remove:冗余的sbhf代码和focus代码

This commit is contained in:
SengokuCola
2025-07-06 20:14:09 +08:00
parent dc24a76413
commit 1365099fd4
44 changed files with 132 additions and 2210 deletions

View File

@@ -12,6 +12,7 @@
- normal的插件允许llm激活
- 合并action激活器
- emoji统一可选随机激活或llm激活
- 移除observation和processor简化focus的代码逻辑
## [0.8.1] - 2025-7-5

View File

@@ -1,7 +1,6 @@
from src.chat.heart_flow.heartflow import heartflow
from src.chat.heart_flow.sub_heartflow import ChatState
from src.common.logger import get_logger
import time
logger = get_logger("api")
@@ -20,39 +19,6 @@ async def forced_change_subheartflow_status(subheartflow_id: str, status: ChatSt
return False
async def get_subheartflow_cycle_info(subheartflow_id: str, history_len: int) -> dict:
"""获取子心流的循环信息"""
subheartflow_cycle_info = await heartflow.api_get_subheartflow_cycle_info(subheartflow_id, history_len)
logger.debug(f"子心流 {subheartflow_id} 循环信息: {subheartflow_cycle_info}")
if subheartflow_cycle_info:
return subheartflow_cycle_info
else:
logger.warning(f"子心流 {subheartflow_id} 循环信息未找到")
return None
async def get_normal_chat_replies(subheartflow_id: str, limit: int = 10) -> list:
"""获取子心流的NormalChat回复记录
Args:
subheartflow_id: 子心流ID
limit: 最大返回数量默认10条
Returns:
list: 回复记录列表,如果未找到则返回空列表
"""
replies = await heartflow.api_get_normal_chat_replies(subheartflow_id, limit)
logger.debug(f"子心流 {subheartflow_id} NormalChat回复记录: 获取到 {len(replies) if replies else 0}")
if replies:
# 格式化时间戳为可读时间
for reply in replies:
if "time" in reply:
reply["formatted_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(reply["time"]))
return replies
else:
logger.warning(f"子心流 {subheartflow_id} NormalChat回复记录未找到")
return []
async def get_all_states():
"""获取所有状态"""

View File

@@ -6,20 +6,16 @@ from src.chat.focus_chat.hfc_utils import CycleDetail
from typing import List
# Import the new utility function
logger = get_logger("observation")
logger = get_logger("loop_info")
# 所有观察的基类
class HFCloopObservation:
class FocusLoopInfo:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop: List[CycleDetail] = []
def get_observe_info(self):
return self.observe_info
def add_loop_info(self, loop_info: CycleDetail):
self.history_loop.append(loop_info)
@@ -50,11 +46,6 @@ class HFCloopObservation:
action_taken_time_str = (
datetime.fromtimestamp(action_taken_time).strftime("%H:%M:%S") if action_taken_time > 0 else "未知时间"
)
# print(action_type)
# print(action_reasoning)
# print(is_taken)
# print(action_taken_time_str)
# print("--------------------------------")
if action_reasoning != cycle_last_reason:
cycle_last_reason = action_reasoning
action_reasoning_str = f"你选择这个action的原因是:{action_reasoning}"
@@ -71,9 +62,6 @@ class HFCloopObservation:
else:
action_detailed_str += f"{action_taken_time_str}时,你选择回复(action:{action_type},内容是:'{response_text}'),但是动作失败了。{action_reasoning_str}\n"
elif action_type == "no_reply":
# action_detailed_str += (
# f"{action_taken_time_str}时,你选择不回复(action:{action_type}){action_reasoning_str}\n"
# )
pass
else:
if is_taken:
@@ -88,17 +76,6 @@ class HFCloopObservation:
else:
cycle_info_block = "\n"
# 根据连续文本回复的数量构建提示信息
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
# if cycle_info_block:
# cycle_info_block = f"\n你最近的回复\n{cycle_info_block}\n"
# else:
# cycle_info_block = "\n"
# 获取history_loop中最新添加的
if self.history_loop:
@@ -112,17 +89,4 @@ class HFCloopObservation:
else:
cycle_info_block += f"距离你上一次阅读消息并思考和规划,已经过去了{time_diff}\n"
else:
cycle_info_block += "你还没看过消息\n"
self.observe_info = cycle_info_block
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
# 只序列化基本信息,避免循环引用
return {
"observe_info": self.observe_info,
"observe_id": self.observe_id,
"last_observe_time": self.last_observe_time,
# 不序列化history_loop避免循环引用
"history_loop_count": len(self.history_loop),
}
cycle_info_block += "你还没看过消息\n"

View File

@@ -9,15 +9,7 @@ from rich.traceback import install
from src.chat.utils.prompt_builder import global_prompt_manager
from src.common.logger import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.focus_chat.observation.observation import Observation
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
from src.chat.focus_chat.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.observation.working_observation import WorkingMemoryObservation
from src.chat.focus_chat.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.observation.actions_observation import ActionObservation
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.focus_loop_info import FocusLoopInfo
from src.chat.planner_actions.planner_focus import ActionPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.planner_actions.action_manager import ActionManager
@@ -32,23 +24,8 @@ install(extra_lines=3)
# 注释:原来的动作修改超时常量已移除,因为改为顺序执行
# 定义观察器映射:键是观察器名称,值是 (观察器类, 初始化参数)
OBSERVATION_CLASSES = {
"ChattingObservation": (ChattingObservation, "chat_id"),
"WorkingMemoryObservation": (WorkingMemoryObservation, "observe_id"),
"HFCloopObservation": (HFCloopObservation, "observe_id"),
}
# 定义处理器映射:键是处理器名称,值是 (处理器类, 可选的配置键名)
PROCESSOR_CLASSES = {
"ChattingInfoProcessor": (ChattingInfoProcessor, None),
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
}
logger = get_logger("hfc") # Logger Name Changed
class HeartFChatting:
"""
管理一个连续的Focus Chat循环
@@ -83,25 +60,14 @@ class HeartFChatting:
self._message_threshold = max(10, int(30 * global_config.chat.exit_focus_threshold))
self._fatigue_triggered = False # 是否已触发疲惫退出
# 初始化观察器
self.observations: List[Observation] = []
self._register_observations()
# 根据配置文件和默认规则确定启用的处理器
self.enabled_processor_names = ["ChattingInfoProcessor"]
if global_config.focus_chat.working_memory_processor:
self.enabled_processor_names.append("WorkingMemoryProcessor")
self.processors: List[BaseProcessor] = []
self._register_default_processors()
self.loop_info: FocusLoopInfo = FocusLoopInfo(observe_id=self.stream_id)
self.action_manager = ActionManager()
self.action_planner = ActionPlanner(
log_prefix=self.log_prefix, action_manager=self.action_manager
chat_id = self.stream_id,
action_manager=self.action_manager
)
self.action_modifier = ActionModifier(action_manager=self.action_manager, chat_id=self.stream_id)
self.action_observation = ActionObservation(observe_id=self.stream_id)
self.action_observation.set_action_manager(self.action_manager)
self._processing_lock = asyncio.Lock()
@@ -130,66 +96,8 @@ class HeartFChatting:
f"{self.log_prefix} HeartFChatting 初始化完成,消息疲惫阈值: {self._message_threshold}基于exit_focus_threshold={global_config.chat.exit_focus_threshold}计算仅在auto模式下生效"
)
def _register_observations(self):
"""注册所有观察器"""
self.observations = [] # 清空已有的
for name, (observation_class, param_name) in OBSERVATION_CLASSES.items():
try:
# 检查是否需要跳过WorkingMemoryObservation
if name == "WorkingMemoryObservation":
# 如果工作记忆处理器被禁用则跳过WorkingMemoryObservation
if not global_config.focus_chat.working_memory_processor:
logger.debug(f"{self.log_prefix} 工作记忆处理器已禁用,跳过注册观察器 {name}")
continue
# 根据参数名使用正确的参数
kwargs = {param_name: self.stream_id}
observation = observation_class(**kwargs)
self.observations.append(observation)
logger.debug(f"{self.log_prefix} 注册观察器 {name}")
except Exception as e:
logger.error(f"{self.log_prefix} 观察器 {name} 构造失败: {e}")
if self.observations:
logger.info(f"{self.log_prefix} 已注册观察器: {[o.__class__.__name__ for o in self.observations]}")
else:
logger.warning(f"{self.log_prefix} 没有注册任何观察器")
def _register_default_processors(self):
"""根据 self.enabled_processor_names 注册信息处理器"""
self.processors = [] # 清空已有的
for name in self.enabled_processor_names: # 'name' is "ChattingInfoProcessor", etc.
processor_info = PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key)
if processor_info:
processor_actual_class = processor_info[0] # 获取实际的类定义
# 根据处理器类名判断构造参数
if name == "ChattingInfoProcessor":
self.processors.append(processor_actual_class())
elif name == "WorkingMemoryProcessor":
self.processors.append(processor_actual_class(subheartflow_id=self.stream_id))
else:
try:
self.processors.append(processor_actual_class()) # 尝试无参构造
logger.debug(f"{self.log_prefix} 注册处理器 {name} (尝试无参构造).")
except TypeError:
logger.error(
f"{self.log_prefix} 处理器 {name} 构造失败。它可能需要参数(如 subheartflow_id但未在注册逻辑中明确处理。"
)
else:
logger.warning(
f"{self.log_prefix} 在 PROCESSOR_CLASSES 中未找到名为 '{name}' 的处理器定义,将跳过注册。"
)
if self.processors:
logger.info(f"{self.log_prefix} 已注册处理器: {[p.__class__.__name__ for p in self.processors]}")
else:
logger.warning(f"{self.log_prefix} 没有注册任何处理器。这可能是由于配置错误或所有处理器都被禁用了。")
async def start(self):
"""检查是否需要启动主循环,如果未激活则启动。"""
logger.debug(f"{self.log_prefix} 开始启动 HeartFChatting")
# 如果循环已经激活,直接返回
if self._loop_active:
@@ -210,8 +118,6 @@ class HeartFChatting:
try:
# 等待旧任务确实被取消
await asyncio.wait_for(self._loop_task, timeout=5.0)
except (asyncio.CancelledError, asyncio.TimeoutError):
pass # 忽略取消或超时错误
except Exception as e:
logger.warning(f"{self.log_prefix} 等待旧任务取消时出错: {e}")
self._loop_task = None # 清理旧任务引用
@@ -310,14 +216,11 @@ class HeartFChatting:
logger.error(f"{self.log_prefix} 处理上下文时出错: {e}")
# 为当前循环设置错误状态,防止后续重复报错
error_loop_info = {
"loop_observation_info": {},
"loop_processor_info": {},
"loop_plan_info": {
"action_result": {
"action_type": "error",
"action_data": {},
},
"observed_messages": "",
},
"loop_action_info": {
"action_taken": False,
@@ -335,14 +238,8 @@ class HeartFChatting:
self._current_cycle_detail.set_loop_info(loop_info)
# 从observations列表中获取HFCloopObservation
hfcloop_observation = next(
(obs for obs in self.observations if isinstance(obs, HFCloopObservation)), None
)
if hfcloop_observation:
hfcloop_observation.add_loop_info(self._current_cycle_detail)
else:
logger.warning(f"{self.log_prefix} 未找到HFCloopObservation实例")
self.loop_info.add_loop_info(self._current_cycle_detail)
self._current_cycle_detail.timers = cycle_timers
@@ -391,15 +288,12 @@ class HeartFChatting:
# 如果_current_cycle_detail存在但未完成为其设置错误状态
if self._current_cycle_detail and not hasattr(self._current_cycle_detail, "end_time"):
error_loop_info = {
"loop_observation_info": {},
"loop_processor_info": {},
"loop_plan_info": {
"action_result": {
"action_type": "error",
"action_data": {},
"reasoning": f"循环处理失败: {e}",
},
"observed_messages": "",
},
"loop_action_info": {
"action_taken": False,
@@ -445,65 +339,10 @@ class HeartFChatting:
if acquired and self._processing_lock.locked():
self._processing_lock.release()
async def _process_processors(self, observations: List[Observation]) -> tuple[List[InfoBase], Dict[str, float]]:
# 记录并行任务开始时间
parallel_start_time = time.time()
logger.debug(f"{self.log_prefix} 开始信息处理器并行任务")
processor_tasks = []
task_to_name_map = {}
for processor in self.processors:
processor_name = processor.__class__.log_prefix
async def run_with_timeout(proc=processor):
return await proc.process_info(observations=observations)
task = asyncio.create_task(run_with_timeout())
processor_tasks.append(task)
task_to_name_map[task] = processor_name
logger.debug(f"{self.log_prefix} 启动处理器任务: {processor_name}")
pending_tasks = set(processor_tasks)
all_plan_info: List[InfoBase] = []
while pending_tasks:
done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED)
for task in done:
processor_name = task_to_name_map[task]
task_completed_time = time.time()
duration_since_parallel_start = task_completed_time - parallel_start_time
try:
result_list = await task
logger.debug(f"{self.log_prefix} 处理器 {processor_name} 已完成!")
if result_list is not None:
all_plan_info.extend(result_list)
else:
logger.warning(f"{self.log_prefix} 处理器 {processor_name} 返回了 None")
except Exception as e:
logger.error(
f"{self.log_prefix} 处理器 {processor_name} 执行失败,耗时 (自并行开始): {duration_since_parallel_start:.2f}秒. 错误: {e}",
exc_info=True,
)
traceback.print_exc()
return all_plan_info
async def _observe_process_plan_action_loop(self, cycle_timers: dict, thinking_id: str) -> dict:
try:
loop_start_time = time.time()
with Timer("观察", cycle_timers):
# 执行所有观察器的观察
for observation in self.observations:
await observation.observe()
loop_observation_info = {
"observations": self.observations,
}
await self.loop_info.observe()
await self.relationship_builder.build_relation()
@@ -513,37 +352,18 @@ class HeartFChatting:
try:
# 调用完整的动作修改流程
await self.action_modifier.modify_actions(
observations=self.observations,
loop_info = self.loop_info,
mode="focus",
)
await self.action_observation.observe()
self.observations.append(self.action_observation)
logger.debug(f"{self.log_prefix} 动作修改完成")
except Exception as e:
logger.error(f"{self.log_prefix} 动作修改失败: {e}")
# 继续执行,不中断流程
try:
all_plan_info = await self._process_processors(self.observations)
except Exception as e:
logger.error(f"{self.log_prefix} 信息处理器失败: {e}")
# 设置默认值以继续执行
all_plan_info = []
loop_processor_info = {
"all_plan_info": all_plan_info,
}
logger.debug(f"{self.log_prefix} 并行阶段完成准备进入规划器plan_info数量: {len(all_plan_info)}")
with Timer("规划器", cycle_timers):
plan_result = await self.action_planner.plan(all_plan_info, loop_start_time)
plan_result = await self.action_planner.plan()
loop_plan_info = {
"action_result": plan_result.get("action_result", {}),
"observed_messages": plan_result.get("observed_messages", ""),
}
action_type, action_data, reasoning = (
@@ -551,6 +371,8 @@ class HeartFChatting:
plan_result.get("action_result", {}).get("action_data", {}),
plan_result.get("action_result", {}).get("reasoning", "未提供理由"),
)
action_data["loop_start_time"] = loop_start_time
if action_type == "reply":
action_str = "回复"
@@ -559,7 +381,7 @@ class HeartFChatting:
else:
action_str = action_type
logger.debug(f"{self.log_prefix} 麦麦想要:'{action_str}'")
logger.debug(f"{self.log_prefix} 麦麦想要:'{action_str}',理由是:{reasoning}")
# 动作执行计时
with Timer("动作执行", cycle_timers):
@@ -575,8 +397,6 @@ class HeartFChatting:
}
loop_info = {
"loop_observation_info": loop_observation_info,
"loop_processor_info": loop_processor_info,
"loop_plan_info": loop_plan_info,
"loop_action_info": loop_action_info,
}
@@ -587,11 +407,8 @@ class HeartFChatting:
logger.error(f"{self.log_prefix} FOCUS聊天处理失败: {e}")
logger.error(traceback.format_exc())
return {
"loop_observation_info": {},
"loop_processor_info": {},
"loop_plan_info": {
"action_result": {"action_type": "error", "action_data": {}, "reasoning": f"处理失败: {e}"},
"observed_messages": "",
},
"loop_action_info": {"action_taken": False, "reply_text": "", "command": "", "taken_time": time.time()},
}
@@ -636,7 +453,7 @@ class HeartFChatting:
return False, "", ""
if not action_handler:
logger.warning(f"{self.log_prefix} 未能创建动作处理器: {action}, 原因: {reasoning}")
logger.warning(f"{self.log_prefix} 未能创建动作处理器: {action}")
return False, "", ""
# 处理动作并获取结果

View File

@@ -41,7 +41,6 @@ class HFCPerformanceLogger:
"action_type": cycle_data.get("action_type", "unknown"),
"total_time": cycle_data.get("total_time", 0),
"step_times": cycle_data.get("step_times", {}),
"processor_time_costs": cycle_data.get("processor_time_costs", {}), # 前处理器时间
"reasoning": cycle_data.get("reasoning", ""),
"success": cycle_data.get("success", False),
}

View File

@@ -5,7 +5,6 @@ from src.chat.message_receive.chat_stream import ChatStream
from src.chat.message_receive.message import UserInfo
from src.common.logger import get_logger
import json
import os
from typing import Dict, Any
logger = get_logger(__name__)
@@ -24,9 +23,6 @@ class CycleDetail:
self.end_time: Optional[float] = None
self.timers: Dict[str, float] = {}
# 新字段
self.loop_observation_info: Dict[str, Any] = {}
self.loop_processor_info: Dict[str, Any] = {} # 前处理器信息
self.loop_plan_info: Dict[str, Any] = {}
self.loop_action_info: Dict[str, Any] = {}
@@ -79,8 +75,6 @@ class CycleDetail:
"end_time": self.end_time,
"timers": self.timers,
"thinking_id": self.thinking_id,
"loop_observation_info": convert_to_serializable(self.loop_observation_info),
"loop_processor_info": convert_to_serializable(self.loop_processor_info),
"loop_plan_info": convert_to_serializable(self.loop_plan_info),
"loop_action_info": convert_to_serializable(self.loop_action_info),
}
@@ -100,41 +94,12 @@ class CycleDetail:
or "group"
)
# current_time_minute = time.strftime("%Y%m%d_%H%M", time.localtime())
# try:
# self.log_cycle_to_file(
# log_dir + self.prefix + f"/{current_time_minute}_cycle_" + str(self.cycle_id) + ".json"
# )
# except Exception as e:
# logger.warning(f"写入文件日志,可能是群名称包含非法字符: {e}")
def log_cycle_to_file(self, file_path: str):
"""将循环信息写入文件"""
# 如果目录不存在,则创建目
dir_name = os.path.dirname(file_path)
# 去除特殊字符,保留字母、数字、下划线、中划线和中文
dir_name = "".join(
char for char in dir_name if char.isalnum() or char in ["_", "-", "/"] or "\u4e00" <= char <= "\u9fff"
)
# print("dir_name:", dir_name)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# 写入文件
file_path = os.path.join(dir_name, os.path.basename(file_path))
# print("file_path:", file_path)
with open(file_path, "a", encoding="utf-8") as f:
f.write(json.dumps(self.to_dict(), ensure_ascii=False) + "\n")
def set_thinking_id(self, thinking_id: str):
"""设置思考消息ID"""
self.thinking_id = thinking_id
def set_loop_info(self, loop_info: Dict[str, Any]):
"""设置循环信息"""
self.loop_observation_info = loop_info["loop_observation_info"]
self.loop_processor_info = loop_info["loop_processor_info"]
self.loop_plan_info = loop_info["loop_plan_info"]
self.loop_action_info = loop_info["loop_action_info"]

View File

@@ -20,7 +20,7 @@ class HFCVersionManager:
"""HFC版本号管理器"""
# 默认版本号
DEFAULT_VERSION = "v5.0.0"
DEFAULT_VERSION = "v6.0.0"
# 当前运行时版本号
_current_version: Optional[str] = None

View File

@@ -1,83 +0,0 @@
from typing import Dict, Optional, Any, List
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class ActionInfo(InfoBase):
"""动作信息类
用于管理和记录动作的变更信息,包括需要添加或移除的动作。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "action"
Data Fields:
add_actions (List[str]): 需要添加的动作列表
remove_actions (List[str]): 需要移除的动作列表
reason (str): 变更原因说明
"""
type: str = "action"
def get_type(self) -> str:
"""获取信息类型"""
return self.type
def get_data(self) -> Dict[str, Any]:
"""获取信息数据"""
return self.data
def set_action_changes(self, action_changes: Dict[str, List[str]]) -> None:
"""设置动作变更信息
Args:
action_changes (Dict[str, List[str]]): 包含要增加和删除的动作列表
{
"add": ["action1", "action2"],
"remove": ["action3"]
}
"""
self.data["add_actions"] = action_changes.get("add", [])
self.data["remove_actions"] = action_changes.get("remove", [])
def set_reason(self, reason: str) -> None:
"""设置变更原因
Args:
reason (str): 动作变更的原因说明
"""
self.data["reason"] = reason
def get_add_actions(self) -> List[str]:
"""获取需要添加的动作列表
Returns:
List[str]: 需要添加的动作列表
"""
return self.data.get("add_actions", [])
def get_remove_actions(self) -> List[str]:
"""获取需要移除的动作列表
Returns:
List[str]: 需要移除的动作列表
"""
return self.data.get("remove_actions", [])
def get_reason(self) -> Optional[str]:
"""获取变更原因
Returns:
Optional[str]: 动作变更的原因说明,如果未设置则返回 None
"""
return self.data.get("reason")
def has_changes(self) -> bool:
"""检查是否有动作变更
Returns:
bool: 如果有任何动作需要添加或移除则返回True
"""
return bool(self.get_add_actions() or self.get_remove_actions())

View File

@@ -1,157 +0,0 @@
from typing import Dict, Optional, Any
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class CycleInfo(InfoBase):
"""循环信息类
用于记录和管理心跳循环的相关信息包括循环ID、时间信息、动作信息等。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "cycle"
Data Fields:
cycle_id (str): 当前循环的唯一标识符
start_time (str): 循环开始的时间
end_time (str): 循环结束的时间
action (str): 在循环中采取的动作
action_data (Dict[str, Any]): 动作相关的详细数据
reason (str): 触发循环的原因
observe_info (str): 当前的回复信息
"""
type: str = "cycle"
def get_type(self) -> str:
"""获取信息类型"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取信息数据"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def set_cycle_id(self, cycle_id: str) -> None:
"""设置循环ID
Args:
cycle_id (str): 循环的唯一标识符
"""
self.data["cycle_id"] = cycle_id
def set_start_time(self, start_time: str) -> None:
"""设置开始时间
Args:
start_time (str): 循环开始的时间,建议使用标准时间格式
"""
self.data["start_time"] = start_time
def set_end_time(self, end_time: str) -> None:
"""设置结束时间
Args:
end_time (str): 循环结束的时间,建议使用标准时间格式
"""
self.data["end_time"] = end_time
def set_action(self, action: str) -> None:
"""设置采取的动作
Args:
action (str): 在循环中执行的动作名称
"""
self.data["action"] = action
def set_action_data(self, action_data: Dict[str, Any]) -> None:
"""设置动作数据
Args:
action_data (Dict[str, Any]): 动作相关的详细数据,将被转换为字符串存储
"""
self.data["action_data"] = str(action_data)
def set_reason(self, reason: str) -> None:
"""设置原因
Args:
reason (str): 触发循环的原因说明
"""
self.data["reason"] = reason
def set_observe_info(self, observe_info: str) -> None:
"""设置回复信息
Args:
observe_info (str): 当前的回复信息
"""
self.data["observe_info"] = observe_info
def get_cycle_id(self) -> Optional[str]:
"""获取循环ID
Returns:
Optional[str]: 循环的唯一标识符,如果未设置则返回 None
"""
return self.get_info("cycle_id")
def get_start_time(self) -> Optional[str]:
"""获取开始时间
Returns:
Optional[str]: 循环开始的时间,如果未设置则返回 None
"""
return self.get_info("start_time")
def get_end_time(self) -> Optional[str]:
"""获取结束时间
Returns:
Optional[str]: 循环结束的时间,如果未设置则返回 None
"""
return self.get_info("end_time")
def get_action(self) -> Optional[str]:
"""获取采取的动作
Returns:
Optional[str]: 在循环中执行的动作名称,如果未设置则返回 None
"""
return self.get_info("action")
def get_action_data(self) -> Optional[str]:
"""获取动作数据
Returns:
Optional[str]: 动作相关的详细数据(字符串形式),如果未设置则返回 None
"""
return self.get_info("action_data")
def get_reason(self) -> Optional[str]:
"""获取原因
Returns:
Optional[str]: 触发循环的原因说明,如果未设置则返回 None
"""
return self.get_info("reason")
def get_observe_info(self) -> Optional[str]:
"""获取回复信息
Returns:
Optional[str]: 当前的回复信息,如果未设置则返回 None
"""
return self.get_info("observe_info")

View File

@@ -1,69 +0,0 @@
from typing import Dict, Optional, Any, List
from dataclasses import dataclass, field
@dataclass
class InfoBase:
"""信息基类
这是一个基础信息类,用于存储和管理各种类型的信息数据。
所有具体的信息类都应该继承自这个基类。
Attributes:
type (str): 信息类型标识符,默认为 "base"
data (Dict[str, Union[str, Dict, list]]): 存储具体信息数据的字典,
支持存储字符串、字典、列表等嵌套数据结构
"""
type: str = "base"
data: Dict[str, Any] = field(default_factory=dict)
processed_info: str = ""
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, Any]:
"""获取所有信息数据
Returns:
Dict[str, Any]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[Any]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[Any]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def get_info_list(self, key: str) -> List[Any]:
"""获取特定属性的信息列表
Args:
key: 要获取的属性键名
Returns:
List[Any]: 属性值列表,如果键不存在则返回空列表
"""
value = self.data.get(key)
if isinstance(value, list):
return value
return []
def get_processed_info(self) -> str:
"""获取处理后的信息
Returns:
str: 处理后的信息字符串
"""
return self.processed_info

View File

@@ -1,165 +0,0 @@
from typing import Dict, Optional
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class ObsInfo(InfoBase):
"""OBS信息类
用于记录和管理OBS相关的信息包括说话消息、截断后的说话消息和聊天类型。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "obs"
Data Fields:
talking_message (str): 说话消息内容
talking_message_str_truncate (str): 截断后的说话消息内容
talking_message_str_short (str): 简短版本的说话消息内容(使用最新一半消息)
talking_message_str_truncate_short (str): 截断简短版本的说话消息内容(使用最新一半消息)
chat_type (str): 聊天类型,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
type: str = "obs"
def set_talking_message(self, message: str) -> None:
"""设置说话消息
Args:
message (str): 说话消息内容
"""
self.data["talking_message"] = message
def set_talking_message_str_truncate(self, message: str) -> None:
"""设置截断后的说话消息
Args:
message (str): 截断后的说话消息内容
"""
self.data["talking_message_str_truncate"] = message
def set_talking_message_str_short(self, message: str) -> None:
"""设置简短版本的说话消息
Args:
message (str): 简短版本的说话消息内容
"""
self.data["talking_message_str_short"] = message
def set_talking_message_str_truncate_short(self, message: str) -> None:
"""设置截断简短版本的说话消息
Args:
message (str): 截断简短版本的说话消息内容
"""
self.data["talking_message_str_truncate_short"] = message
def set_previous_chat_info(self, message: str) -> None:
"""设置之前聊天信息
Args:
message (str): 之前聊天信息内容
"""
self.data["previous_chat_info"] = message
def set_chat_type(self, chat_type: str) -> None:
"""设置聊天类型
Args:
chat_type (str): 聊天类型,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
if chat_type not in ["private", "group", "other"]:
chat_type = "other"
self.data["chat_type"] = chat_type
def set_chat_target(self, chat_target: str) -> None:
"""设置聊天目标
Args:
chat_target (str): 聊天目标,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
self.data["chat_target"] = chat_target
def set_chat_id(self, chat_id: str) -> None:
"""设置聊天ID
Args:
chat_id (str): 聊天ID
"""
self.data["chat_id"] = chat_id
def get_chat_id(self) -> Optional[str]:
"""获取聊天ID
Returns:
Optional[str]: 聊天ID如果未设置则返回 None
"""
return self.get_info("chat_id")
def get_talking_message(self) -> Optional[str]:
"""获取说话消息
Returns:
Optional[str]: 说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message")
def get_talking_message_str_truncate(self) -> Optional[str]:
"""获取截断后的说话消息
Returns:
Optional[str]: 截断后的说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message_str_truncate")
def get_talking_message_str_short(self) -> Optional[str]:
"""获取简短版本的说话消息
Returns:
Optional[str]: 简短版本的说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message_str_short")
def get_talking_message_str_truncate_short(self) -> Optional[str]:
"""获取截断简短版本的说话消息
Returns:
Optional[str]: 截断简短版本的说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message_str_truncate_short")
def get_chat_type(self) -> str:
"""获取聊天类型
Returns:
str: 聊天类型,默认为 "other"
"""
return self.get_info("chat_type") or "other"
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取所有信息数据
Returns:
Dict[str, str]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[str]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)

View File

@@ -1,86 +0,0 @@
from typing import Dict, Optional, List
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class WorkingMemoryInfo(InfoBase):
type: str = "workingmemory"
processed_info: str = ""
def set_talking_message(self, message: str) -> None:
"""设置说话消息
Args:
message (str): 说话消息内容
"""
self.data["talking_message"] = message
def set_working_memory(self, working_memory: List[str]) -> None:
"""设置工作记忆列表
Args:
working_memory (List[str]): 工作记忆内容列表
"""
self.data["working_memory"] = working_memory
def add_working_memory(self, working_memory: str) -> None:
"""添加一条工作记忆
Args:
working_memory (str): 工作记忆内容,格式为"记忆要点:xxx"
"""
working_memory_list = self.data.get("working_memory", [])
working_memory_list.append(working_memory)
self.data["working_memory"] = working_memory_list
def get_working_memory(self) -> List[str]:
"""获取所有工作记忆
Returns:
List[str]: 工作记忆内容列表,每条记忆格式为"记忆要点:xxx"
"""
return self.data.get("working_memory", [])
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, List[str]]:
"""获取所有信息数据
Returns:
Dict[str, List[str]]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[List[str]]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[List[str]]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def get_processed_info(self) -> str:
"""获取处理后的信息
Returns:
str: 处理后的信息数据,所有记忆要点按行拼接
"""
all_memory = self.get_working_memory()
memory_str = ""
for memory in all_memory:
memory_str += f"{memory}\n"
self.processed_info = memory_str
return self.processed_info

View File

@@ -1,51 +0,0 @@
from abc import ABC, abstractmethod
from typing import List, Any
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.observation.observation import Observation
from src.common.logger import get_logger
logger = get_logger("base_processor")
class BaseProcessor(ABC):
"""信息处理器基类
所有具体的信息处理器都应该继承这个基类并实现process_info方法。
支持处理InfoBase和Observation类型的输入。
"""
log_prefix = "Base信息处理器"
@abstractmethod
def __init__(self):
"""初始化处理器"""
@abstractmethod
async def process_info(
self,
observations: List[Observation] = None,
**kwargs: Any,
) -> List[InfoBase]:
"""处理信息对象的抽象方法
Args:
infos: InfoBase对象列表
observations: 可选的Observation对象列表
**kwargs: 其他可选参数
Returns:
List[InfoBase]: 处理后的InfoBase实例列表
"""
pass
def _create_processed_item(self, info_type: str, info_data: Any) -> dict:
"""创建处理后的信息项
Args:
info_type: 信息类型
info_data: 信息数据
Returns:
dict: 处理后的信息项
"""
return {"type": info_type, "id": f"info_{info_type}", "content": info_data, "ttl": 3}

View File

@@ -1,142 +0,0 @@
from typing import List, Any
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.observation.observation import Observation
from src.chat.focus_chat.info.info_base import InfoBase
from .base_processor import BaseProcessor
from src.common.logger import get_logger
from src.chat.focus_chat.observation.chatting_observation import ChattingObservation
from datetime import datetime
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
logger = get_logger("processor")
class ChattingInfoProcessor(BaseProcessor):
"""观察处理器
用于处理Observation对象将其转换为ObsInfo对象。
"""
log_prefix = "聊天信息处理"
def __init__(self):
"""初始化观察处理器"""
super().__init__()
# TODO: API-Adapter修改标记
self.model_summary = LLMRequest(
model=global_config.model.utils_small,
temperature=0.7,
request_type="focus.observation.chat",
)
async def process_info(
self,
observations: List[Observation] = None,
**kwargs: Any,
) -> List[InfoBase]:
"""处理Observation对象
Args:
infos: InfoBase对象列表
observations: 可选的Observation对象列表
**kwargs: 其他可选参数
Returns:
List[InfoBase]: 处理后的ObsInfo实例列表
"""
# print(f"observations: {observations}")
processed_infos = []
# 处理Observation对象
if observations:
for obs in observations:
# print(f"obs: {obs}")
if isinstance(obs, ChattingObservation):
obs_info = ObsInfo()
# 设置聊天ID
if hasattr(obs, "chat_id"):
obs_info.set_chat_id(obs.chat_id)
# 设置说话消息
if hasattr(obs, "talking_message_str"):
# print(f"设置说话消息obs.talking_message_str: {obs.talking_message_str}")
obs_info.set_talking_message(obs.talking_message_str)
# 设置截断后的说话消息
if hasattr(obs, "talking_message_str_truncate"):
# print(f"设置截断后的说话消息obs.talking_message_str_truncate: {obs.talking_message_str_truncate}")
obs_info.set_talking_message_str_truncate(obs.talking_message_str_truncate)
# 设置简短版本的说话消息
if hasattr(obs, "talking_message_str_short"):
obs_info.set_talking_message_str_short(obs.talking_message_str_short)
# 设置截断简短版本的说话消息
if hasattr(obs, "talking_message_str_truncate_short"):
obs_info.set_talking_message_str_truncate_short(obs.talking_message_str_truncate_short)
if hasattr(obs, "mid_memory_info"):
# print(f"设置之前聊天信息obs.mid_memory_info: {obs.mid_memory_info}")
obs_info.set_previous_chat_info(obs.mid_memory_info)
# 设置聊天类型
is_group_chat = obs.is_group_chat
if is_group_chat:
chat_type = "group"
else:
chat_type = "private"
if hasattr(obs, "chat_target_info") and obs.chat_target_info:
obs_info.set_chat_target(obs.chat_target_info.get("person_name", "某人"))
obs_info.set_chat_type(chat_type)
# logger.debug(f"聊天信息处理器处理后的信息: {obs_info}")
processed_infos.append(obs_info)
return processed_infos
async def chat_compress(self, obs: ChattingObservation):
log_msg = ""
if obs.compressor_prompt:
summary = ""
try:
summary_result, _ = await self.model_summary.generate_response_async(obs.compressor_prompt)
summary = "没有主题的闲聊"
if summary_result:
summary = summary_result
except Exception as e:
log_msg = f"总结主题失败 for chat {obs.chat_id}: {e}"
logger.error(log_msg)
else:
log_msg = f"chat_compress 完成 for chat {obs.chat_id}, summary: {summary}"
logger.info(log_msg)
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": obs.oldest_messages, # 存储原始消息对象
"readable_messages": obs.oldest_messages_str,
# "timestamps": oldest_timestamps,
"chat_id": obs.chat_id,
"created_at": datetime.now().timestamp(),
}
obs.mid_memories.append(mid_memory)
if len(obs.mid_memories) > obs.max_mid_memory_len:
obs.mid_memories.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概述是:\n"
for mid_memory_item in obs.mid_memories: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += (
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
)
obs.mid_memory_info = mid_memory_str
obs.compressor_prompt = ""
obs.oldest_messages = []
obs.oldest_messages_str = ""
return log_msg

View File

@@ -1,46 +0,0 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger import get_logger
from src.chat.planner_actions.action_manager import ActionManager
logger = get_logger("observation")
# 特殊的观察,专门用于观察动作
# 所有观察的基类
class ActionObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.action_manager: ActionManager = None
self.all_actions = {}
self.all_using_actions = {}
def get_observe_info(self):
return self.observe_info
def set_action_manager(self, action_manager: ActionManager):
self.action_manager = action_manager
self.all_actions = self.action_manager.get_registered_actions()
async def observe(self):
action_info_block = ""
self.all_using_actions = self.action_manager.get_using_actions()
for action_name, action_info in self.all_using_actions.items():
action_info_block += f"\n{action_name}: {action_info.get('description', '')}"
action_info_block += "\n注意,除了上面动作选项之外,你在群聊里不能做其他任何事情,这是你能力的边界\n"
self.observe_info = action_info_block
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
return {
"observe_info": self.observe_info,
"observe_id": self.observe_id,
"last_observe_time": self.last_observe_time,
"all_actions": self.all_actions,
"all_using_actions": self.all_using_actions,
}

View File

@@ -1,183 +0,0 @@
from datetime import datetime
from src.config.config import global_config
from src.chat.utils.chat_message_builder import (
get_raw_msg_before_timestamp_with_chat,
build_readable_messages,
get_raw_msg_by_timestamp_with_chat,
num_new_messages_since,
get_person_id_list,
)
from src.chat.utils.prompt_builder import global_prompt_manager, Prompt
from src.chat.focus_chat.observation.observation import Observation
from src.common.logger import get_logger
from src.chat.utils.utils import get_chat_type_and_target_info
logger = get_logger("observation")
# 定义提示模板
Prompt(
"""这是{chat_type_description},请总结以下聊天记录的主题:
{chat_logs}
请概括这段聊天记录的主题和主要内容
主题简短的概括包括时间人物和事件不要超过20个字
内容具体的信息内容包括人物、事件和信息不要超过200个字不要分点。
请用json格式返回格式如下
{{
"theme": "主题,例如 2025-06-14 10:00:00 群聊 麦麦 和 网友 讨论了 游戏 的话题",
"content": "内容,可以是对聊天记录的概括,也可以是聊天记录的详细内容"
}}
""",
"chat_summary_prompt",
)
class ChattingObservation(Observation):
def __init__(self, chat_id):
super().__init__(chat_id)
self.chat_id = chat_id
self.platform = "qq"
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_id)
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.talking_message_str_short = ""
self.talking_message_str_truncate_short = ""
self.name = global_config.bot.nickname
self.nick_name = global_config.bot.alias_names
self.max_now_obs_len = global_config.chat.max_context_size
self.overlap_len = global_config.focus_chat.compressed_length
self.person_list = []
self.compressor_prompt = ""
self.oldest_messages = []
self.oldest_messages_str = ""
self.last_observe_time = datetime.now().timestamp()
initial_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 10)
initial_messages_short = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 5)
self.last_observe_time = initial_messages[-1]["time"] if initial_messages else self.last_observe_time
self.talking_message = initial_messages
self.talking_message_short = initial_messages_short
self.talking_message_str = build_readable_messages(self.talking_message, show_actions=True)
self.talking_message_str_truncate = build_readable_messages(
self.talking_message, show_actions=True, truncate=True
)
self.talking_message_str_short = build_readable_messages(self.talking_message_short, show_actions=True)
self.talking_message_str_truncate_short = build_readable_messages(
self.talking_message_short, show_actions=True, truncate=True
)
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
return {
"chat_id": self.chat_id,
"platform": self.platform,
"is_group_chat": self.is_group_chat,
"chat_target_info": self.chat_target_info,
"talking_message_str": self.talking_message_str,
"talking_message_str_truncate": self.talking_message_str_truncate,
"talking_message_str_short": self.talking_message_str_short,
"talking_message_str_truncate_short": self.talking_message_str_truncate_short,
"name": self.name,
"nick_name": self.nick_name,
"last_observe_time": self.last_observe_time,
}
def get_observe_info(self, ids=None):
return self.talking_message_str
async def observe(self):
# 自上一次观察的新消息
new_messages_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=self.last_observe_time,
timestamp_end=datetime.now().timestamp(),
limit=self.max_now_obs_len,
limit_mode="latest",
)
# print(f"new_messages_list: {new_messages_list}")
last_obs_time_mark = self.last_observe_time
if new_messages_list:
self.last_observe_time = new_messages_list[-1]["time"]
self.talking_message.extend(new_messages_list)
if len(self.talking_message) > self.max_now_obs_len:
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:]
# 构建压缩提示
oldest_messages_str = build_readable_messages(
messages=oldest_messages, timestamp_mode="normal_no_YMD", read_mark=0, show_actions=True
)
# 根据聊天类型选择提示模板
prompt_template_name = "chat_summary_prompt"
if self.is_group_chat:
chat_type_description = "qq群聊的聊天记录"
else:
chat_target_name = "对方"
if self.chat_target_info:
chat_target_name = (
self.chat_target_info.get("person_name")
or self.chat_target_info.get("user_nickname")
or chat_target_name
)
chat_type_description = f"你和{chat_target_name}的私聊记录"
prompt = await global_prompt_manager.format_prompt(
prompt_template_name,
chat_type_description=chat_type_description,
chat_logs=oldest_messages_str,
)
self.compressor_prompt = prompt
# 构建当前消息
self.talking_message_str = build_readable_messages(
messages=self.talking_message,
timestamp_mode="lite",
read_mark=last_obs_time_mark,
show_actions=True,
)
self.talking_message_str_truncate = build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal_no_YMD",
read_mark=last_obs_time_mark,
truncate=True,
show_actions=True,
)
# 构建简短版本 - 使用最新一半的消息
half_count = len(self.talking_message) // 2
recent_messages = self.talking_message[-half_count:] if half_count > 0 else self.talking_message
self.talking_message_str_short = build_readable_messages(
messages=recent_messages,
timestamp_mode="lite",
read_mark=last_obs_time_mark,
show_actions=True,
)
self.talking_message_str_truncate_short = build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
read_mark=last_obs_time_mark,
truncate=True,
show_actions=True,
)
self.person_list = await get_person_id_list(self.talking_message)
# logger.debug(
# f"Chat {self.chat_id} - 现在聊天内容:{self.talking_message_str}"
# )
async def has_new_messages_since(self, timestamp: float) -> bool:
"""检查指定时间戳之后是否有新消息"""
count = num_new_messages_since(chat_id=self.chat_id, timestamp_start=timestamp)
return count > 0

View File

@@ -1,25 +0,0 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger import get_logger
logger = get_logger("observation")
# 所有观察的基类
class Observation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
return {
"observe_info": self.observe_info,
"observe_id": self.observe_id,
"last_observe_time": self.last_observe_time,
}
async def observe(self):
pass

View File

@@ -1,34 +0,0 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger import get_logger
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
from typing import List
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class WorkingMemoryObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp()
self.working_memory = WorkingMemory(chat_id=observe_id)
self.retrieved_working_memory = []
def get_observe_info(self):
return self.working_memory
def add_retrieved_working_memory(self, retrieved_working_memory: List[MemoryItem]):
self.retrieved_working_memory.append(retrieved_working_memory)
def get_retrieved_working_memory(self):
return self.retrieved_working_memory
async def observe(self):
pass

View File

@@ -1,173 +0,0 @@
import asyncio
import traceback
from typing import Optional, Coroutine, Callable, Any, List
from src.common.logger import get_logger
from src.chat.heart_flow.subheartflow_manager import SubHeartflowManager
from src.config.config import global_config
logger = get_logger("background_tasks")
# 新增私聊激活检查间隔
PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS = 5 # 与兴趣评估类似设为5秒
CLEANUP_INTERVAL_SECONDS = 1200
async def _run_periodic_loop(
task_name: str, interval: int, task_func: Callable[..., Coroutine[Any, Any, None]], **kwargs
):
"""周期性任务主循环"""
while True:
start_time = asyncio.get_event_loop().time()
# logger.debug(f"开始执行后台任务: {task_name}")
try:
await task_func(**kwargs) # 执行实际任务
except asyncio.CancelledError:
logger.info(f"任务 {task_name} 已取消")
break
except Exception as e:
logger.error(f"任务 {task_name} 执行出错: {e}")
logger.error(traceback.format_exc())
# 计算并执行间隔等待
elapsed = asyncio.get_event_loop().time() - start_time
sleep_time = max(0, interval - elapsed)
# if sleep_time < 0.1: # 任务超时处理, DEBUG 时可能干扰断点
# logger.warning(f"任务 {task_name} 超时执行 ({elapsed:.2f}s > {interval}s)")
await asyncio.sleep(sleep_time)
logger.debug(f"任务循环结束: {task_name}") # 调整日志信息
class BackgroundTaskManager:
"""管理 Heartflow 的后台周期性任务。"""
def __init__(
self,
subheartflow_manager: SubHeartflowManager,
):
self.subheartflow_manager = subheartflow_manager
# Task references
self._cleanup_task: Optional[asyncio.Task] = None
self._hf_judge_state_update_task: Optional[asyncio.Task] = None
self._private_chat_activation_task: Optional[asyncio.Task] = None # 新增私聊激活任务引用
self._tasks: List[Optional[asyncio.Task]] = [] # Keep track of all tasks
async def start_tasks(self):
"""启动所有后台任务
功能说明:
- 启动核心后台任务: 状态更新、清理、日志记录、兴趣评估和随机停用
- 每个任务启动前检查是否已在运行
- 将任务引用保存到任务列表
"""
task_configs = []
# 根据 chat_mode 条件添加其他任务
if not (global_config.chat.chat_mode == "normal"):
task_configs.extend(
[
(
self._run_cleanup_cycle,
"info",
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
"_cleanup_task",
),
# 新增私聊激活任务配置
(
# Use lambda to pass the interval to the runner function
lambda: self._run_private_chat_activation_cycle(PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS),
"debug",
f"私聊激活检查任务已启动 间隔:{PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS}s",
"_private_chat_activation_task",
),
]
)
# 统一启动所有任务
for task_func, log_level, log_msg, task_attr_name in task_configs:
# 检查任务变量是否存在且未完成
current_task_var = getattr(self, task_attr_name)
if current_task_var is None or current_task_var.done():
new_task = asyncio.create_task(task_func())
setattr(self, task_attr_name, new_task) # 更新任务变量
if new_task not in self._tasks: # 避免重复添加
self._tasks.append(new_task)
# 根据配置记录不同级别的日志
getattr(logger, log_level)(log_msg)
else:
logger.warning(f"{task_attr_name}任务已在运行")
async def stop_tasks(self):
"""停止所有后台任务。
该方法会:
1. 遍历所有后台任务并取消未完成的任务
2. 等待所有取消操作完成
3. 清空任务列表
"""
logger.info("正在停止所有后台任务...")
cancelled_count = 0
# 第一步:取消所有运行中的任务
for task in self._tasks:
if task and not task.done():
task.cancel() # 发送取消请求
cancelled_count += 1
# 第二步:处理取消结果
if cancelled_count > 0:
logger.debug(f"正在等待{cancelled_count}个任务完成取消...")
# 使用gather等待所有取消操作完成忽略异常
await asyncio.gather(*[t for t in self._tasks if t and t.cancelled()], return_exceptions=True)
logger.info(f"成功取消{cancelled_count}个后台任务")
else:
logger.info("没有需要取消的后台任务")
# 第三步:清空任务列表
self._tasks = [] # 重置任务列表
# 状态转换处理
async def _perform_cleanup_work(self):
"""执行子心流清理任务
1. 获取需要清理的不活跃子心流列表
2. 逐个停止这些子心流
3. 记录清理结果
"""
# 获取需要清理的子心流列表(包含ID和原因)
flows_to_stop = self.subheartflow_manager.get_inactive_subheartflows()
if not flows_to_stop:
return # 没有需要清理的子心流直接返回
logger.info(f"准备删除 {len(flows_to_stop)} 个不活跃(1h)子心流")
stopped_count = 0
# 逐个停止子心流
for flow_id in flows_to_stop:
success = await self.subheartflow_manager.delete_subflow(flow_id)
if success:
stopped_count += 1
logger.debug(f"[清理任务] 已停止子心流 {flow_id}")
# 记录最终清理结果
logger.info(f"[清理任务] 清理完成, 共停止 {stopped_count}/{len(flows_to_stop)} 个子心流")
async def _run_cleanup_cycle(self):
await _run_periodic_loop(
task_name="Subflow Cleanup", interval=CLEANUP_INTERVAL_SECONDS, task_func=self._perform_cleanup_work
)
# 新增私聊激活任务运行器
async def _run_private_chat_activation_cycle(self, interval: int):
await _run_periodic_loop(
task_name="Private Chat Activation Check",
interval=interval,
task_func=self.subheartflow_manager.sbhf_absent_private_into_focus,
)

View File

@@ -1,84 +1,56 @@
from src.chat.heart_flow.sub_heartflow import SubHeartflow, ChatState
from src.common.logger import get_logger
from typing import Any, Optional, List
from src.chat.heart_flow.subheartflow_manager import SubHeartflowManager
from src.chat.heart_flow.background_tasks import BackgroundTaskManager # Import BackgroundTaskManager
from typing import Any, Optional
from typing import Dict
from src.chat.message_receive.chat_stream import get_chat_manager
logger = get_logger("heartflow")
class Heartflow:
"""主心流协调器,负责初始化并协调各个子系统:
- 状态管理 (MaiState)
- 子心流管理 (SubHeartflow)
- 后台任务 (BackgroundTaskManager)
"""
"""主心流协调器,负责初始化并协调聊天"""
def __init__(self):
# 子心流管理 (在初始化时传入 current_state)
self.subheartflow_manager: SubHeartflowManager = SubHeartflowManager()
# 后台任务管理器 (整合所有定时任务)
self.background_task_manager: BackgroundTaskManager = BackgroundTaskManager(
subheartflow_manager=self.subheartflow_manager,
)
self.subheartflows: Dict[Any, "SubHeartflow"] = {}
async def get_or_create_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
"""获取或创建一个新的SubHeartflow实例 - 委托给 SubHeartflowManager"""
# 不再需要传入 self.current_state
return await self.subheartflow_manager.get_or_create_subheartflow(subheartflow_id)
"""获取或创建一个新的SubHeartflow实例"""
if subheartflow_id in self.subheartflows:
subflow = self.subheartflows.get(subheartflow_id)
if subflow:
return subflow
try:
new_subflow = SubHeartflow(
subheartflow_id,
)
await new_subflow.initialize()
# 注册子心流
self.subheartflows[subheartflow_id] = new_subflow
heartflow_name = get_chat_manager().get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"[{heartflow_name}] 开始接收消息")
return new_subflow
except Exception as e:
logger.error(f"创建子心流 {subheartflow_id} 失败: {e}", exc_info=True)
return None
async def force_change_subheartflow_status(self, subheartflow_id: str, status: ChatState) -> None:
"""强制改变子心流的状态"""
# 这里的 message 是可选的,可能是一个消息对象,也可能是其他类型的数据
return await self.subheartflow_manager.force_change_state(subheartflow_id, status)
async def api_get_all_states(self):
"""获取所有状态"""
return await self.interest_logger.api_get_all_states()
async def api_get_subheartflow_cycle_info(self, subheartflow_id: str, history_len: int) -> Optional[dict]:
"""获取子心流的循环信息"""
subheartflow = await self.subheartflow_manager.get_or_create_subheartflow(subheartflow_id)
if not subheartflow:
logger.warning(f"尝试获取不存在的子心流 {subheartflow_id} 的周期信息")
return None
heartfc_instance = subheartflow.heart_fc_instance
if not heartfc_instance:
logger.warning(f"子心流 {subheartflow_id} 没有心流实例,无法获取周期信息")
return None
return heartfc_instance.get_cycle_history(last_n=history_len)
async def api_get_normal_chat_replies(self, subheartflow_id: str, limit: int = 10) -> Optional[List[dict]]:
"""获取子心流的NormalChat回复记录
Args:
subheartflow_id: 子心流ID
limit: 最大返回数量默认10条
Returns:
Optional[List[dict]]: 回复记录列表如果子心流不存在则返回None
"""
subheartflow = await self.subheartflow_manager.get_or_create_subheartflow(subheartflow_id)
if not subheartflow:
logger.warning(f"尝试获取不存在的子心流 {subheartflow_id} 的NormalChat回复记录")
return None
return subheartflow.get_normal_chat_recent_replies(limit)
async def heartflow_start_working(self):
"""启动后台任务"""
await self.background_task_manager.start_tasks()
logger.info("[Heartflow] 后台任务已启动")
# 根本不会用到这个函数吧,那样麦麦直接死了
async def stop_working(self):
"""停止所有任务和子心流"""
logger.info("[Heartflow] 正在停止任务和子心流...")
await self.background_task_manager.stop_tasks()
await self.subheartflow_manager.deactivate_all_subflows()
logger.info("[Heartflow] 所有任务和子心流已停止")
return await self.force_change_state(subheartflow_id, status)
async def force_change_state(self, subflow_id: Any, target_state: ChatState) -> bool:
"""强制改变指定子心流的状态"""
subflow = self.subheartflows.get(subflow_id)
if not subflow:
logger.warning(f"[强制状态转换]尝试转换不存在的子心流{subflow_id}{target_state.value}")
return False
await subflow.change_chat_state(target_state)
logger.info(f"[强制状态转换]子心流 {subflow_id} 已转换到 {target_state.value}")
return True
heartflow = Heartflow()

View File

@@ -10,29 +10,13 @@ from src.common.logger import get_logger
import re
import math
import traceback
from typing import Optional, Tuple
from typing import Tuple
from src.person_info.relationship_manager import get_relationship_manager
# from ..message_receive.message_buffer import message_buffer
logger = get_logger("chat")
async def _handle_error(error: Exception, context: str, message: Optional[MessageRecv] = None) -> None:
"""统一的错误处理函数
Args:
error: 捕获到的异常
context: 错误发生的上下文描述
message: 可选的消息对象,用于记录相关消息内容
"""
logger.error(f"{context}: {error}")
logger.error(traceback.format_exc())
if message and hasattr(message, "raw_message"):
logger.error(f"相关消息原始内容: {message.raw_message}")
async def _process_relationship(message: MessageRecv) -> None:
"""处理用户关系逻辑
@@ -149,4 +133,5 @@ class HeartFCMessageReceiver:
await _process_relationship(message)
except Exception as e:
await _handle_error(e, "消息处理失败", message)
logger.error(f"消息处理失败: {e}")
print(traceback.format_exc())

View File

@@ -44,10 +44,6 @@ class SubHeartflow:
# 兴趣消息集合
self.interest_dict: Dict[str, tuple[MessageRecv, float, bool]] = {}
# 活动状态管理
self.should_stop = False # 停止标志
self.task: Optional[asyncio.Task] = None # 后台任务
# focus模式退出冷却时间管理
self.last_focus_exit_time: float = 0 # 上次退出focus模式的时间
@@ -211,10 +207,6 @@ class SubHeartflow:
await asyncio.wait_for(self.heart_fc_instance.start(), timeout=15.0)
logger.info(f"{log_prefix} HeartFChatting 循环已启动。")
return True
except asyncio.TimeoutError:
logger.error(f"{log_prefix} 启动现有 HeartFChatting 循环超时")
# 超时时清理实例,准备重新创建
self.heart_fc_instance = None
except Exception as e:
logger.error(f"{log_prefix} 尝试启动现有 HeartFChatting 循环时出错: {e}")
logger.error(traceback.format_exc())
@@ -231,7 +223,6 @@ class SubHeartflow:
logger.debug(f"{log_prefix} 创建新的 HeartFChatting 实例")
self.heart_fc_instance = HeartFChatting(
chat_id=self.subheartflow_id,
# observations=self.observations,
on_stop_focus_chat=self._handle_stop_focus_chat_request,
)
@@ -241,10 +232,6 @@ class SubHeartflow:
logger.debug(f"{log_prefix} 麦麦已成功进入专注聊天模式 (新实例已启动)。")
return True
except asyncio.TimeoutError:
logger.error(f"{log_prefix} 创建或启动新 HeartFChatting 实例超时")
self.heart_fc_instance = None # 超时时清理实例
return False
except Exception as e:
logger.error(f"{log_prefix} 创建或启动 HeartFChatting 实例时出错: {e}")
logger.error(traceback.format_exc())
@@ -255,8 +242,6 @@ class SubHeartflow:
logger.error(f"{self.log_prefix} _start_heart_fc_chat 执行时出错: {e}")
logger.error(traceback.format_exc())
return False
finally:
logger.debug(f"{self.log_prefix} _start_heart_fc_chat 完成")
async def change_chat_state(self, new_state: ChatState) -> None:
"""
@@ -312,25 +297,6 @@ class SubHeartflow:
f"{log_prefix} 尝试将状态从 {current_state.value} 变为 {new_state.value},但未成功或未执行更改。"
)
def get_normal_chat_last_speak_time(self) -> float:
if self.normal_chat_instance:
return self.normal_chat_instance.last_speak_time
return 0
def get_normal_chat_recent_replies(self, limit: int = 10) -> List[dict]:
"""获取NormalChat实例的最近回复记录
Args:
limit: 最大返回数量默认10条
Returns:
List[dict]: 最近的回复记录列表如果没有NormalChat实例则返回空列表
"""
if self.normal_chat_instance:
return self.normal_chat_instance.get_recent_replies(limit)
return []
def add_message_to_normal_chat_cache(self, message: MessageRecv, interest_value: float, is_mentioned: bool):
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
# 如果字典长度超过10删除最旧的消息
@@ -338,55 +304,6 @@ class SubHeartflow:
oldest_key = next(iter(self.interest_dict))
self.interest_dict.pop(oldest_key)
def get_normal_chat_action_manager(self):
"""获取NormalChat的ActionManager实例
Returns:
ActionManager: NormalChat的ActionManager实例如果不存在则返回None
"""
if self.normal_chat_instance:
return self.normal_chat_instance.get_action_manager()
return None
async def get_full_state(self) -> dict:
"""获取子心流的完整状态,包括兴趣、思维和聊天状态。"""
return {
"interest_state": "interest_state",
"chat_state": self.chat_state.chat_status.value,
"chat_state_changed_time": self.chat_state_changed_time,
}
async def shutdown(self):
"""安全地关闭子心流及其管理的任务"""
if self.should_stop:
logger.info(f"{self.log_prefix} 子心流已在关闭过程中。")
return
logger.info(f"{self.log_prefix} 开始关闭子心流...")
self.should_stop = True # 标记为停止,让后台任务退出
# 使用新的停止方法
await self._stop_normal_chat()
await self._stop_heart_fc_chat()
# 取消可能存在的旧后台任务 (self.task)
if self.task and not self.task.done():
logger.debug(f"{self.log_prefix} 取消子心流主任务 (Shutdown)...")
self.task.cancel()
try:
await asyncio.wait_for(self.task, timeout=1.0) # 给点时间响应取消
except asyncio.CancelledError:
logger.debug(f"{self.log_prefix} 子心流主任务已取消 (Shutdown)。")
except asyncio.TimeoutError:
logger.warning(f"{self.log_prefix} 等待子心流主任务取消超时 (Shutdown)。")
except Exception as e:
logger.error(f"{self.log_prefix} 等待子心流主任务取消时发生错误 (Shutdown): {e}")
self.task = None # 清理任务引用
self.chat_state.chat_status = ChatState.ABSENT # 状态重置为不参与
logger.info(f"{self.log_prefix} 子心流关闭完成。")
def is_in_focus_cooldown(self) -> bool:
"""检查是否在focus模式的冷却期内

View File

@@ -1,337 +0,0 @@
import asyncio
import time
from typing import Dict, Any, Optional, List
from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.heart_flow.sub_heartflow import SubHeartflow, ChatState
# 初始化日志记录器
logger = get_logger("subheartflow_manager")
# 子心流管理相关常量
INACTIVE_THRESHOLD_SECONDS = 3600 # 子心流不活跃超时时间(秒)
NORMAL_CHAT_TIMEOUT_SECONDS = 30 * 60 # 30分钟
async def _try_set_subflow_absent_internal(subflow: "SubHeartflow", log_prefix: str) -> bool:
"""
尝试将给定的子心流对象状态设置为 ABSENT (内部方法,不处理锁)。
Args:
subflow: 子心流对象。
log_prefix: 用于日志记录的前缀 (例如 "[子心流管理]""[停用]")。
Returns:
bool: 如果状态成功变为 ABSENT 或原本就是 ABSENT返回 True否则返回 False。
"""
flow_id = subflow.subheartflow_id
stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
if subflow.chat_state.chat_status != ChatState.ABSENT:
logger.debug(f"{log_prefix} 设置 {stream_name} 状态为 ABSENT")
try:
await subflow.change_chat_state(ChatState.ABSENT)
# 再次检查以确认状态已更改 (change_chat_state 内部应确保)
if subflow.chat_state.chat_status == ChatState.ABSENT:
return True
else:
logger.warning(
f"{log_prefix} 调用 change_chat_state 后,{stream_name} 状态仍为 {subflow.chat_state.chat_status.value}"
)
return False
except Exception as e:
logger.error(f"{log_prefix} 设置 {stream_name} 状态为 ABSENT 时失败: {e}", exc_info=True)
return False
else:
logger.debug(f"{log_prefix} {stream_name} 已是 ABSENT 状态")
return True # 已经是目标状态,视为成功
class SubHeartflowManager:
"""管理所有活跃的 SubHeartflow 实例。"""
def __init__(self):
self.subheartflows: Dict[Any, "SubHeartflow"] = {}
self._lock = asyncio.Lock() # 用于保护 self.subheartflows 的访问
async def force_change_state(self, subflow_id: Any, target_state: ChatState) -> bool:
"""强制改变指定子心流的状态"""
async with self._lock:
subflow = self.subheartflows.get(subflow_id)
if not subflow:
logger.warning(f"[强制状态转换]尝试转换不存在的子心流{subflow_id}{target_state.value}")
return False
await subflow.change_chat_state(target_state)
logger.info(f"[强制状态转换]子心流 {subflow_id} 已转换到 {target_state.value}")
return True
def get_all_subheartflows(self) -> List["SubHeartflow"]:
"""获取所有当前管理的 SubHeartflow 实例列表 (快照)。"""
return list(self.subheartflows.values())
async def get_or_create_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
"""获取或创建指定ID的子心流实例
Args:
subheartflow_id: 子心流唯一标识符
mai_states 参数已被移除,使用 self.mai_state_info
Returns:
成功返回SubHeartflow实例失败返回None
"""
async with self._lock:
# 检查是否已存在该子心流
if subheartflow_id in self.subheartflows:
subflow = self.subheartflows[subheartflow_id]
if subflow.should_stop:
logger.warning(f"尝试获取已停止的子心流 {subheartflow_id},正在重新激活")
subflow.should_stop = False # 重置停止标志
return subflow
try:
new_subflow = SubHeartflow(
subheartflow_id,
)
# 然后再进行异步初始化,此时 SubHeartflow 内部若需启动 HeartFChatting就能拿到 observation
await new_subflow.initialize()
# 注册子心流
self.subheartflows[subheartflow_id] = new_subflow
heartflow_name = get_chat_manager().get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"[{heartflow_name}] 开始接收消息")
return new_subflow
except Exception as e:
logger.error(f"创建子心流 {subheartflow_id} 失败: {e}", exc_info=True)
return None
async def sleep_subheartflow(self, subheartflow_id: Any, reason: str) -> bool:
"""停止指定的子心流并将其状态设置为 ABSENT"""
log_prefix = "[子心流管理]"
async with self._lock: # 加锁以安全访问字典
subheartflow = self.subheartflows.get(subheartflow_id)
stream_name = get_chat_manager().get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"{log_prefix} 正在停止 {stream_name}, 原因: {reason}")
# 调用内部方法处理状态变更
success = await _try_set_subflow_absent_internal(subheartflow, log_prefix)
return success
# 锁在此处自动释放
def get_inactive_subheartflows(self, max_age_seconds=INACTIVE_THRESHOLD_SECONDS):
"""识别并返回需要清理的不活跃(处于ABSENT状态超过一小时)子心流(id, 原因)"""
_current_time = time.time()
flows_to_stop = []
for subheartflow_id, subheartflow in list(self.subheartflows.items()):
state = subheartflow.chat_state.chat_status
if state != ChatState.ABSENT:
continue
subheartflow.update_last_chat_state_time()
_absent_last_time = subheartflow.chat_state_last_time
flows_to_stop.append(subheartflow_id)
return flows_to_stop
async def deactivate_all_subflows(self):
"""将所有子心流的状态更改为 ABSENT (例如主状态变为OFFLINE时调用)"""
log_prefix = "[停用]"
changed_count = 0
processed_count = 0
async with self._lock: # 获取锁以安全迭代
# 使用 list() 创建一个当前值的快照,防止在迭代时修改字典
flows_to_update = list(self.subheartflows.values())
processed_count = len(flows_to_update)
if not flows_to_update:
logger.debug(f"{log_prefix} 无活跃子心流,无需操作")
return
for subflow in flows_to_update:
# 记录原始状态,以便统计实际改变的数量
original_state_was_absent = subflow.chat_state.chat_status == ChatState.ABSENT
success = await _try_set_subflow_absent_internal(subflow, log_prefix)
# 如果成功设置为 ABSENT 且原始状态不是 ABSENT则计数
if success and not original_state_was_absent:
if subflow.chat_state.chat_status == ChatState.ABSENT:
changed_count += 1
else:
# 这种情况理论上不应发生,如果内部方法返回 True 的话
stream_name = (
get_chat_manager().get_stream_name(subflow.subheartflow_id) or subflow.subheartflow_id
)
logger.warning(f"{log_prefix} 内部方法声称成功但 {stream_name} 状态未变为 ABSENT。")
# 锁在此处自动释放
logger.info(
f"{log_prefix} 完成,共处理 {processed_count} 个子心流,成功将 {changed_count} 个非 ABSENT 子心流的状态更改为 ABSENT。"
)
# async def sbhf_normal_into_focus(self):
# """评估子心流兴趣度满足条件则提升到FOCUSED状态基于start_hfc_probability"""
# try:
# for sub_hf in list(self.subheartflows.values()):
# flow_id = sub_hf.subheartflow_id
# stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
# # 跳过已经是FOCUSED状态的子心流
# if sub_hf.chat_state.chat_status == ChatState.FOCUSED:
# continue
# if sub_hf.interest_chatting.start_hfc_probability == 0:
# continue
# else:
# logger.debug(
# f"{stream_name},现在状态: {sub_hf.chat_state.chat_status.value},进入专注概率: {sub_hf.interest_chatting.start_hfc_probability}"
# )
# if random.random() >= sub_hf.interest_chatting.start_hfc_probability:
# continue
# # 获取最新状态并执行提升
# current_subflow = self.subheartflows.get(flow_id)
# if not current_subflow:
# continue
# logger.info(
# f"{stream_name} 触发 认真水群 (概率={current_subflow.interest_chatting.start_hfc_probability:.2f})"
# )
# # 执行状态提升
# await current_subflow.change_chat_state(ChatState.FOCUSED)
# except Exception as e:
# logger.error(f"启动HFC 兴趣评估失败: {e}", exc_info=True)
async def sbhf_focus_into_normal(self, subflow_id: Any):
"""
接收来自 HeartFChatting 的请求,将特定子心流的状态转换为 NORMAL。
通常在连续多次 "no_reply" 后被调用。
对于私聊和群聊,都转换为 NORMAL。
Args:
subflow_id: 需要转换状态的子心流 ID。
"""
async with self._lock:
subflow = self.subheartflows.get(subflow_id)
if not subflow:
logger.warning(f"[状态转换请求] 尝试转换不存在的子心流 {subflow_id} 到 NORMAL")
return
stream_name = get_chat_manager().get_stream_name(subflow_id) or subflow_id
current_state = subflow.chat_state.chat_status
if current_state == ChatState.FOCUSED:
target_state = ChatState.NORMAL
log_reason = "转为NORMAL"
logger.info(
f"[状态转换请求] 接收到请求,将 {stream_name} (当前: {current_state.value}) 尝试转换为 {target_state.value} ({log_reason})"
)
try:
# 从HFC到CHAT时清空兴趣字典
subflow.interest_dict.clear()
await subflow.change_chat_state(target_state)
final_state = subflow.chat_state.chat_status
if final_state == target_state:
logger.debug(f"[状态转换请求] {stream_name} 状态已成功转换为 {final_state.value}")
else:
logger.warning(
f"[状态转换请求] 尝试将 {stream_name} 转换为 {target_state.value} 后,状态实际为 {final_state.value}"
)
except Exception as e:
logger.error(
f"[状态转换请求] 转换 {stream_name}{target_state.value} 时出错: {e}", exc_info=True
)
elif current_state == ChatState.ABSENT:
logger.debug(f"[状态转换请求] {stream_name} 处于 ABSENT 状态,尝试转为 NORMAL")
await subflow.change_chat_state(ChatState.NORMAL)
else:
logger.debug(f"[状态转换请求] {stream_name} 当前状态为 {current_state.value},无需转换")
async def delete_subflow(self, subheartflow_id: Any):
"""删除指定的子心流。"""
async with self._lock:
subflow = self.subheartflows.pop(subheartflow_id, None)
if subflow:
logger.info(f"正在删除 SubHeartflow: {subheartflow_id}...")
try:
# 调用 shutdown 方法确保资源释放
await subflow.shutdown()
logger.info(f"SubHeartflow {subheartflow_id} 已成功删除。")
except Exception as e:
logger.error(f"删除 SubHeartflow {subheartflow_id} 时出错: {e}", exc_info=True)
else:
logger.warning(f"尝试删除不存在的 SubHeartflow: {subheartflow_id}")
# --- 新增:处理私聊从 ABSENT 直接到 FOCUSED 的逻辑 --- #
async def sbhf_absent_private_into_focus(self):
"""检查 ABSENT 状态的私聊子心流是否有新活动,若有则直接转换为 FOCUSED。"""
log_prefix_task = "[私聊激活检查]"
transitioned_count = 0
checked_count = 0
async with self._lock:
# --- 筛选出所有 ABSENT 状态的私聊子心流 --- #
eligible_subflows = [
hf
for hf in self.subheartflows.values()
if hf.chat_state.chat_status == ChatState.ABSENT and not hf.is_group_chat
]
checked_count = len(eligible_subflows)
if not eligible_subflows:
# logger.debug(f"{log_prefix_task} 没有 ABSENT 状态的私聊子心流可以评估。")
return
# --- 遍历评估每个符合条件的私聊 --- #
for sub_hf in eligible_subflows:
flow_id = sub_hf.subheartflow_id
stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
log_prefix = f"[{stream_name}]({log_prefix_task})"
try:
# --- 检查是否有新活动 --- #
observation = sub_hf._get_primary_observation() # 获取主要观察者
is_active = False
if observation:
# 检查自上次状态变为 ABSENT 后是否有新消息
# 使用 chat_state_changed_time 可能更精确
# 加一点点缓冲时间(例如 1 秒)以防时间戳完全相等
timestamp_to_check = sub_hf.chat_state_changed_time - 1
has_new = await observation.has_new_messages_since(timestamp_to_check)
if has_new:
is_active = True
logger.debug(f"{log_prefix} 检测到新消息,标记为活跃。")
else:
logger.warning(f"{log_prefix} 无法获取主要观察者来检查活动状态。")
# --- 如果活跃,则尝试转换 --- #
if is_active:
await sub_hf.change_chat_state(ChatState.FOCUSED)
# 确认转换成功
if sub_hf.chat_state.chat_status == ChatState.FOCUSED:
transitioned_count += 1
logger.info(f"{log_prefix} 成功进入 FOCUSED 状态。")
else:
logger.warning(
f"{log_prefix} 尝试进入 FOCUSED 状态失败。当前状态: {sub_hf.chat_state.chat_status.value}"
)
# else: # 不活跃,无需操作
# logger.debug(f"{log_prefix} 未检测到新活动,保持 ABSENT。")
except Exception as e:
logger.error(f"{log_prefix} 检查私聊活动或转换状态时出错: {e}", exc_info=True)
# --- 循环结束后记录总结日志 --- #
if transitioned_count > 0:
logger.debug(
f"{log_prefix_task} 完成,共检查 {checked_count} 个私聊,{transitioned_count} 个转换为 FOCUSED。"
)

View File

@@ -80,12 +80,6 @@ class MemoryActivator:
async def activate_memory_with_chat_history(self, target_message, chat_history_prompt) -> List[Dict]:
"""
激活记忆
Args:
observations: 现有的进行观察后的 观察列表
Returns:
List[Dict]: 激活的记忆列表
"""
# 如果记忆系统被禁用,直接返回空列表
if not global_config.memory.enable_memory:

View File

@@ -1,6 +1,6 @@
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.chat.message_receive.normal_message_sender import message_manager
from src.chat.message_receive.storage import MessageStorage

View File

@@ -12,7 +12,7 @@ from src.chat.utils.timer_calculator import Timer
from src.common.message_repository import count_messages
from src.chat.utils.prompt_builder import global_prompt_manager
from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet
from src.chat.message_receive.message_sender import message_manager
from src.chat.message_receive.normal_message_sender import message_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.planner_actions.action_manager import ActionManager
from src.person_info.relationship_builder_manager import relationship_builder_manager

View File

@@ -1,7 +1,6 @@
from typing import List, Optional, Any, Dict
from src.chat.focus_chat.observation.observation import Observation
from src.common.logger import get_logger
from src.chat.focus_chat.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.focus_loop_info import FocusLoopInfo
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
@@ -44,8 +43,8 @@ class ActionModifier:
async def modify_actions(
self,
loop_info = None,
mode: str = "focus",
observations: Optional[List[Observation]] = None,
message_content: str = "",
):
"""
@@ -83,13 +82,10 @@ class ActionModifier:
chat_content = chat_content + "\n" + f"现在,最新的消息是:{message_content}"
# === 第一阶段:传统观察处理 ===
if observations:
for obs in observations:
if isinstance(obs, HFCloopObservation):
# 获取适用于FOCUS模式的动作
removals_from_loop = await self.analyze_loop_actions(obs)
if removals_from_loop:
removals_s1.extend(removals_from_loop)
if loop_info:
removals_from_loop = await self.analyze_loop_actions(loop_info)
if removals_from_loop:
removals_s1.extend(removals_from_loop)
# 检查动作的关联类型
chat_context = self.chat_stream.context
@@ -466,7 +462,7 @@ class ActionModifier:
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False
async def analyze_loop_actions(self, obs: HFCloopObservation) -> List[tuple[str, str]]:
async def analyze_loop_actions(self, obs: FocusLoopInfo) -> List[tuple[str, str]]:
"""分析最近的循环内容并决定动作的移除
Returns:

View File

@@ -1,18 +1,18 @@
import json # <--- 确保导入 json
import traceback
from typing import List, Dict, Any, Optional
from typing import Dict, Any, Optional
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.info.action_info import ActionInfo
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.planner_actions.action_manager import ActionManager
from json_repair import repair_json
from src.chat.utils.utils import get_chat_type_and_target_info
from datetime import datetime
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
logger = get_logger("planner")
@@ -38,23 +38,6 @@ def init_prompt():
"simple_planner_prompt",
)
Prompt(
"""
{time_block}
{indentify_block}
你现在需要根据聊天内容选择的合适的action来参与聊天。
{chat_context_description},以下是具体的聊天内容:
{chat_content_block}
{moderation_prompt}
现在请你选择合适的action:
{action_options_text}
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
""",
"simple_planner_prompt_private",
)
Prompt(
"""
动作:{action_name}
@@ -69,8 +52,10 @@ def init_prompt():
class ActionPlanner:
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
def __init__(self, chat_id: str, action_manager: ActionManager):
self.chat_id = chat_id
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
self.action_manager = action_manager
# LLM规划器配置
self.planner_llm = LLMRequest(
@@ -82,17 +67,12 @@ class ActionPlanner:
model=global_config.model.utils_small,
request_type="focus.planner", # 用于动作规划
)
self.last_obs_time_mark = 0.0
async def plan(
self, all_plan_info: List[InfoBase],loop_start_time: float
) -> Dict[str, Any]:
async def plan(self) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
参数:
all_plan_info: 所有计划信息
running_memorys: 回忆信息
loop_start_time: 循环开始时间
"""
action = "no_reply" # 默认动作
@@ -100,42 +80,36 @@ class ActionPlanner:
action_data = {}
try:
# 获取观察信息
extra_info: list[str] = []
extra_info = []
observed_messages = []
observed_messages_str = ""
chat_type = "group"
is_group_chat = True
chat_id = None # 添加chat_id变量
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=time.time(),
limit=global_config.chat.max_context_size,
)
for info in all_plan_info:
if isinstance(info, ObsInfo):
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate_short()
chat_type = info.get_chat_type()
is_group_chat = chat_type == "group"
# 从ObsInfo中获取chat_id
chat_id = info.get_chat_id()
else:
extra_info.append(info.get_processed_info())
chat_context = build_readable_messages(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
self.last_obs_time_mark = time.time()
# 获取聊天类型和目标信息
chat_target_info = None
if chat_id:
try:
# 重新获取更准确的聊天信息
is_group_chat_updated, chat_target_info = get_chat_type_and_target_info(chat_id)
# 如果获取成功更新is_group_chat
if is_group_chat_updated is not None:
is_group_chat = is_group_chat_updated
logger.debug(
f"{self.log_prefix}获取聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}"
)
except Exception as e:
logger.warning(f"{self.log_prefix}获取聊天目标信息失败: {e}")
chat_target_info = None
try:
# 重新获取更准确的聊天信息
is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id)
logger.debug(
f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}"
)
except Exception as e:
logger.warning(f"{self.log_prefix}获取聊天目标信息失败: {e}")
chat_target_info = None
# 获取经过modify_actions处理后的最终可用动作集
# 注意动作的激活判定现在在主循环的modify_actions中完成
@@ -164,14 +138,13 @@ class ActionPlanner:
)
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"observed_messages": observed_messages,
}
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await self.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
observed_messages_str=observed_messages_str, # <-- Pass local variable
observed_messages_str=chat_context, # <-- Pass local variable
current_available_actions=current_available_actions, # <-- Pass determined actions
)
@@ -228,9 +201,6 @@ class ActionPlanner:
if key not in ["action", "reasoning"]:
action_data[key] = value
action_data["loop_start_time"] = loop_start_time
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:
logger.warning(
@@ -265,7 +235,6 @@ class ActionPlanner:
plan_result = {
"action_result": action_result,
"observed_messages": observed_messages,
"action_prompt": prompt,
}
@@ -276,7 +245,7 @@ class ActionPlanner:
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str,
current_available_actions: Dict[str, ActionInfo],
current_available_actions,
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
@@ -295,11 +264,9 @@ class ActionPlanner:
chat_content_block = "你还未开始聊天"
action_options_block = ""
# 根据聊天类型选择不同的动作prompt模板
action_template_name = "action_prompt_private" if not is_group_chat else "action_prompt"
for using_actions_name, using_actions_info in current_available_actions.items():
using_action_prompt = await global_prompt_manager.get_prompt_async(action_template_name)
if using_actions_info["parameters"]:
param_text = "\n"
@@ -314,22 +281,13 @@ class ActionPlanner:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
# 根据模板类型决定是否包含description参数
if action_template_name == "action_prompt_private":
# 私聊模板不包含description参数
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_parameters=param_text,
action_require=require_text,
)
else:
# 群聊模板包含description参数
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info["description"],
action_parameters=param_text,
action_require=require_text,
)
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info["description"],
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
@@ -347,9 +305,7 @@ class ActionPlanner:
bot_core_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
# 根据聊天类型选择不同的prompt模板
template_name = "simple_planner_prompt_private" if not is_group_chat else "simple_planner_prompt"
planner_prompt_template = await global_prompt_manager.get_prompt_async(template_name)
planner_prompt_template = await global_prompt_manager.get_prompt_async("simple_planner_prompt")
prompt = planner_prompt_template.format(
time_block=time_block,
chat_context_description=chat_context_description,

View File

@@ -9,7 +9,7 @@ from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.message_receive.uni_message_sender import HeartFCSender
from src.chat.utils.utils import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp

View File

@@ -1243,7 +1243,7 @@ class StatisticOutputTask(AsyncTask):
focus_chat_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION]:
# 获取前三个阶段(不包括执行动作)
basic_stages = ["观察", "并行调整动作、处理", "规划器"]
basic_stages = ["观察", "规划器"]
existing_basic_stages = []
for stage in basic_stages:
# 检查是否有任何聊天流在这个阶段有数据
@@ -1352,7 +1352,7 @@ class StatisticOutputTask(AsyncTask):
focus_action_stage_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_ACTION]:
# 获取所有阶段(按固定顺序)
stage_order = ["观察", "并行调整动作、处理", "规划器", "执行动作"]
stage_order = ["观察", "规划器", "执行动作"]
all_stages = []
for stage in stage_order:
if any(stage in stage_times for stage_times in stat_data[FOCUS_AVG_TIMES_BY_ACTION].values()):
@@ -1618,7 +1618,7 @@ class StatisticOutputTask(AsyncTask):
focus_version_stage_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_VERSION]:
# 基础三个阶段
basic_stages = ["观察", "并行调整动作、处理", "规划器"]
basic_stages = ["观察", "规划器"]
# 获取所有action类型用于执行时间列
all_action_types_for_exec = set()

View File

@@ -7,7 +7,6 @@ import traceback
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from typing import List
from src.chat.focus_chat.observation.working_observation import WorkingMemoryObservation
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
@@ -44,12 +43,10 @@ def init_prompt():
Prompt(memory_proces_prompt, "prompt_memory_proces")
class WorkingMemoryProcessor(BaseProcessor):
class WorkingMemoryProcessor:
log_prefix = "工作记忆"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(

View File

@@ -352,7 +352,6 @@ MODULE_COLORS = {
"heartflow_utils": "\033[38;5;219m", # 浅粉色
"sub_heartflow": "\033[38;5;207m", # 粉紫色
"subheartflow_manager": "\033[38;5;201m", # 深粉色
"observation": "\033[38;5;141m", # 紫色
"background_tasks": "\033[38;5;240m", # 灰色
"chat_message": "\033[38;5;45m", # 青色
"chat_stream": "\033[38;5;51m", # 亮青色

View File

@@ -295,20 +295,12 @@ class NormalChatConfig(ConfigBase):
class FocusChatConfig(ConfigBase):
"""专注聊天配置类"""
compressed_length: int = 5
"""心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5"""
compress_length_limit: int = 5
"""最多压缩份数,超过该数值的压缩上下文会被删除"""
think_interval: float = 1
"""思考间隔(秒)"""
consecutive_replies: float = 1
"""连续回复能力,值越高,麦麦连续回复的概率越高"""
working_memory_processor: bool = False
"""是否启用工作记忆处理器"""
@dataclass

View File

@@ -5,7 +5,7 @@ from src.chat.message_receive.chat_stream import ChatStream
from src.chat.message_receive.message import Message
from maim_message import UserInfo, Seg
from src.chat.message_receive.message import MessageSending, MessageSet
from src.chat.message_receive.message_sender import message_manager
from src.chat.message_receive.normal_message_sender import message_manager
from src.chat.message_receive.storage import MessageStorage
from src.config.config import global_config
from rich.traceback import install

View File

@@ -10,8 +10,7 @@ from src.manager.mood_manager import MoodPrintTask, MoodUpdateTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.heart_flow.heartflow import heartflow
from src.chat.message_receive.message_sender import message_manager
from src.chat.message_receive.normal_message_sender import message_manager
from src.chat.message_receive.storage import MessageStorage
from src.config.config import global_config
from src.chat.message_receive.bot import chat_bot
@@ -142,10 +141,6 @@ class MainSystem:
await message_manager.start()
logger.info("全局消息管理器启动成功")
# 启动心流系统主循环
asyncio.create_task(heartflow.heartflow_start_working())
logger.info("心流系统启动成功")
init_time = int(1000 * (time.time() - init_start_time))
logger.info(f"初始化完成,神经元放电{init_time}")
except Exception as e:

View File

@@ -17,7 +17,6 @@ from src.common.logger import get_logger
# 导入依赖
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.focus_chat.info.obs_info import ObsInfo
logger = get_logger("chat_api")
@@ -193,39 +192,6 @@ class ChatManager:
logger.error(f"[ChatAPI] 获取聊天流信息失败: {e}")
return {}
@staticmethod
def get_recent_messages_from_obs(observations: List[Any], count: int = 5) -> List[Dict[str, Any]]:
"""从观察对象获取最近的消息
Args:
observations: 观察对象列表
count: 要获取的消息数量
Returns:
List[Dict]: 消息列表,每个消息包含发送者、内容等信息
"""
messages = []
try:
if observations and len(observations) > 0:
obs = observations[0]
if hasattr(obs, "get_talking_message"):
obs: ObsInfo
raw_messages = obs.get_talking_message()
# 转换为简化格式
for msg in raw_messages[-count:]:
simple_msg = {
"sender": msg.get("sender", "未知"),
"content": msg.get("content", ""),
"timestamp": msg.get("timestamp", 0),
}
messages.append(simple_msg)
logger.debug(f"[ChatAPI] 获取到 {len(messages)} 条最近消息")
except Exception as e:
logger.error(f"[ChatAPI] 获取最近消息失败: {e}")
return messages
@staticmethod
def get_streams_summary() -> Dict[str, int]:
"""获取聊天流统计摘要

View File

@@ -28,7 +28,7 @@ from src.common.logger import get_logger
# 导入依赖
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.message_receive.uni_message_sender import HeartFCSender
from src.chat.message_receive.message import MessageSending, MessageRecv
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat
from src.person_info.person_info import get_person_info_manager

View File

@@ -44,7 +44,6 @@ class BaseAction(ABC):
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
expressor: 表达器对象
replyer: 回复器对象
chat_stream: 聊天流对象

View File

@@ -1,5 +1,5 @@
[inner]
version = "3.4.0"
version = "3.5.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
@@ -61,12 +61,15 @@ enable_relationship = true # 是否启用关系系统
relation_frequency = 1 # 关系频率麦麦构建关系的速度仅在normal_chat模式下有效
[chat] #麦麦的聊天通用设置
chat_mode = "normal" # 聊天模式 —— 普通模式normal专注模式focus自动auto在普通模式和专注模式之间自动切换
# chat_mode = "focus"
# chat_mode = "auto"
chat_mode = "normal" # 聊天模式 —— 普通模式normal专注模式focus在普通模式和专注模式之间自动切换
auto_focus_threshold = 1 # 自动切换到专注聊天的阈值,越低越容易进入专注聊天
exit_focus_threshold = 1 # 自动退出专注聊天的阈值,越低越容易退出专注聊天
# 普通模式下麦麦会针对感兴趣的消息进行回复token消耗量较低
# 专注模式下麦麦会进行主动的观察并给出回复token消耗量略高但是回复时机更准确
# 自动模式下,麦麦会根据消息内容自动切换到专注模式或普通模式
max_context_size = 18 # 上下文长度
thinking_timeout = 20 # 麦麦一次回复最长思考规划时间超过这个时间的思考会放弃往往是api反应太慢
replyer_random_probability = 0.5 # 首要replyer模型被选择的概率
talk_frequency = 1 # 麦麦回复频率,越高,麦麦回复越频繁
@@ -96,13 +99,6 @@ talk_frequency_adjust = [
# - 时间支持跨天,例如 "00:10,0.3" 表示从凌晨0:10开始使用频率0.3
# - 系统会自动将 "platform:id:type" 转换为内部的哈希chat_id进行匹配
auto_focus_threshold = 1 # 自动切换到专注聊天的阈值,越低越容易进入专注聊天
exit_focus_threshold = 1 # 自动退出专注聊天的阈值,越低越容易退出专注聊天
# 普通模式下麦麦会针对感兴趣的消息进行回复token消耗量较低
# 专注模式下麦麦会进行主动的观察和回复并给出回复token消耗量较高
# 自动模式下,麦麦会根据消息内容自动切换到专注模式或普通模式
thinking_timeout = 30 # 麦麦一次回复最长思考规划时间超过这个时间的思考会放弃往往是api反应太慢
[message_receive]
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
@@ -127,9 +123,6 @@ enable_planner = true # 是否启用动作规划器与focus_chat共享actions
[focus_chat] #专注聊天
think_interval = 3 # 思考间隔 单位秒,可以有效减少消耗
consecutive_replies = 1 # 连续回复能力,值越高,麦麦连续回复的概率越高
compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除
working_memory_processor = false # 是否启用工作记忆处理器,消耗量大
[tool]
enable_in_normal_chat = false # 是否在普通聊天中启用工具