fix(llm): 兼容处理部分模型缺失的token用量字段

部分模型(如 embedding 模型)的 API 响应中可能不包含 `completion_tokens` 等完整的用量字段。

此前的直接属性访问会导致 `AttributeError`,从而中断使用记录和统计更新流程。

通过改用 `getattr(usage, "...", 0)` 的方式为缺失的字段提供默认值 0,增强了代码的健壮性,确保系统能够稳定处理来自不同类型模型的响应。
This commit is contained in:
tt-P607
2025-10-29 19:19:30 +08:00
parent 57794480b8
commit 17c0e58a7b
4 changed files with 25 additions and 18 deletions

View File

@@ -26,13 +26,13 @@ class UsageRecord:
provider_name: str
"""提供商名称"""
prompt_tokens: int
prompt_tokens: int = 0
"""提示token数"""
completion_tokens: int
completion_tokens: int = 0
"""完成token数"""
total_tokens: int
total_tokens: int = 0
"""总token数"""

View File

@@ -290,9 +290,9 @@ async def _default_stream_response_handler(
if event.usage:
# 如果有使用情况则将其存储在APIResponse对象中
_usage_record = (
event.usage.prompt_tokens or 0,
event.usage.completion_tokens or 0,
event.usage.total_tokens or 0,
getattr(event.usage, "prompt_tokens", 0) or 0,
getattr(event.usage, "completion_tokens", 0) or 0,
getattr(event.usage, "total_tokens", 0) or 0,
)
try:
@@ -360,9 +360,9 @@ def _default_normal_response_parser(
# 提取Usage信息
if resp.usage:
_usage_record = (
resp.usage.prompt_tokens or 0,
resp.usage.completion_tokens or 0,
resp.usage.total_tokens or 0,
getattr(resp.usage, "prompt_tokens", 0) or 0,
getattr(resp.usage, "completion_tokens", 0) or 0,
getattr(resp.usage, "total_tokens", 0) or 0,
)
else:
_usage_record = None
@@ -591,7 +591,7 @@ class OpenaiClient(BaseClient):
model_name=model_info.name,
provider_name=model_info.api_provider,
prompt_tokens=raw_response.usage.prompt_tokens or 0,
completion_tokens=raw_response.usage.completion_tokens or 0, # type: ignore
completion_tokens=getattr(raw_response.usage, "completion_tokens", 0) or 0,
total_tokens=raw_response.usage.total_tokens or 0,
)

View File

@@ -155,8 +155,12 @@ class LLMUsageRecorder:
endpoint: str,
time_cost: float = 0.0,
):
input_cost = (model_usage.prompt_tokens / 1000000) * model_info.price_in
output_cost = (model_usage.completion_tokens / 1000000) * model_info.price_out
prompt_tokens = getattr(model_usage, "prompt_tokens", 0)
completion_tokens = getattr(model_usage, "completion_tokens", 0)
total_tokens = getattr(model_usage, "total_tokens", 0)
input_cost = (prompt_tokens / 1000000) * model_info.price_in
output_cost = (completion_tokens / 1000000) * model_info.price_out
round(input_cost + output_cost, 6)
session = None
@@ -170,9 +174,9 @@ class LLMUsageRecorder:
user_id=user_id,
request_type=request_type,
endpoint=endpoint,
prompt_tokens=model_usage.prompt_tokens or 0,
completion_tokens=model_usage.completion_tokens or 0,
total_tokens=model_usage.total_tokens or 0,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
cost=1.0,
time_cost=round(time_cost or 0.0, 3),
status="success",
@@ -185,8 +189,8 @@ class LLMUsageRecorder:
logger.debug(
f"Token使用情况 - 模型: {model_usage.model_name}, "
f"用户: {user_id}, 类型: {request_type}, "
f"提示词: {model_usage.prompt_tokens}, 完成: {model_usage.completion_tokens}, "
f"总计: {model_usage.total_tokens}"
f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
f"总计: {total_tokens}"
)
except Exception as e:
logger.error(f"记录token使用情况失败: {e!s}")

View File

@@ -1009,12 +1009,15 @@ class LLMRequest:
# 步骤1: 更新内存中的统计数据,用于负载均衡
stats = self.model_usage[model_info.name]
# 安全地获取 token 使用量, embedding 模型可能不返回 completion_tokens
total_tokens = getattr(usage, "total_tokens", 0)
# 计算新的平均延迟
new_request_count = stats.request_count + 1
new_avg_latency = (stats.avg_latency * stats.request_count + time_cost) / new_request_count
self.model_usage[model_info.name] = stats._replace(
total_tokens=stats.total_tokens + usage.total_tokens,
total_tokens=stats.total_tokens + total_tokens,
avg_latency=new_avg_latency,
request_count=new_request_count,
)