feat:拆分关系构建和关系信息提取
This commit is contained in:
@@ -13,7 +13,8 @@ from src.chat.heart_flow.observation.observation import Observation
|
|||||||
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
|
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
|
||||||
from src.chat.focus_chat.info.info_base import InfoBase
|
from src.chat.focus_chat.info.info_base import InfoBase
|
||||||
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
|
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
|
||||||
from src.chat.focus_chat.info_processors.relationship_processor import PersonImpressionpProcessor
|
from src.chat.focus_chat.info_processors.relationship_processor import RelationshipBuildProcessor
|
||||||
|
from src.chat.focus_chat.info_processors.real_time_info_processor import RealTimeInfoProcessor
|
||||||
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
|
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
|
||||||
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
|
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
|
||||||
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
|
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
|
||||||
@@ -56,7 +57,8 @@ PROCESSOR_CLASSES = {
|
|||||||
# 定义后期处理器映射:在规划后、动作执行前运行的处理器
|
# 定义后期处理器映射:在规划后、动作执行前运行的处理器
|
||||||
POST_PLANNING_PROCESSOR_CLASSES = {
|
POST_PLANNING_PROCESSOR_CLASSES = {
|
||||||
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
|
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
|
||||||
"PersonImpressionpProcessor": (PersonImpressionpProcessor, "person_impression_processor"),
|
"RelationshipBuildProcessor": (RelationshipBuildProcessor, "relationship_build_processor"),
|
||||||
|
"RealTimeInfoProcessor": (RealTimeInfoProcessor, "real_time_info_processor"),
|
||||||
}
|
}
|
||||||
|
|
||||||
logger = get_logger("hfc") # Logger Name Changed
|
logger = get_logger("hfc") # Logger Name Changed
|
||||||
@@ -132,11 +134,20 @@ class HeartFChatting:
|
|||||||
# 初始化后期处理器(规划后执行的处理器)
|
# 初始化后期处理器(规划后执行的处理器)
|
||||||
self.enabled_post_planning_processor_names = []
|
self.enabled_post_planning_processor_names = []
|
||||||
for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items():
|
for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items():
|
||||||
# 对于关系处理器,需要同时检查两个配置项
|
# 对于关系相关处理器,需要同时检查关系配置项
|
||||||
if proc_name == "PersonImpressionpProcessor":
|
if proc_name in ["RelationshipBuildProcessor", "RealTimeInfoProcessor"]:
|
||||||
if global_config.relationship.enable_relationship and getattr(
|
# 检查全局关系开关
|
||||||
config_processor_settings, config_key, True
|
if not global_config.relationship.enable_relationship:
|
||||||
):
|
continue
|
||||||
|
|
||||||
|
# 检查处理器特定配置,同时支持向后兼容
|
||||||
|
processor_enabled = getattr(config_processor_settings, config_key, True)
|
||||||
|
|
||||||
|
# 向后兼容:如果旧的person_impression_processor为True,则启用两个新处理器
|
||||||
|
if not processor_enabled and getattr(config_processor_settings, "person_impression_processor", True):
|
||||||
|
processor_enabled = True
|
||||||
|
|
||||||
|
if processor_enabled:
|
||||||
self.enabled_post_planning_processor_names.append(proc_name)
|
self.enabled_post_planning_processor_names.append(proc_name)
|
||||||
else:
|
else:
|
||||||
# 其他后期处理器的逻辑
|
# 其他后期处理器的逻辑
|
||||||
@@ -258,7 +269,8 @@ class HeartFChatting:
|
|||||||
# 根据处理器类名判断是否需要 subheartflow_id
|
# 根据处理器类名判断是否需要 subheartflow_id
|
||||||
if name in [
|
if name in [
|
||||||
"ToolProcessor",
|
"ToolProcessor",
|
||||||
"PersonImpressionpProcessor",
|
"RelationshipBuildProcessor",
|
||||||
|
"RealTimeInfoProcessor",
|
||||||
"ExpressionSelectorProcessor",
|
"ExpressionSelectorProcessor",
|
||||||
]:
|
]:
|
||||||
self.post_planning_processors.append(processor_actual_class(subheartflow_id=self.stream_id))
|
self.post_planning_processors.append(processor_actual_class(subheartflow_id=self.stream_id))
|
||||||
|
|||||||
552
src/chat/focus_chat/info_processors/real_time_info_processor.py
Normal file
552
src/chat/focus_chat/info_processors/real_time_info_processor.py
Normal file
@@ -0,0 +1,552 @@
|
|||||||
|
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||||
|
from src.chat.heart_flow.observation.observation import Observation
|
||||||
|
from src.llm_models.utils_model import LLMRequest
|
||||||
|
from src.config.config import global_config
|
||||||
|
import time
|
||||||
|
import traceback
|
||||||
|
from src.common.logger import get_logger
|
||||||
|
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||||
|
from src.person_info.person_info import get_person_info_manager
|
||||||
|
from .base_processor import BaseProcessor
|
||||||
|
from typing import List, Dict
|
||||||
|
from src.chat.focus_chat.info.info_base import InfoBase
|
||||||
|
from src.chat.focus_chat.info.relation_info import RelationInfo
|
||||||
|
from json_repair import repair_json
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
logger = get_logger("real_time_info_processor")
|
||||||
|
|
||||||
|
|
||||||
|
def init_real_time_info_prompts():
|
||||||
|
"""初始化实时信息提取相关的提示词"""
|
||||||
|
relationship_prompt = """
|
||||||
|
<聊天记录>
|
||||||
|
{chat_observe_info}
|
||||||
|
</聊天记录>
|
||||||
|
|
||||||
|
{name_block}
|
||||||
|
现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息:
|
||||||
|
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,对ta的印象,最近发生的事等等。
|
||||||
|
2.请注意,请不要重复调取相同的信息,已经调取的信息如下:
|
||||||
|
{info_cache_block}
|
||||||
|
3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}}
|
||||||
|
|
||||||
|
请以json格式输出,例如:
|
||||||
|
|
||||||
|
{{
|
||||||
|
"info_type": "信息类型",
|
||||||
|
}}
|
||||||
|
|
||||||
|
请严格按照json输出格式,不要输出多余内容:
|
||||||
|
"""
|
||||||
|
Prompt(relationship_prompt, "real_time_info_identify_prompt")
|
||||||
|
|
||||||
|
fetch_info_prompt = """
|
||||||
|
|
||||||
|
{name_block}
|
||||||
|
以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解:
|
||||||
|
{person_impression_block}
|
||||||
|
{points_text_block}
|
||||||
|
|
||||||
|
请从中提取用户"{person_name}"的有关"{info_type}"信息
|
||||||
|
请以json格式输出,例如:
|
||||||
|
|
||||||
|
{{
|
||||||
|
{info_json_str}
|
||||||
|
}}
|
||||||
|
|
||||||
|
请严格按照json输出格式,不要输出多余内容:
|
||||||
|
"""
|
||||||
|
Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt")
|
||||||
|
|
||||||
|
|
||||||
|
class RealTimeInfoProcessor(BaseProcessor):
|
||||||
|
"""实时信息提取处理器
|
||||||
|
|
||||||
|
负责从对话中识别需要的用户信息,并从用户档案中实时提取相关信息
|
||||||
|
"""
|
||||||
|
|
||||||
|
log_prefix = "实时信息"
|
||||||
|
|
||||||
|
def __init__(self, subheartflow_id: str):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.subheartflow_id = subheartflow_id
|
||||||
|
|
||||||
|
# 信息获取缓存:记录正在获取的信息请求
|
||||||
|
self.info_fetching_cache: List[Dict[str, any]] = []
|
||||||
|
|
||||||
|
# 信息结果缓存:存储已获取的信息结果,带TTL
|
||||||
|
self.info_fetched_cache: Dict[str, Dict[str, any]] = {}
|
||||||
|
# 结构:{person_id: {info_type: {"info": str, "ttl": int, "start_time": float, "person_name": str, "unknow": bool}}}
|
||||||
|
|
||||||
|
# LLM模型配置
|
||||||
|
self.llm_model = LLMRequest(
|
||||||
|
model=global_config.model.relation,
|
||||||
|
request_type="focus.real_time_info",
|
||||||
|
)
|
||||||
|
|
||||||
|
# 小模型用于即时信息提取
|
||||||
|
self.instant_llm_model = LLMRequest(
|
||||||
|
model=global_config.model.utils_small,
|
||||||
|
request_type="focus.real_time_info.instant",
|
||||||
|
)
|
||||||
|
|
||||||
|
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||||
|
name = get_chat_manager().get_stream_name(self.subheartflow_id)
|
||||||
|
self.log_prefix = f"[{name}] 实时信息"
|
||||||
|
|
||||||
|
async def process_info(
|
||||||
|
self,
|
||||||
|
observations: List[Observation] = None,
|
||||||
|
action_type: str = None,
|
||||||
|
action_data: dict = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> List[InfoBase]:
|
||||||
|
"""处理信息对象
|
||||||
|
|
||||||
|
Args:
|
||||||
|
observations: 观察对象列表
|
||||||
|
action_type: 动作类型
|
||||||
|
action_data: 动作数据
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[InfoBase]: 处理后的结构化信息列表
|
||||||
|
"""
|
||||||
|
# 清理过期的信息缓存
|
||||||
|
self._cleanup_expired_cache()
|
||||||
|
|
||||||
|
# 执行实时信息识别和提取
|
||||||
|
relation_info_str = await self._identify_and_extract_info(observations, action_type, action_data)
|
||||||
|
|
||||||
|
if relation_info_str:
|
||||||
|
relation_info = RelationInfo()
|
||||||
|
relation_info.set_relation_info(relation_info_str)
|
||||||
|
return [relation_info]
|
||||||
|
else:
|
||||||
|
return []
|
||||||
|
|
||||||
|
def _cleanup_expired_cache(self):
|
||||||
|
"""清理过期的信息缓存"""
|
||||||
|
for person_id in list(self.info_fetched_cache.keys()):
|
||||||
|
for info_type in list(self.info_fetched_cache[person_id].keys()):
|
||||||
|
self.info_fetched_cache[person_id][info_type]["ttl"] -= 1
|
||||||
|
if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0:
|
||||||
|
del self.info_fetched_cache[person_id][info_type]
|
||||||
|
if not self.info_fetched_cache[person_id]:
|
||||||
|
del self.info_fetched_cache[person_id]
|
||||||
|
|
||||||
|
async def _identify_and_extract_info(
|
||||||
|
self,
|
||||||
|
observations: List[Observation] = None,
|
||||||
|
action_type: str = None,
|
||||||
|
action_data: dict = None,
|
||||||
|
) -> str:
|
||||||
|
"""识别并提取用户信息
|
||||||
|
|
||||||
|
Args:
|
||||||
|
observations: 观察对象列表
|
||||||
|
action_type: 动作类型
|
||||||
|
action_data: 动作数据
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 提取到的用户信息字符串
|
||||||
|
"""
|
||||||
|
# 只处理回复动作
|
||||||
|
if action_type != "reply":
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 解析回复目标
|
||||||
|
target_message = action_data.get("reply_to", "")
|
||||||
|
sender, text = self._parse_reply_target(target_message)
|
||||||
|
if not sender or not text:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取用户ID
|
||||||
|
person_info_manager = get_person_info_manager()
|
||||||
|
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||||||
|
if not person_id:
|
||||||
|
logger.warning(f"{self.log_prefix} 未找到用户 {sender} 的ID,跳过信息提取")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取聊天观察信息
|
||||||
|
chat_observe_info = self._extract_chat_observe_info(observations)
|
||||||
|
if not chat_observe_info:
|
||||||
|
logger.debug(f"{self.log_prefix} 没有聊天观察信息,跳过信息提取")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 识别需要提取的信息类型
|
||||||
|
info_type = await self._identify_needed_info(chat_observe_info, sender, text)
|
||||||
|
|
||||||
|
# 如果需要提取新信息,执行提取
|
||||||
|
if info_type:
|
||||||
|
await self._extract_single_info(person_id, info_type, sender)
|
||||||
|
|
||||||
|
# 组织并返回已知信息
|
||||||
|
return self._organize_known_info()
|
||||||
|
|
||||||
|
def _parse_reply_target(self, target_message: str) -> tuple:
|
||||||
|
"""解析回复目标消息
|
||||||
|
|
||||||
|
Args:
|
||||||
|
target_message: 目标消息,格式为 "用户名:消息内容"
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (发送者, 消息内容)
|
||||||
|
"""
|
||||||
|
if ":" in target_message:
|
||||||
|
parts = target_message.split(":", 1)
|
||||||
|
elif ":" in target_message:
|
||||||
|
parts = target_message.split(":", 1)
|
||||||
|
else:
|
||||||
|
logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}")
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
if len(parts) != 2:
|
||||||
|
logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}")
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
sender = parts[0].strip()
|
||||||
|
text = parts[1].strip()
|
||||||
|
return sender, text
|
||||||
|
|
||||||
|
def _extract_chat_observe_info(self, observations: List[Observation]) -> str:
|
||||||
|
"""从观察对象中提取聊天信息
|
||||||
|
|
||||||
|
Args:
|
||||||
|
observations: 观察对象列表
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 聊天观察信息
|
||||||
|
"""
|
||||||
|
if not observations:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
for observation in observations:
|
||||||
|
if isinstance(observation, ChattingObservation):
|
||||||
|
return observation.get_observe_info()
|
||||||
|
return ""
|
||||||
|
|
||||||
|
async def _identify_needed_info(self, chat_observe_info: str, sender: str, text: str) -> str:
|
||||||
|
"""识别需要提取的信息类型
|
||||||
|
|
||||||
|
Args:
|
||||||
|
chat_observe_info: 聊天观察信息
|
||||||
|
sender: 发送者
|
||||||
|
text: 消息内容
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 需要提取的信息类型,如果不需要则返回None
|
||||||
|
"""
|
||||||
|
# 构建名称信息块
|
||||||
|
nickname_str = ",".join(global_config.bot.alias_names)
|
||||||
|
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||||
|
|
||||||
|
# 构建已获取信息缓存块
|
||||||
|
info_cache_block = self._build_info_cache_block()
|
||||||
|
|
||||||
|
# 构建提示词
|
||||||
|
prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format(
|
||||||
|
chat_observe_info=chat_observe_info,
|
||||||
|
name_block=name_block,
|
||||||
|
info_cache_block=info_cache_block,
|
||||||
|
person_name=sender,
|
||||||
|
target_message=text,
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n")
|
||||||
|
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
|
||||||
|
|
||||||
|
if content:
|
||||||
|
content_json = json.loads(repair_json(content))
|
||||||
|
|
||||||
|
# 检查是否返回了不需要查询的标志
|
||||||
|
if "none" in content_json:
|
||||||
|
logger.info(f"{self.log_prefix} LLM判断当前不需要查询任何信息:{content_json.get('none', '')}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
info_type = content_json.get("info_type")
|
||||||
|
if info_type:
|
||||||
|
# 记录信息获取请求
|
||||||
|
self.info_fetching_cache.append({
|
||||||
|
"person_id": get_person_info_manager().get_person_id_by_person_name(sender),
|
||||||
|
"person_name": sender,
|
||||||
|
"info_type": info_type,
|
||||||
|
"start_time": time.time(),
|
||||||
|
"forget": False,
|
||||||
|
})
|
||||||
|
|
||||||
|
# 限制缓存大小
|
||||||
|
if len(self.info_fetching_cache) > 20:
|
||||||
|
self.info_fetching_cache.pop(0)
|
||||||
|
|
||||||
|
logger.info(f"{self.log_prefix} 识别到需要调取用户 {sender} 的[{info_type}]信息")
|
||||||
|
return info_type
|
||||||
|
else:
|
||||||
|
logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"{self.log_prefix} 执行信息识别LLM请求时出错: {e}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _build_info_cache_block(self) -> str:
|
||||||
|
"""构建已获取信息的缓存块"""
|
||||||
|
info_cache_block = ""
|
||||||
|
if self.info_fetching_cache:
|
||||||
|
# 对于每个(person_id, info_type)组合,只保留最新的记录
|
||||||
|
latest_records = {}
|
||||||
|
for info_fetching in self.info_fetching_cache:
|
||||||
|
key = (info_fetching["person_id"], info_fetching["info_type"])
|
||||||
|
if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]:
|
||||||
|
latest_records[key] = info_fetching
|
||||||
|
|
||||||
|
# 按时间排序并生成显示文本
|
||||||
|
sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"])
|
||||||
|
for info_fetching in sorted_records:
|
||||||
|
info_cache_block += (
|
||||||
|
f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n"
|
||||||
|
)
|
||||||
|
return info_cache_block
|
||||||
|
|
||||||
|
async def _extract_single_info(self, person_id: str, info_type: str, person_name: str):
|
||||||
|
"""提取单个信息类型
|
||||||
|
|
||||||
|
Args:
|
||||||
|
person_id: 用户ID
|
||||||
|
info_type: 信息类型
|
||||||
|
person_name: 用户名
|
||||||
|
"""
|
||||||
|
start_time = time.time()
|
||||||
|
person_info_manager = get_person_info_manager()
|
||||||
|
|
||||||
|
# 首先检查 info_list 缓存
|
||||||
|
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
||||||
|
cached_info = None
|
||||||
|
|
||||||
|
# 查找对应的 info_type
|
||||||
|
for info_item in info_list:
|
||||||
|
if info_item.get("info_type") == info_type:
|
||||||
|
cached_info = info_item.get("info_content")
|
||||||
|
logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name} 的 {info_type} 信息: {cached_info}")
|
||||||
|
break
|
||||||
|
|
||||||
|
# 如果缓存中有信息,直接使用
|
||||||
|
if cached_info:
|
||||||
|
if person_id not in self.info_fetched_cache:
|
||||||
|
self.info_fetched_cache[person_id] = {}
|
||||||
|
|
||||||
|
self.info_fetched_cache[person_id][info_type] = {
|
||||||
|
"info": cached_info,
|
||||||
|
"ttl": 2,
|
||||||
|
"start_time": start_time,
|
||||||
|
"person_name": person_name,
|
||||||
|
"unknow": cached_info == "none",
|
||||||
|
}
|
||||||
|
logger.info(f"{self.log_prefix} 记得 {person_name} 的 {info_type}: {cached_info}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 如果缓存中没有,尝试从用户档案中提取
|
||||||
|
try:
|
||||||
|
person_impression = await person_info_manager.get_value(person_id, "impression")
|
||||||
|
points = await person_info_manager.get_value(person_id, "points")
|
||||||
|
|
||||||
|
# 构建印象信息块
|
||||||
|
if person_impression:
|
||||||
|
person_impression_block = (
|
||||||
|
f"<对{person_name}的总体了解>\n{person_impression}\n</对{person_name}的总体了解>"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
person_impression_block = ""
|
||||||
|
|
||||||
|
# 构建要点信息块
|
||||||
|
if points:
|
||||||
|
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
|
||||||
|
points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n</对{person_name}的近期了解>"
|
||||||
|
else:
|
||||||
|
points_text_block = ""
|
||||||
|
|
||||||
|
# 如果完全没有用户信息
|
||||||
|
if not points_text_block and not person_impression_block:
|
||||||
|
if person_id not in self.info_fetched_cache:
|
||||||
|
self.info_fetched_cache[person_id] = {}
|
||||||
|
self.info_fetched_cache[person_id][info_type] = {
|
||||||
|
"info": "none",
|
||||||
|
"ttl": 2,
|
||||||
|
"start_time": start_time,
|
||||||
|
"person_name": person_name,
|
||||||
|
"unknow": True,
|
||||||
|
}
|
||||||
|
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
|
||||||
|
await self._save_info_to_cache(person_id, info_type, "none")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 使用LLM提取信息
|
||||||
|
nickname_str = ",".join(global_config.bot.alias_names)
|
||||||
|
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||||
|
|
||||||
|
prompt = (await global_prompt_manager.get_prompt_async("real_time_fetch_person_info_prompt")).format(
|
||||||
|
name_block=name_block,
|
||||||
|
info_type=info_type,
|
||||||
|
person_impression_block=person_impression_block,
|
||||||
|
person_name=person_name,
|
||||||
|
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
|
||||||
|
points_text_block=points_text_block,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 使用小模型进行即时提取
|
||||||
|
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
|
||||||
|
|
||||||
|
if content:
|
||||||
|
content_json = json.loads(repair_json(content))
|
||||||
|
if info_type in content_json:
|
||||||
|
info_content = content_json[info_type]
|
||||||
|
is_unknown = info_content == "none" or not info_content
|
||||||
|
|
||||||
|
# 保存到运行时缓存
|
||||||
|
if person_id not in self.info_fetched_cache:
|
||||||
|
self.info_fetched_cache[person_id] = {}
|
||||||
|
self.info_fetched_cache[person_id][info_type] = {
|
||||||
|
"info": "unknow" if is_unknown else info_content,
|
||||||
|
"ttl": 3,
|
||||||
|
"start_time": start_time,
|
||||||
|
"person_name": person_name,
|
||||||
|
"unknow": is_unknown,
|
||||||
|
}
|
||||||
|
|
||||||
|
# 保存到持久化缓存 (info_list)
|
||||||
|
await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none")
|
||||||
|
|
||||||
|
if not is_unknown:
|
||||||
|
logger.info(f"{self.log_prefix} 思考得到,{person_name} 的 {info_type}: {info_content}")
|
||||||
|
else:
|
||||||
|
logger.info(f"{self.log_prefix} 思考了也不知道{person_name} 的 {info_type} 信息")
|
||||||
|
else:
|
||||||
|
logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name} 的 {info_type} 信息失败。")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
|
||||||
|
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
|
||||||
|
"""将提取到的信息保存到 person_info 的 info_list 字段中
|
||||||
|
|
||||||
|
Args:
|
||||||
|
person_id: 用户ID
|
||||||
|
info_type: 信息类型
|
||||||
|
info_content: 信息内容
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
person_info_manager = get_person_info_manager()
|
||||||
|
|
||||||
|
# 获取现有的 info_list
|
||||||
|
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
||||||
|
|
||||||
|
# 查找是否已存在相同 info_type 的记录
|
||||||
|
found_index = -1
|
||||||
|
for i, info_item in enumerate(info_list):
|
||||||
|
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
|
||||||
|
found_index = i
|
||||||
|
break
|
||||||
|
|
||||||
|
# 创建新的信息记录
|
||||||
|
new_info_item = {
|
||||||
|
"info_type": info_type,
|
||||||
|
"info_content": info_content,
|
||||||
|
}
|
||||||
|
|
||||||
|
if found_index >= 0:
|
||||||
|
# 更新现有记录
|
||||||
|
info_list[found_index] = new_info_item
|
||||||
|
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id} 的 {info_type} 信息缓存")
|
||||||
|
else:
|
||||||
|
# 添加新记录
|
||||||
|
info_list.append(new_info_item)
|
||||||
|
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id} 的 {info_type} 信息缓存")
|
||||||
|
|
||||||
|
# 保存更新后的 info_list
|
||||||
|
await person_info_manager.update_one_field(person_id, "info_list", info_list)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
|
||||||
|
def _organize_known_info(self) -> str:
|
||||||
|
"""组织已知的用户信息为字符串
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: 格式化的用户信息字符串
|
||||||
|
"""
|
||||||
|
persons_infos_str = ""
|
||||||
|
|
||||||
|
if self.info_fetched_cache:
|
||||||
|
persons_with_known_info = [] # 有已知信息的人员
|
||||||
|
persons_with_unknown_info = [] # 有未知信息的人员
|
||||||
|
|
||||||
|
for person_id in self.info_fetched_cache:
|
||||||
|
person_known_infos = []
|
||||||
|
person_unknown_infos = []
|
||||||
|
person_name = ""
|
||||||
|
|
||||||
|
for info_type in self.info_fetched_cache[person_id]:
|
||||||
|
person_name = self.info_fetched_cache[person_id][info_type]["person_name"]
|
||||||
|
if not self.info_fetched_cache[person_id][info_type]["unknow"]:
|
||||||
|
info_content = self.info_fetched_cache[person_id][info_type]["info"]
|
||||||
|
person_known_infos.append(f"[{info_type}]:{info_content}")
|
||||||
|
else:
|
||||||
|
person_unknown_infos.append(info_type)
|
||||||
|
|
||||||
|
# 如果有已知信息,添加到已知信息列表
|
||||||
|
if person_known_infos:
|
||||||
|
known_info_str = ";".join(person_known_infos) + ";"
|
||||||
|
persons_with_known_info.append((person_name, known_info_str))
|
||||||
|
|
||||||
|
# 如果有未知信息,添加到未知信息列表
|
||||||
|
if person_unknown_infos:
|
||||||
|
persons_with_unknown_info.append((person_name, person_unknown_infos))
|
||||||
|
|
||||||
|
# 先输出有已知信息的人员
|
||||||
|
for person_name, known_info_str in persons_with_known_info:
|
||||||
|
persons_infos_str += f"你对 {person_name} 的了解:{known_info_str}\n"
|
||||||
|
|
||||||
|
# 统一处理未知信息,避免重复的警告文本
|
||||||
|
if persons_with_unknown_info:
|
||||||
|
unknown_persons_details = []
|
||||||
|
for person_name, unknown_types in persons_with_unknown_info:
|
||||||
|
unknown_types_str = "、".join(unknown_types)
|
||||||
|
unknown_persons_details.append(f"{person_name}的[{unknown_types_str}]")
|
||||||
|
|
||||||
|
if len(unknown_persons_details) == 1:
|
||||||
|
persons_infos_str += (
|
||||||
|
f"你不了解{unknown_persons_details[0]}信息,不要胡乱回答,可以直接说不知道或忘记了;\n"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
unknown_all_str = "、".join(unknown_persons_details)
|
||||||
|
persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n"
|
||||||
|
|
||||||
|
return persons_infos_str
|
||||||
|
|
||||||
|
def get_cache_status(self) -> str:
|
||||||
|
"""获取缓存状态信息,用于调试和监控"""
|
||||||
|
status_lines = [f"{self.log_prefix} 实时信息缓存状态:"]
|
||||||
|
status_lines.append(f"获取请求缓存数:{len(self.info_fetching_cache)}")
|
||||||
|
status_lines.append(f"结果缓存用户数:{len(self.info_fetched_cache)}")
|
||||||
|
|
||||||
|
if self.info_fetched_cache:
|
||||||
|
for person_id, info_types in self.info_fetched_cache.items():
|
||||||
|
person_name = list(info_types.values())[0]["person_name"] if info_types else person_id
|
||||||
|
status_lines.append(f" 用户 {person_name}: {len(info_types)} 个信息类型")
|
||||||
|
for info_type, info_data in info_types.items():
|
||||||
|
ttl = info_data["ttl"]
|
||||||
|
unknow = info_data["unknow"]
|
||||||
|
status = "未知" if unknow else "已知"
|
||||||
|
status_lines.append(f" {info_type}: {status} (TTL: {ttl})")
|
||||||
|
|
||||||
|
return "\n".join(status_lines)
|
||||||
|
|
||||||
|
|
||||||
|
# 初始化提示词
|
||||||
|
init_real_time_info_prompts()
|
||||||
@@ -5,18 +5,13 @@ from src.config.config import global_config
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
|
||||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||||
from src.person_info.relationship_manager import get_relationship_manager
|
from src.person_info.relationship_manager import get_relationship_manager
|
||||||
from .base_processor import BaseProcessor
|
from .base_processor import BaseProcessor
|
||||||
from typing import List
|
from typing import List
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
from src.chat.focus_chat.info.info_base import InfoBase
|
from src.chat.focus_chat.info.info_base import InfoBase
|
||||||
from src.chat.focus_chat.info.relation_info import RelationInfo
|
|
||||||
from json_repair import repair_json
|
|
||||||
from src.person_info.person_info import get_person_info_manager
|
from src.person_info.person_info import get_person_info_manager
|
||||||
import json
|
|
||||||
import asyncio
|
|
||||||
from src.chat.utils.chat_message_builder import (
|
from src.chat.utils.chat_message_builder import (
|
||||||
get_raw_msg_by_timestamp_with_chat,
|
get_raw_msg_by_timestamp_with_chat,
|
||||||
get_raw_msg_by_timestamp_with_chat_inclusive,
|
get_raw_msg_by_timestamp_with_chat_inclusive,
|
||||||
@@ -36,62 +31,21 @@ SEGMENT_CLEANUP_CONFIG = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
logger = get_logger("processor")
|
logger = get_logger("relationship_build_processor")
|
||||||
|
|
||||||
|
|
||||||
def init_prompt():
|
class RelationshipBuildProcessor(BaseProcessor):
|
||||||
relationship_prompt = """
|
"""关系构建处理器
|
||||||
<聊天记录>
|
|
||||||
{chat_observe_info}
|
|
||||||
</聊天记录>
|
|
||||||
|
|
||||||
{name_block}
|
负责跟踪用户消息活动、管理消息段、触发关系构建和印象更新
|
||||||
现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息:
|
"""
|
||||||
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,对ta的印象,最近发生的事等等。
|
|
||||||
2.请注意,请不要重复调取相同的信息,已经调取的信息如下:
|
|
||||||
{info_cache_block}
|
|
||||||
3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}}
|
|
||||||
|
|
||||||
请以json格式输出,例如:
|
log_prefix = "关系构建"
|
||||||
|
|
||||||
{{
|
|
||||||
"info_type": "信息类型",
|
|
||||||
}}
|
|
||||||
|
|
||||||
请严格按照json输出格式,不要输出多余内容:
|
|
||||||
"""
|
|
||||||
Prompt(relationship_prompt, "relationship_prompt")
|
|
||||||
|
|
||||||
fetch_info_prompt = """
|
|
||||||
|
|
||||||
{name_block}
|
|
||||||
以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解:
|
|
||||||
{person_impression_block}
|
|
||||||
{points_text_block}
|
|
||||||
|
|
||||||
请从中提取用户"{person_name}"的有关"{info_type}"信息
|
|
||||||
请以json格式输出,例如:
|
|
||||||
|
|
||||||
{{
|
|
||||||
{info_json_str}
|
|
||||||
}}
|
|
||||||
|
|
||||||
请严格按照json输出格式,不要输出多余内容:
|
|
||||||
"""
|
|
||||||
Prompt(fetch_info_prompt, "fetch_person_info_prompt")
|
|
||||||
|
|
||||||
|
|
||||||
class PersonImpressionpProcessor(BaseProcessor):
|
|
||||||
log_prefix = "关系"
|
|
||||||
|
|
||||||
def __init__(self, subheartflow_id: str):
|
def __init__(self, subheartflow_id: str):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.subheartflow_id = subheartflow_id
|
self.subheartflow_id = subheartflow_id
|
||||||
self.info_fetching_cache: List[Dict[str, any]] = []
|
|
||||||
self.info_fetched_cache: Dict[
|
|
||||||
str, Dict[str, any]
|
|
||||||
] = {} # {person_id: {"info": str, "ttl": int, "start_time": float}}
|
|
||||||
|
|
||||||
# 新的消息段缓存结构:
|
# 新的消息段缓存结构:
|
||||||
# {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
|
# {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
|
||||||
@@ -107,19 +61,8 @@ class PersonImpressionpProcessor(BaseProcessor):
|
|||||||
# 最后清理时间,用于定期清理老消息段
|
# 最后清理时间,用于定期清理老消息段
|
||||||
self.last_cleanup_time = 0.0
|
self.last_cleanup_time = 0.0
|
||||||
|
|
||||||
self.llm_model = LLMRequest(
|
|
||||||
model=global_config.model.relation,
|
|
||||||
request_type="focus.relationship",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 小模型用于即时信息提取
|
|
||||||
self.instant_llm_model = LLMRequest(
|
|
||||||
model=global_config.model.utils_small,
|
|
||||||
request_type="focus.relationship.instant",
|
|
||||||
)
|
|
||||||
|
|
||||||
name = get_chat_manager().get_stream_name(self.subheartflow_id)
|
name = get_chat_manager().get_stream_name(self.subheartflow_id)
|
||||||
self.log_prefix = f"[{name}] "
|
self.log_prefix = f"[{name}] 关系构建"
|
||||||
|
|
||||||
# 加载持久化的缓存
|
# 加载持久化的缓存
|
||||||
self._load_cache()
|
self._load_cache()
|
||||||
@@ -444,17 +387,7 @@ class PersonImpressionpProcessor(BaseProcessor):
|
|||||||
List[InfoBase]: 处理后的结构化信息列表
|
List[InfoBase]: 处理后的结构化信息列表
|
||||||
"""
|
"""
|
||||||
await self.build_relation(observations)
|
await self.build_relation(observations)
|
||||||
|
return [] # 关系构建处理器不返回信息,只负责后台构建关系
|
||||||
relation_info_str = await self.relation_identify(observations, action_type, action_data)
|
|
||||||
|
|
||||||
if relation_info_str:
|
|
||||||
relation_info = RelationInfo()
|
|
||||||
relation_info.set_relation_info(relation_info_str)
|
|
||||||
else:
|
|
||||||
relation_info = None
|
|
||||||
return None
|
|
||||||
|
|
||||||
return [relation_info]
|
|
||||||
|
|
||||||
async def build_relation(self, observations: List[Observation] = None):
|
async def build_relation(self, observations: List[Observation] = None):
|
||||||
"""构建关系"""
|
"""构建关系"""
|
||||||
@@ -512,208 +445,12 @@ class PersonImpressionpProcessor(BaseProcessor):
|
|||||||
for person_id in users_to_build_relationship:
|
for person_id in users_to_build_relationship:
|
||||||
segments = self.person_engaged_cache[person_id]
|
segments = self.person_engaged_cache[person_id]
|
||||||
# 异步执行关系构建
|
# 异步执行关系构建
|
||||||
|
import asyncio
|
||||||
asyncio.create_task(self.update_impression_on_segments(person_id, self.subheartflow_id, segments))
|
asyncio.create_task(self.update_impression_on_segments(person_id, self.subheartflow_id, segments))
|
||||||
# 移除已处理的用户缓存
|
# 移除已处理的用户缓存
|
||||||
del self.person_engaged_cache[person_id]
|
del self.person_engaged_cache[person_id]
|
||||||
self._save_cache()
|
self._save_cache()
|
||||||
|
|
||||||
async def relation_identify(
|
|
||||||
self,
|
|
||||||
observations: List[Observation] = None,
|
|
||||||
action_type: str = None,
|
|
||||||
action_data: dict = None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
从人物获取信息
|
|
||||||
"""
|
|
||||||
|
|
||||||
chat_observe_info = ""
|
|
||||||
current_time = time.time()
|
|
||||||
if observations:
|
|
||||||
for observation in observations:
|
|
||||||
if isinstance(observation, ChattingObservation):
|
|
||||||
chat_observe_info = observation.get_observe_info()
|
|
||||||
# latest_message_time = observation.last_observe_time
|
|
||||||
# 从聊天观察中提取用户信息并更新消息段
|
|
||||||
# 获取最新的非bot消息来更新消息段
|
|
||||||
latest_messages = get_raw_msg_by_timestamp_with_chat(
|
|
||||||
self.subheartflow_id,
|
|
||||||
self.last_processed_message_time,
|
|
||||||
current_time,
|
|
||||||
limit=50, # 获取自上次处理后的消息
|
|
||||||
)
|
|
||||||
if latest_messages:
|
|
||||||
# 处理所有新的非bot消息
|
|
||||||
for latest_msg in latest_messages:
|
|
||||||
user_id = latest_msg.get("user_id")
|
|
||||||
platform = latest_msg.get("user_platform") or latest_msg.get("chat_info_platform")
|
|
||||||
msg_time = latest_msg.get("time", 0)
|
|
||||||
|
|
||||||
if (
|
|
||||||
user_id
|
|
||||||
and platform
|
|
||||||
and user_id != global_config.bot.qq_account
|
|
||||||
and msg_time > self.last_processed_message_time
|
|
||||||
):
|
|
||||||
from src.person_info.person_info import PersonInfoManager
|
|
||||||
|
|
||||||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
|
||||||
self._update_message_segments(person_id, msg_time)
|
|
||||||
logger.debug(
|
|
||||||
f"{self.log_prefix} 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}"
|
|
||||||
)
|
|
||||||
self.last_processed_message_time = max(self.last_processed_message_time, msg_time)
|
|
||||||
break
|
|
||||||
|
|
||||||
for person_id in list(self.info_fetched_cache.keys()):
|
|
||||||
for info_type in list(self.info_fetched_cache[person_id].keys()):
|
|
||||||
self.info_fetched_cache[person_id][info_type]["ttl"] -= 1
|
|
||||||
if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0:
|
|
||||||
del self.info_fetched_cache[person_id][info_type]
|
|
||||||
if not self.info_fetched_cache[person_id]:
|
|
||||||
del self.info_fetched_cache[person_id]
|
|
||||||
|
|
||||||
if action_type != "reply":
|
|
||||||
return None
|
|
||||||
|
|
||||||
target_message = action_data.get("reply_to", "")
|
|
||||||
|
|
||||||
if ":" in target_message:
|
|
||||||
parts = target_message.split(":", 1)
|
|
||||||
elif ":" in target_message:
|
|
||||||
parts = target_message.split(":", 1)
|
|
||||||
else:
|
|
||||||
logger.warning(f"reply_to格式不正确: {target_message},跳过关系识别")
|
|
||||||
return None
|
|
||||||
|
|
||||||
if len(parts) != 2:
|
|
||||||
logger.warning(f"reply_to格式不正确: {target_message},跳过关系识别")
|
|
||||||
return None
|
|
||||||
|
|
||||||
sender = parts[0].strip()
|
|
||||||
text = parts[1].strip()
|
|
||||||
|
|
||||||
person_info_manager = get_person_info_manager()
|
|
||||||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
|
||||||
|
|
||||||
if not person_id:
|
|
||||||
logger.warning(f"未找到用户 {sender} 的ID,跳过关系识别")
|
|
||||||
return None
|
|
||||||
|
|
||||||
nickname_str = ",".join(global_config.bot.alias_names)
|
|
||||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
|
||||||
|
|
||||||
info_cache_block = ""
|
|
||||||
if self.info_fetching_cache:
|
|
||||||
# 对于每个(person_id, info_type)组合,只保留最新的记录
|
|
||||||
latest_records = {}
|
|
||||||
for info_fetching in self.info_fetching_cache:
|
|
||||||
key = (info_fetching["person_id"], info_fetching["info_type"])
|
|
||||||
if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]:
|
|
||||||
latest_records[key] = info_fetching
|
|
||||||
|
|
||||||
# 按时间排序并生成显示文本
|
|
||||||
sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"])
|
|
||||||
for info_fetching in sorted_records:
|
|
||||||
info_cache_block += (
|
|
||||||
f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n"
|
|
||||||
)
|
|
||||||
|
|
||||||
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
|
|
||||||
chat_observe_info=chat_observe_info,
|
|
||||||
name_block=name_block,
|
|
||||||
info_cache_block=info_cache_block,
|
|
||||||
person_name=sender,
|
|
||||||
target_message=text,
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
logger.info(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n")
|
|
||||||
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
|
|
||||||
if content:
|
|
||||||
# print(f"content: {content}")
|
|
||||||
content_json = json.loads(repair_json(content))
|
|
||||||
|
|
||||||
# 检查是否返回了不需要查询的标志
|
|
||||||
if "none" in content_json:
|
|
||||||
logger.info(f"{self.log_prefix} LLM判断当前不需要查询任何信息:{content_json.get('none', '')}")
|
|
||||||
# 跳过新的信息提取,但仍会处理已有缓存
|
|
||||||
else:
|
|
||||||
info_type = content_json.get("info_type")
|
|
||||||
if info_type:
|
|
||||||
self.info_fetching_cache.append(
|
|
||||||
{
|
|
||||||
"person_id": person_id,
|
|
||||||
"person_name": sender,
|
|
||||||
"info_type": info_type,
|
|
||||||
"start_time": time.time(),
|
|
||||||
"forget": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
if len(self.info_fetching_cache) > 20:
|
|
||||||
self.info_fetching_cache.pop(0)
|
|
||||||
|
|
||||||
logger.info(f"{self.log_prefix} 调取用户 {sender} 的[{info_type}]信息。")
|
|
||||||
|
|
||||||
# 执行信息提取
|
|
||||||
await self._fetch_single_info_instant(person_id, info_type, time.time())
|
|
||||||
else:
|
|
||||||
logger.warning(f"{self.log_prefix} LLM did not return a valid info_type. Response: {content}")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
|
|
||||||
logger.error(traceback.format_exc())
|
|
||||||
|
|
||||||
# 7. 合并缓存和新处理的信息
|
|
||||||
persons_infos_str = ""
|
|
||||||
# 处理已获取到的信息
|
|
||||||
if self.info_fetched_cache:
|
|
||||||
persons_with_known_info = [] # 有已知信息的人员
|
|
||||||
persons_with_unknown_info = [] # 有未知信息的人员
|
|
||||||
|
|
||||||
for person_id in self.info_fetched_cache:
|
|
||||||
person_known_infos = []
|
|
||||||
person_unknown_infos = []
|
|
||||||
person_name = ""
|
|
||||||
|
|
||||||
for info_type in self.info_fetched_cache[person_id]:
|
|
||||||
person_name = self.info_fetched_cache[person_id][info_type]["person_name"]
|
|
||||||
if not self.info_fetched_cache[person_id][info_type]["unknow"]:
|
|
||||||
info_content = self.info_fetched_cache[person_id][info_type]["info"]
|
|
||||||
person_known_infos.append(f"[{info_type}]:{info_content}")
|
|
||||||
else:
|
|
||||||
person_unknown_infos.append(info_type)
|
|
||||||
|
|
||||||
# 如果有已知信息,添加到已知信息列表
|
|
||||||
if person_known_infos:
|
|
||||||
known_info_str = ";".join(person_known_infos) + ";"
|
|
||||||
persons_with_known_info.append((person_name, known_info_str))
|
|
||||||
|
|
||||||
# 如果有未知信息,添加到未知信息列表
|
|
||||||
if person_unknown_infos:
|
|
||||||
persons_with_unknown_info.append((person_name, person_unknown_infos))
|
|
||||||
|
|
||||||
# 先输出有已知信息的人员
|
|
||||||
for person_name, known_info_str in persons_with_known_info:
|
|
||||||
persons_infos_str += f"你对 {person_name} 的了解:{known_info_str}\n"
|
|
||||||
|
|
||||||
# 统一处理未知信息,避免重复的警告文本
|
|
||||||
if persons_with_unknown_info:
|
|
||||||
unknown_persons_details = []
|
|
||||||
for person_name, unknown_types in persons_with_unknown_info:
|
|
||||||
unknown_types_str = "、".join(unknown_types)
|
|
||||||
unknown_persons_details.append(f"{person_name}的[{unknown_types_str}]")
|
|
||||||
|
|
||||||
if len(unknown_persons_details) == 1:
|
|
||||||
persons_infos_str += (
|
|
||||||
f"你不了解{unknown_persons_details[0]}信息,不要胡乱回答,可以直接说不知道或忘记了;\n"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
unknown_all_str = "、".join(unknown_persons_details)
|
|
||||||
persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n"
|
|
||||||
|
|
||||||
return persons_infos_str
|
|
||||||
|
|
||||||
# ================================
|
# ================================
|
||||||
# 关系构建模块
|
# 关系构建模块
|
||||||
# 负责触发关系构建、整合消息段、更新用户印象
|
# 负责触发关系构建、整合消息段、更新用户印象
|
||||||
@@ -783,169 +520,3 @@ class PersonImpressionpProcessor(BaseProcessor):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"为 {person_id} 更新印象时发生错误: {e}")
|
logger.error(f"为 {person_id} 更新印象时发生错误: {e}")
|
||||||
logger.error(traceback.format_exc())
|
logger.error(traceback.format_exc())
|
||||||
|
|
||||||
# ================================
|
|
||||||
# 信息调取模块
|
|
||||||
# 负责实时分析对话需求、提取用户信息、管理信息缓存
|
|
||||||
# ================================
|
|
||||||
|
|
||||||
async def _fetch_single_info_instant(self, person_id: str, info_type: str, start_time: float):
|
|
||||||
"""
|
|
||||||
使用小模型提取单个信息类型
|
|
||||||
"""
|
|
||||||
person_info_manager = get_person_info_manager()
|
|
||||||
|
|
||||||
# 首先检查 info_list 缓存
|
|
||||||
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
|
||||||
cached_info = None
|
|
||||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
|
||||||
|
|
||||||
# print(f"info_list: {info_list}")
|
|
||||||
|
|
||||||
# 查找对应的 info_type
|
|
||||||
for info_item in info_list:
|
|
||||||
if info_item.get("info_type") == info_type:
|
|
||||||
cached_info = info_item.get("info_content")
|
|
||||||
logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name} 的 {info_type} 信息: {cached_info}")
|
|
||||||
break
|
|
||||||
|
|
||||||
# 如果缓存中有信息,直接使用
|
|
||||||
if cached_info:
|
|
||||||
if person_id not in self.info_fetched_cache:
|
|
||||||
self.info_fetched_cache[person_id] = {}
|
|
||||||
|
|
||||||
self.info_fetched_cache[person_id][info_type] = {
|
|
||||||
"info": cached_info,
|
|
||||||
"ttl": 2,
|
|
||||||
"start_time": start_time,
|
|
||||||
"person_name": person_name,
|
|
||||||
"unknow": cached_info == "none",
|
|
||||||
}
|
|
||||||
logger.info(f"{self.log_prefix} 记得 {person_name} 的 {info_type}: {cached_info}")
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
|
||||||
person_impression = await person_info_manager.get_value(person_id, "impression")
|
|
||||||
if person_impression:
|
|
||||||
person_impression_block = (
|
|
||||||
f"<对{person_name}的总体了解>\n{person_impression}\n</对{person_name}的总体了解>"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
person_impression_block = ""
|
|
||||||
|
|
||||||
points = await person_info_manager.get_value(person_id, "points")
|
|
||||||
if points:
|
|
||||||
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
|
|
||||||
points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n</对{person_name}的近期了解>"
|
|
||||||
else:
|
|
||||||
points_text_block = ""
|
|
||||||
|
|
||||||
if not points_text_block and not person_impression_block:
|
|
||||||
if person_id not in self.info_fetched_cache:
|
|
||||||
self.info_fetched_cache[person_id] = {}
|
|
||||||
self.info_fetched_cache[person_id][info_type] = {
|
|
||||||
"info": "none",
|
|
||||||
"ttl": 2,
|
|
||||||
"start_time": start_time,
|
|
||||||
"person_name": person_name,
|
|
||||||
"unknow": True,
|
|
||||||
}
|
|
||||||
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
|
|
||||||
await self._save_info_to_cache(person_id, info_type, "none")
|
|
||||||
return
|
|
||||||
|
|
||||||
nickname_str = ",".join(global_config.bot.alias_names)
|
|
||||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
|
||||||
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
|
|
||||||
name_block=name_block,
|
|
||||||
info_type=info_type,
|
|
||||||
person_impression_block=person_impression_block,
|
|
||||||
person_name=person_name,
|
|
||||||
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
|
|
||||||
points_text_block=points_text_block,
|
|
||||||
)
|
|
||||||
except Exception:
|
|
||||||
logger.error(traceback.format_exc())
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
# 使用小模型进行即时提取
|
|
||||||
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
|
|
||||||
|
|
||||||
if content:
|
|
||||||
content_json = json.loads(repair_json(content))
|
|
||||||
if info_type in content_json:
|
|
||||||
info_content = content_json[info_type]
|
|
||||||
is_unknown = info_content == "none" or not info_content
|
|
||||||
|
|
||||||
# 保存到运行时缓存
|
|
||||||
if person_id not in self.info_fetched_cache:
|
|
||||||
self.info_fetched_cache[person_id] = {}
|
|
||||||
self.info_fetched_cache[person_id][info_type] = {
|
|
||||||
"info": "unknow" if is_unknown else info_content,
|
|
||||||
"ttl": 3,
|
|
||||||
"start_time": start_time,
|
|
||||||
"person_name": person_name,
|
|
||||||
"unknow": is_unknown,
|
|
||||||
}
|
|
||||||
|
|
||||||
# 保存到持久化缓存 (info_list)
|
|
||||||
await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none")
|
|
||||||
|
|
||||||
if not is_unknown:
|
|
||||||
logger.info(f"{self.log_prefix} 思考得到,{person_name} 的 {info_type}: {content}")
|
|
||||||
else:
|
|
||||||
logger.info(f"{self.log_prefix} 思考了也不知道{person_name} 的 {info_type} 信息")
|
|
||||||
else:
|
|
||||||
logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name} 的 {info_type} 信息失败。")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"{self.log_prefix} 执行小模型请求获取用户信息时出错: {e}")
|
|
||||||
logger.error(traceback.format_exc())
|
|
||||||
|
|
||||||
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
|
|
||||||
"""
|
|
||||||
将提取到的信息保存到 person_info 的 info_list 字段中
|
|
||||||
|
|
||||||
Args:
|
|
||||||
person_id: 用户ID
|
|
||||||
info_type: 信息类型
|
|
||||||
info_content: 信息内容
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
person_info_manager = get_person_info_manager()
|
|
||||||
|
|
||||||
# 获取现有的 info_list
|
|
||||||
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
|
||||||
|
|
||||||
# 查找是否已存在相同 info_type 的记录
|
|
||||||
found_index = -1
|
|
||||||
for i, info_item in enumerate(info_list):
|
|
||||||
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
|
|
||||||
found_index = i
|
|
||||||
break
|
|
||||||
|
|
||||||
# 创建新的信息记录
|
|
||||||
new_info_item = {
|
|
||||||
"info_type": info_type,
|
|
||||||
"info_content": info_content,
|
|
||||||
}
|
|
||||||
|
|
||||||
if found_index >= 0:
|
|
||||||
# 更新现有记录
|
|
||||||
info_list[found_index] = new_info_item
|
|
||||||
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id} 的 {info_type} 信息缓存")
|
|
||||||
else:
|
|
||||||
# 添加新记录
|
|
||||||
info_list.append(new_info_item)
|
|
||||||
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id} 的 {info_type} 信息缓存")
|
|
||||||
|
|
||||||
# 保存更新后的 info_list
|
|
||||||
await person_info_manager.update_one_field(person_id, "info_list", info_list)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
|
|
||||||
logger.error(traceback.format_exc())
|
|
||||||
|
|
||||||
|
|
||||||
init_prompt()
|
|
||||||
|
|||||||
@@ -236,14 +236,6 @@ class ActionPlanner(BasePlanner):
|
|||||||
|
|
||||||
action_data["loop_start_time"] = loop_start_time
|
action_data["loop_start_time"] = loop_start_time
|
||||||
|
|
||||||
memory_str = ""
|
|
||||||
if running_memorys:
|
|
||||||
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
|
|
||||||
for running_memory in running_memorys:
|
|
||||||
memory_str += f"{running_memory['content']}\n"
|
|
||||||
if memory_str:
|
|
||||||
action_data["memory_block"] = memory_str
|
|
||||||
|
|
||||||
# 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data
|
# 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data
|
||||||
|
|
||||||
if extracted_action not in current_available_actions:
|
if extracted_action not in current_available_actions:
|
||||||
|
|||||||
@@ -329,7 +329,13 @@ class FocusChatProcessorConfig(ConfigBase):
|
|||||||
"""专注聊天处理器配置类"""
|
"""专注聊天处理器配置类"""
|
||||||
|
|
||||||
person_impression_processor: bool = True
|
person_impression_processor: bool = True
|
||||||
"""是否启用关系识别处理器"""
|
"""是否启用关系识别处理器(已废弃,为了兼容性保留)"""
|
||||||
|
|
||||||
|
relationship_build_processor: bool = True
|
||||||
|
"""是否启用关系构建处理器"""
|
||||||
|
|
||||||
|
real_time_info_processor: bool = True
|
||||||
|
"""是否启用实时信息提取处理器"""
|
||||||
|
|
||||||
tool_use_processor: bool = True
|
tool_use_processor: bool = True
|
||||||
"""是否启用工具使用处理器"""
|
"""是否启用工具使用处理器"""
|
||||||
|
|||||||
Reference in New Issue
Block a user