Merge branch 'master' of https://github.com/MaiBot-Plus/MaiMbot-Pro-Max
This commit is contained in:
@@ -26,6 +26,8 @@ class WakeUpManager:
|
||||
self.angry_start_time = 0.0 # 愤怒状态开始时间
|
||||
self.last_decay_time = time.time() # 上次衰减时间
|
||||
self._decay_task: Optional[asyncio.Task] = None
|
||||
self.last_log_time = 0
|
||||
self.log_interval = 30
|
||||
|
||||
# 从配置文件获取参数
|
||||
wakeup_config = global_config.wakeup_system
|
||||
@@ -123,7 +125,12 @@ class WakeUpManager:
|
||||
# 群聊未被艾特,不增加唤醒度
|
||||
return False
|
||||
|
||||
logger.info(f"{self.context.log_prefix} 唤醒度变化: {old_value:.1f} -> {self.wakeup_value:.1f} (阈值: {self.wakeup_threshold})")
|
||||
current_time = time.time()
|
||||
if current_time - self.last_log_time > self.log_interval:
|
||||
logger.info(f"{self.context.log_prefix} 唤醒度变化: {old_value:.1f} -> {self.wakeup_value:.1f} (阈值: {self.wakeup_threshold})")
|
||||
self.last_log_time = current_time
|
||||
else:
|
||||
logger.debug(f"{self.context.log_prefix} 唤醒度变化: {old_value:.1f} -> {self.wakeup_value:.1f} (阈值: {self.wakeup_threshold})")
|
||||
|
||||
# 检查是否达到唤醒阈值
|
||||
if self.wakeup_value >= self.wakeup_threshold:
|
||||
|
||||
@@ -61,6 +61,8 @@ class VideoAnalyzer:
|
||||
self.max_image_size = config.max_image_size
|
||||
self.enable_frame_timing = config.enable_frame_timing
|
||||
self.batch_analysis_prompt = config.batch_analysis_prompt
|
||||
self.frame_extraction_mode = config.frame_extraction_mode
|
||||
self.frame_interval_seconds = config.frame_interval_seconds
|
||||
|
||||
# 将配置文件中的模式映射到内部使用的模式名称
|
||||
config_mode = config.analysis_mode
|
||||
@@ -92,6 +94,8 @@ class VideoAnalyzer:
|
||||
self.batch_size = 3 # 批处理时每批处理的帧数
|
||||
self.timeout = 60.0 # 分析超时时间(秒)
|
||||
self.enable_frame_timing = True
|
||||
self.frame_extraction_mode = "fixed_number"
|
||||
self.frame_interval_seconds = 2.0
|
||||
self.batch_analysis_prompt = """请分析这个视频的内容。这些图片是从视频中按时间顺序提取的关键帧。
|
||||
|
||||
请提供详细的分析,包括:
|
||||
@@ -191,24 +195,59 @@ class VideoAnalyzer:
|
||||
|
||||
logger.info(f"视频信息: {total_frames}帧, {fps:.2f}FPS, {duration:.2f}秒")
|
||||
|
||||
# 动态计算帧间隔
|
||||
if duration > 0:
|
||||
frame_interval = max(1, int(duration / self.max_frames * fps))
|
||||
else:
|
||||
frame_interval = 30 # 默认间隔
|
||||
|
||||
frame_count = 0
|
||||
extracted_count = 0
|
||||
|
||||
while cap.isOpened() and extracted_count < self.max_frames:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
if self.frame_extraction_mode == "time_interval":
|
||||
# 新模式:按时间间隔抽帧
|
||||
time_interval = self.frame_interval_seconds
|
||||
next_frame_time = 0.0
|
||||
|
||||
while cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
if frame_count % frame_interval == 0:
|
||||
# 转换为PIL图像并压缩
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
pil_image = Image.fromarray(frame_rgb)
|
||||
current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0
|
||||
|
||||
if current_time >= next_frame_time:
|
||||
# 转换为PIL图像并压缩
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
pil_image = Image.fromarray(frame_rgb)
|
||||
|
||||
# 调整图像大小
|
||||
if max(pil_image.size) > self.max_image_size:
|
||||
ratio = self.max_image_size / max(pil_image.size)
|
||||
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
|
||||
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
||||
|
||||
# 转换为base64
|
||||
buffer = io.BytesIO()
|
||||
pil_image.save(buffer, format='JPEG', quality=self.frame_quality)
|
||||
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
|
||||
frames.append((frame_base64, current_time))
|
||||
extracted_count += 1
|
||||
|
||||
logger.debug(f"提取第{extracted_count}帧 (时间: {current_time:.2f}s)")
|
||||
|
||||
next_frame_time += time_interval
|
||||
else:
|
||||
# 旧模式:固定总帧数
|
||||
if duration > 0:
|
||||
frame_interval = max(1, int(total_frames / self.max_frames))
|
||||
else:
|
||||
frame_interval = 1 # 如果无法获取时长,则逐帧提取直到达到max_frames
|
||||
|
||||
while cap.isOpened() and extracted_count < self.max_frames:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
if frame_count % frame_interval == 0:
|
||||
# 转换为PIL图像并压缩
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
pil_image = Image.fromarray(frame_rgb)
|
||||
|
||||
# 调整图像大小
|
||||
if max(pil_image.size) > self.max_image_size:
|
||||
@@ -227,8 +266,8 @@ class VideoAnalyzer:
|
||||
extracted_count += 1
|
||||
|
||||
logger.debug(f"提取第{extracted_count}帧 (时间: {timestamp:.2f}s)")
|
||||
|
||||
frame_count += 1
|
||||
|
||||
frame_count += 1
|
||||
|
||||
cap.release()
|
||||
logger.info(f"✅ 成功提取{len(frames)}帧")
|
||||
|
||||
@@ -619,6 +619,8 @@ class VideoAnalysisConfig(ValidatedConfigBase):
|
||||
|
||||
enable: bool = Field(default=True, description="启用")
|
||||
analysis_mode: str = Field(default="batch_frames", description="分析模式")
|
||||
frame_extraction_mode: str = Field(default="fixed_number", description="抽帧模式")
|
||||
frame_interval_seconds: float = Field(default=2.0, description="抽帧时间间隔")
|
||||
max_frames: int = Field(default=8, description="最大帧数")
|
||||
frame_quality: int = Field(default=85, description="帧质量")
|
||||
max_image_size: int = Field(default=800, description="最大图像大小")
|
||||
|
||||
@@ -340,16 +340,22 @@ class LLMRequest:
|
||||
is_truncated = True
|
||||
logger.warning("未检测到 [done] 标记,判定为截断")
|
||||
|
||||
if (is_empty_reply or is_truncated) and empty_retry_count < max_empty_retry:
|
||||
empty_retry_count += 1
|
||||
reason = "空回复" if is_empty_reply else "截断"
|
||||
logger.warning(f"检测到{reason},正在进行第 {empty_retry_count}/{max_empty_retry} 次重新生成")
|
||||
if is_empty_reply or is_truncated:
|
||||
if empty_retry_count < max_empty_retry:
|
||||
empty_retry_count += 1
|
||||
reason = "空回复" if is_empty_reply else "截断"
|
||||
logger.warning(f"检测到{reason},正在进行第 {empty_retry_count}/{max_empty_retry} 次重新生成")
|
||||
|
||||
if empty_retry_interval > 0:
|
||||
await asyncio.sleep(empty_retry_interval)
|
||||
if empty_retry_interval > 0:
|
||||
await asyncio.sleep(empty_retry_interval)
|
||||
|
||||
model_info, api_provider, client = self._select_model()
|
||||
continue
|
||||
model_info, api_provider, client = self._select_model()
|
||||
continue
|
||||
else:
|
||||
# 已达到最大重试次数,但仍然是空回复或截断
|
||||
reason = "空回复" if is_empty_reply else "截断"
|
||||
# 抛出异常,由外层重试逻辑或最终的异常处理器捕获
|
||||
raise RuntimeError(f"经过 {max_empty_retry + 1} 次尝试后仍然是{reason}的回复")
|
||||
|
||||
# 记录使用情况
|
||||
if usage := response.usage:
|
||||
|
||||
@@ -418,7 +418,12 @@ class ScheduleManager:
|
||||
if is_in_time_range:
|
||||
# 检查是否被唤醒
|
||||
if wakeup_manager and wakeup_manager.is_in_angry_state():
|
||||
logger.info(f"在休眠活动 '{activity}' 期间,但已被唤醒。")
|
||||
current_timestamp = datetime.now().timestamp()
|
||||
if current_timestamp - self.last_sleep_log_time > self.sleep_log_interval:
|
||||
logger.info(f"在休眠活动 '{activity}' 期间,但已被唤醒。")
|
||||
self.last_sleep_log_time = current_timestamp
|
||||
else:
|
||||
logger.debug(f"在休眠活动 '{activity}' 期间,但已被唤醒。")
|
||||
return False
|
||||
|
||||
current_timestamp = datetime.now().timestamp()
|
||||
|
||||
@@ -34,6 +34,8 @@ class TTSAction(BaseAction):
|
||||
# 动作使用场景
|
||||
action_require = [
|
||||
"当需要发送语音信息时使用",
|
||||
"当用户要求你说话时使用",
|
||||
"当用户要求听你声音时使用",
|
||||
"当用户明确要求使用语音功能时使用",
|
||||
"当表达内容更适合用语音而不是文字传达时使用",
|
||||
"当用户想听到语音回答而非阅读文本时使用",
|
||||
|
||||
@@ -381,7 +381,9 @@ enable_friend_chat = false # 是否启用好友聊天
|
||||
[video_analysis] # 视频分析配置
|
||||
enable = true # 是否启用视频分析功能
|
||||
analysis_mode = "batch_frames" # 分析模式:"frame_by_frame"(逐帧分析,非常慢 "建议frames大于8时不要使用这个" ...但是详细)、"batch_frames"(批量分析,快但可能略简单 -其实效果也差不多)或 "auto"(自动选择)
|
||||
max_frames = 16 # 最大分析帧数
|
||||
frame_extraction_mode = "fixed_number" # 抽帧模式: "fixed_number" (固定总帧数) 或 "time_interval" (按时间间隔)
|
||||
frame_interval_seconds = 2.0 # 按时间间隔抽帧的秒数(仅在 mode = "time_interval" 时生效)
|
||||
max_frames = 16 # 最大分析帧数(仅在 mode = "fixed_number" 时生效)
|
||||
frame_quality = 80 # 帧图像JPEG质量 (1-100)
|
||||
max_image_size = 800 # 单帧最大图像尺寸(像素)
|
||||
enable_frame_timing = true # 是否在分析中包含帧的时间信息
|
||||
|
||||
Reference in New Issue
Block a user