debug(f"[向量精筛] 限制在 {len(candidate_ids)} 个候选ID内搜索")
else:
logger.info("[向量精筛] 在全部记忆中搜索(元数据筛选无结果回退)")
# 查询Vector DB
logger.debug(f"[向量精筛] 开始limit={min(limit, self.config.search_limit)}")

View File

@@ -18,6 +18,7 @@ from src.individuality.individuality import get_individuality
from src.llm_models.utils_model import LLMRequest
from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.utils.memory_mappings import get_memory_type_chinese_label
from src.chat.message_receive.uni_message_sender import HeartFCSender
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.utils import get_chat_type_and_target_info
@@ -621,20 +622,6 @@ class DefaultReplyer:
running_memories = []
instant_memory = ""
def _format_confidence_label(value: Optional[float]) -> str:
if value is None:
return "未知"
mapping = {4: "已验证", 3: "", 2: "中等", 1: "较低"}
rounded = int(value)
return mapping.get(rounded, f"{value:.2f}")
def _format_importance_label(value: Optional[float]) -> str:
if value is None:
return "未知"
mapping = {4: "关键", 3: "", 2: "一般", 1: "较低"}
rounded = int(value)
return mapping.get(rounded, f"{value:.2f}")
# 构建记忆字符串,使用方括号格式
memory_str = ""
has_any_memory = False
@@ -662,16 +649,8 @@ class DefaultReplyer:
logger.debug(f"[记忆构建] 空记忆详情: {running_memory}")
continue
# 映射记忆类型到中文标签
type_mapping = {
"personal_fact": "个人事实",
"preference": "偏好",
"event": "事件",
"opinion": "观点",
"relationship": "个人事实",
"unknown": "未知"
}
chinese_type = type_mapping.get(memory_type, "未知")
# 使用全局记忆类型映射表
chinese_type = get_memory_type_chinese_label(memory_type)
# 提取纯净内容(如果包含旧格式的元数据)
clean_content = content

View File

@@ -0,0 +1,109 @@
# -*- coding: utf-8 -*-
"""
记忆系统相关的映射表和工具函数
提供记忆类型、置信度、重要性等的中文标签映射
"""
# 记忆类型到中文标签的完整映射表
MEMORY_TYPE_CHINESE_MAPPING = {
"personal_fact": "个人事实",
"preference": "偏好",
"event": "事件",
"opinion": "观点",
"relationship": "人际关系",
"emotion": "情感状态",
"knowledge": "知识信息",
"skill": "技能能力",
"goal": "目标计划",
"experience": "经验教训",
"contextual": "上下文信息",
"unknown": "未知"
}
# 置信度等级到中文标签的映射表
CONFIDENCE_LEVEL_CHINESE_MAPPING = {
1: "低置信度",
2: "中等置信度",
3: "高置信度",
4: "已验证",
"LOW": "低置信度",
"MEDIUM": "中等置信度",
"HIGH": "高置信度",
"VERIFIED": "已验证",
"unknown": "未知"
}
# 重要性等级到中文标签的映射表
IMPORTANCE_LEVEL_CHINESE_MAPPING = {
1: "低重要性",
2: "一般重要性",
3: "高重要性",
4: "关键重要性",
"LOW": "低重要性",
"NORMAL": "一般重要性",
"HIGH": "高重要性",
"CRITICAL": "关键重要性",
"unknown": "未知"
}
def get_memory_type_chinese_label(memory_type: str) -> str:
"""获取记忆类型的中文标签
Args:
memory_type: 记忆类型字符串
Returns:
str: 对应的中文标签,如果找不到则返回"未知"
"""
return MEMORY_TYPE_CHINESE_MAPPING.get(memory_type, "未知")
def get_confidence_level_chinese_label(level) -> str:
"""获取置信度等级的中文标签
Args:
level: 置信度等级(可以是数字、字符串或枚举实例)
Returns:
str: 对应的中文标签,如果找不到则返回"未知"
"""
# 处理枚举实例
if hasattr(level, 'value'):
level = level.value
# 处理数字
if isinstance(level, int):
return CONFIDENCE_LEVEL_CHINESE_MAPPING.get(level, "未知")
# 处理字符串
if isinstance(level, str):
level_upper = level.upper()
return CONFIDENCE_LEVEL_CHINESE_MAPPING.get(level_upper, "未知")
return "未知"
def get_importance_level_chinese_label(level) -> str:
"""获取重要性等级的中文标签
Args:
level: 重要性等级(可以是数字、字符串或枚举实例)
Returns:
str: 对应的中文标签,如果找不到则返回"未知"
"""
# 处理枚举实例
if hasattr(level, 'value'):
level = level.value
# 处理数字
if isinstance(level, int):
return IMPORTANCE_LEVEL_CHINESE_MAPPING.get(level, "未知")
# 处理字符串
if isinstance(level, str):
level_upper = level.upper()
return IMPORTANCE_LEVEL_CHINESE_MAPPING.get(level_upper, "未知")
return "未知"