diff --git a/src/chat/focus_chat/heartFC_chat.py b/src/chat/focus_chat/heartFC_chat.py index 1efbec8e8..78ca00192 100644 --- a/src/chat/focus_chat/heartFC_chat.py +++ b/src/chat/focus_chat/heartFC_chat.py @@ -13,7 +13,8 @@ from src.chat.heart_flow.observation.observation import Observation from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail from src.chat.focus_chat.info.info_base import InfoBase from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor -from src.chat.focus_chat.info_processors.relationship_processor import PersonImpressionpProcessor +from src.chat.focus_chat.info_processors.relationship_processor import RelationshipBuildProcessor +from src.chat.focus_chat.info_processors.real_time_info_processor import RealTimeInfoProcessor from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation @@ -56,7 +57,8 @@ PROCESSOR_CLASSES = { # 定义后期处理器映射:在规划后、动作执行前运行的处理器 POST_PLANNING_PROCESSOR_CLASSES = { "ToolProcessor": (ToolProcessor, "tool_use_processor"), - "PersonImpressionpProcessor": (PersonImpressionpProcessor, "person_impression_processor"), + "RelationshipBuildProcessor": (RelationshipBuildProcessor, "relationship_build_processor"), + "RealTimeInfoProcessor": (RealTimeInfoProcessor, "real_time_info_processor"), } logger = get_logger("hfc") # Logger Name Changed @@ -132,11 +134,20 @@ class HeartFChatting: # 初始化后期处理器(规划后执行的处理器) self.enabled_post_planning_processor_names = [] for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items(): - # 对于关系处理器,需要同时检查两个配置项 - if proc_name == "PersonImpressionpProcessor": - if global_config.relationship.enable_relationship and getattr( - config_processor_settings, config_key, True - ): + # 对于关系相关处理器,需要同时检查关系配置项 + if proc_name in ["RelationshipBuildProcessor", "RealTimeInfoProcessor"]: + # 检查全局关系开关 + if not global_config.relationship.enable_relationship: + continue + + # 检查处理器特定配置,同时支持向后兼容 + processor_enabled = getattr(config_processor_settings, config_key, True) + + # 向后兼容:如果旧的person_impression_processor为True,则启用两个新处理器 + if not processor_enabled and getattr(config_processor_settings, "person_impression_processor", True): + processor_enabled = True + + if processor_enabled: self.enabled_post_planning_processor_names.append(proc_name) else: # 其他后期处理器的逻辑 @@ -258,7 +269,8 @@ class HeartFChatting: # 根据处理器类名判断是否需要 subheartflow_id if name in [ "ToolProcessor", - "PersonImpressionpProcessor", + "RelationshipBuildProcessor", + "RealTimeInfoProcessor", "ExpressionSelectorProcessor", ]: self.post_planning_processors.append(processor_actual_class(subheartflow_id=self.stream_id)) diff --git a/src/chat/focus_chat/info_processors/real_time_info_processor.py b/src/chat/focus_chat/info_processors/real_time_info_processor.py new file mode 100644 index 000000000..6536ef6ec --- /dev/null +++ b/src/chat/focus_chat/info_processors/real_time_info_processor.py @@ -0,0 +1,552 @@ +from src.chat.heart_flow.observation.chatting_observation import ChattingObservation +from src.chat.heart_flow.observation.observation import Observation +from src.llm_models.utils_model import LLMRequest +from src.config.config import global_config +import time +import traceback +from src.common.logger import get_logger +from src.chat.utils.prompt_builder import Prompt, global_prompt_manager +from src.person_info.person_info import get_person_info_manager +from .base_processor import BaseProcessor +from typing import List, Dict +from src.chat.focus_chat.info.info_base import InfoBase +from src.chat.focus_chat.info.relation_info import RelationInfo +from json_repair import repair_json +import json + + +logger = get_logger("real_time_info_processor") + + +def init_real_time_info_prompts(): + """初始化实时信息提取相关的提示词""" + relationship_prompt = """ +<聊天记录> +{chat_observe_info} + + +{name_block} +现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息: +1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,对ta的印象,最近发生的事等等。 +2.请注意,请不要重复调取相同的信息,已经调取的信息如下: +{info_cache_block} +3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}} + +请以json格式输出,例如: + +{{ + "info_type": "信息类型", +}} + +请严格按照json输出格式,不要输出多余内容: +""" + Prompt(relationship_prompt, "real_time_info_identify_prompt") + + fetch_info_prompt = """ + +{name_block} +以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解: +{person_impression_block} +{points_text_block} + +请从中提取用户"{person_name}"的有关"{info_type}"信息 +请以json格式输出,例如: + +{{ + {info_json_str} +}} + +请严格按照json输出格式,不要输出多余内容: +""" + Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt") + + +class RealTimeInfoProcessor(BaseProcessor): + """实时信息提取处理器 + + 负责从对话中识别需要的用户信息,并从用户档案中实时提取相关信息 + """ + + log_prefix = "实时信息" + + def __init__(self, subheartflow_id: str): + super().__init__() + + self.subheartflow_id = subheartflow_id + + # 信息获取缓存:记录正在获取的信息请求 + self.info_fetching_cache: List[Dict[str, any]] = [] + + # 信息结果缓存:存储已获取的信息结果,带TTL + self.info_fetched_cache: Dict[str, Dict[str, any]] = {} + # 结构:{person_id: {info_type: {"info": str, "ttl": int, "start_time": float, "person_name": str, "unknow": bool}}} + + # LLM模型配置 + self.llm_model = LLMRequest( + model=global_config.model.relation, + request_type="focus.real_time_info", + ) + + # 小模型用于即时信息提取 + self.instant_llm_model = LLMRequest( + model=global_config.model.utils_small, + request_type="focus.real_time_info.instant", + ) + + from src.chat.message_receive.chat_stream import get_chat_manager + name = get_chat_manager().get_stream_name(self.subheartflow_id) + self.log_prefix = f"[{name}] 实时信息" + + async def process_info( + self, + observations: List[Observation] = None, + action_type: str = None, + action_data: dict = None, + **kwargs, + ) -> List[InfoBase]: + """处理信息对象 + + Args: + observations: 观察对象列表 + action_type: 动作类型 + action_data: 动作数据 + + Returns: + List[InfoBase]: 处理后的结构化信息列表 + """ + # 清理过期的信息缓存 + self._cleanup_expired_cache() + + # 执行实时信息识别和提取 + relation_info_str = await self._identify_and_extract_info(observations, action_type, action_data) + + if relation_info_str: + relation_info = RelationInfo() + relation_info.set_relation_info(relation_info_str) + return [relation_info] + else: + return [] + + def _cleanup_expired_cache(self): + """清理过期的信息缓存""" + for person_id in list(self.info_fetched_cache.keys()): + for info_type in list(self.info_fetched_cache[person_id].keys()): + self.info_fetched_cache[person_id][info_type]["ttl"] -= 1 + if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0: + del self.info_fetched_cache[person_id][info_type] + if not self.info_fetched_cache[person_id]: + del self.info_fetched_cache[person_id] + + async def _identify_and_extract_info( + self, + observations: List[Observation] = None, + action_type: str = None, + action_data: dict = None, + ) -> str: + """识别并提取用户信息 + + Args: + observations: 观察对象列表 + action_type: 动作类型 + action_data: 动作数据 + + Returns: + str: 提取到的用户信息字符串 + """ + # 只处理回复动作 + if action_type != "reply": + return None + + # 解析回复目标 + target_message = action_data.get("reply_to", "") + sender, text = self._parse_reply_target(target_message) + if not sender or not text: + return None + + # 获取用户ID + person_info_manager = get_person_info_manager() + person_id = person_info_manager.get_person_id_by_person_name(sender) + if not person_id: + logger.warning(f"{self.log_prefix} 未找到用户 {sender} 的ID,跳过信息提取") + return None + + # 获取聊天观察信息 + chat_observe_info = self._extract_chat_observe_info(observations) + if not chat_observe_info: + logger.debug(f"{self.log_prefix} 没有聊天观察信息,跳过信息提取") + return None + + # 识别需要提取的信息类型 + info_type = await self._identify_needed_info(chat_observe_info, sender, text) + + # 如果需要提取新信息,执行提取 + if info_type: + await self._extract_single_info(person_id, info_type, sender) + + # 组织并返回已知信息 + return self._organize_known_info() + + def _parse_reply_target(self, target_message: str) -> tuple: + """解析回复目标消息 + + Args: + target_message: 目标消息,格式为 "用户名:消息内容" + + Returns: + tuple: (发送者, 消息内容) + """ + if ":" in target_message: + parts = target_message.split(":", 1) + elif ":" in target_message: + parts = target_message.split(":", 1) + else: + logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}") + return None, None + + if len(parts) != 2: + logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}") + return None, None + + sender = parts[0].strip() + text = parts[1].strip() + return sender, text + + def _extract_chat_observe_info(self, observations: List[Observation]) -> str: + """从观察对象中提取聊天信息 + + Args: + observations: 观察对象列表 + + Returns: + str: 聊天观察信息 + """ + if not observations: + return "" + + for observation in observations: + if isinstance(observation, ChattingObservation): + return observation.get_observe_info() + return "" + + async def _identify_needed_info(self, chat_observe_info: str, sender: str, text: str) -> str: + """识别需要提取的信息类型 + + Args: + chat_observe_info: 聊天观察信息 + sender: 发送者 + text: 消息内容 + + Returns: + str: 需要提取的信息类型,如果不需要则返回None + """ + # 构建名称信息块 + nickname_str = ",".join(global_config.bot.alias_names) + name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" + + # 构建已获取信息缓存块 + info_cache_block = self._build_info_cache_block() + + # 构建提示词 + prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format( + chat_observe_info=chat_observe_info, + name_block=name_block, + info_cache_block=info_cache_block, + person_name=sender, + target_message=text, + ) + + try: + logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n") + content, _ = await self.llm_model.generate_response_async(prompt=prompt) + + if content: + content_json = json.loads(repair_json(content)) + + # 检查是否返回了不需要查询的标志 + if "none" in content_json: + logger.info(f"{self.log_prefix} LLM判断当前不需要查询任何信息:{content_json.get('none', '')}") + return None + + info_type = content_json.get("info_type") + if info_type: + # 记录信息获取请求 + self.info_fetching_cache.append({ + "person_id": get_person_info_manager().get_person_id_by_person_name(sender), + "person_name": sender, + "info_type": info_type, + "start_time": time.time(), + "forget": False, + }) + + # 限制缓存大小 + if len(self.info_fetching_cache) > 20: + self.info_fetching_cache.pop(0) + + logger.info(f"{self.log_prefix} 识别到需要调取用户 {sender} 的[{info_type}]信息") + return info_type + else: + logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}") + + except Exception as e: + logger.error(f"{self.log_prefix} 执行信息识别LLM请求时出错: {e}") + logger.error(traceback.format_exc()) + + return None + + def _build_info_cache_block(self) -> str: + """构建已获取信息的缓存块""" + info_cache_block = "" + if self.info_fetching_cache: + # 对于每个(person_id, info_type)组合,只保留最新的记录 + latest_records = {} + for info_fetching in self.info_fetching_cache: + key = (info_fetching["person_id"], info_fetching["info_type"]) + if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]: + latest_records[key] = info_fetching + + # 按时间排序并生成显示文本 + sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"]) + for info_fetching in sorted_records: + info_cache_block += ( + f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n" + ) + return info_cache_block + + async def _extract_single_info(self, person_id: str, info_type: str, person_name: str): + """提取单个信息类型 + + Args: + person_id: 用户ID + info_type: 信息类型 + person_name: 用户名 + """ + start_time = time.time() + person_info_manager = get_person_info_manager() + + # 首先检查 info_list 缓存 + info_list = await person_info_manager.get_value(person_id, "info_list") or [] + cached_info = None + + # 查找对应的 info_type + for info_item in info_list: + if info_item.get("info_type") == info_type: + cached_info = info_item.get("info_content") + logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name} 的 {info_type} 信息: {cached_info}") + break + + # 如果缓存中有信息,直接使用 + if cached_info: + if person_id not in self.info_fetched_cache: + self.info_fetched_cache[person_id] = {} + + self.info_fetched_cache[person_id][info_type] = { + "info": cached_info, + "ttl": 2, + "start_time": start_time, + "person_name": person_name, + "unknow": cached_info == "none", + } + logger.info(f"{self.log_prefix} 记得 {person_name} 的 {info_type}: {cached_info}") + return + + # 如果缓存中没有,尝试从用户档案中提取 + try: + person_impression = await person_info_manager.get_value(person_id, "impression") + points = await person_info_manager.get_value(person_id, "points") + + # 构建印象信息块 + if person_impression: + person_impression_block = ( + f"<对{person_name}的总体了解>\n{person_impression}\n" + ) + else: + person_impression_block = "" + + # 构建要点信息块 + if points: + points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points]) + points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n" + else: + points_text_block = "" + + # 如果完全没有用户信息 + if not points_text_block and not person_impression_block: + if person_id not in self.info_fetched_cache: + self.info_fetched_cache[person_id] = {} + self.info_fetched_cache[person_id][info_type] = { + "info": "none", + "ttl": 2, + "start_time": start_time, + "person_name": person_name, + "unknow": True, + } + logger.info(f"{self.log_prefix} 完全不认识 {person_name}") + await self._save_info_to_cache(person_id, info_type, "none") + return + + # 使用LLM提取信息 + nickname_str = ",".join(global_config.bot.alias_names) + name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" + + prompt = (await global_prompt_manager.get_prompt_async("real_time_fetch_person_info_prompt")).format( + name_block=name_block, + info_type=info_type, + person_impression_block=person_impression_block, + person_name=person_name, + info_json_str=f'"{info_type}": "有关{info_type}的信息内容"', + points_text_block=points_text_block, + ) + + # 使用小模型进行即时提取 + content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt) + + if content: + content_json = json.loads(repair_json(content)) + if info_type in content_json: + info_content = content_json[info_type] + is_unknown = info_content == "none" or not info_content + + # 保存到运行时缓存 + if person_id not in self.info_fetched_cache: + self.info_fetched_cache[person_id] = {} + self.info_fetched_cache[person_id][info_type] = { + "info": "unknow" if is_unknown else info_content, + "ttl": 3, + "start_time": start_time, + "person_name": person_name, + "unknow": is_unknown, + } + + # 保存到持久化缓存 (info_list) + await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none") + + if not is_unknown: + logger.info(f"{self.log_prefix} 思考得到,{person_name} 的 {info_type}: {info_content}") + else: + logger.info(f"{self.log_prefix} 思考了也不知道{person_name} 的 {info_type} 信息") + else: + logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name} 的 {info_type} 信息失败。") + + except Exception as e: + logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}") + logger.error(traceback.format_exc()) + + async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str): + """将提取到的信息保存到 person_info 的 info_list 字段中 + + Args: + person_id: 用户ID + info_type: 信息类型 + info_content: 信息内容 + """ + try: + person_info_manager = get_person_info_manager() + + # 获取现有的 info_list + info_list = await person_info_manager.get_value(person_id, "info_list") or [] + + # 查找是否已存在相同 info_type 的记录 + found_index = -1 + for i, info_item in enumerate(info_list): + if isinstance(info_item, dict) and info_item.get("info_type") == info_type: + found_index = i + break + + # 创建新的信息记录 + new_info_item = { + "info_type": info_type, + "info_content": info_content, + } + + if found_index >= 0: + # 更新现有记录 + info_list[found_index] = new_info_item + logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id} 的 {info_type} 信息缓存") + else: + # 添加新记录 + info_list.append(new_info_item) + logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id} 的 {info_type} 信息缓存") + + # 保存更新后的 info_list + await person_info_manager.update_one_field(person_id, "info_list", info_list) + + except Exception as e: + logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}") + logger.error(traceback.format_exc()) + + def _organize_known_info(self) -> str: + """组织已知的用户信息为字符串 + + Returns: + str: 格式化的用户信息字符串 + """ + persons_infos_str = "" + + if self.info_fetched_cache: + persons_with_known_info = [] # 有已知信息的人员 + persons_with_unknown_info = [] # 有未知信息的人员 + + for person_id in self.info_fetched_cache: + person_known_infos = [] + person_unknown_infos = [] + person_name = "" + + for info_type in self.info_fetched_cache[person_id]: + person_name = self.info_fetched_cache[person_id][info_type]["person_name"] + if not self.info_fetched_cache[person_id][info_type]["unknow"]: + info_content = self.info_fetched_cache[person_id][info_type]["info"] + person_known_infos.append(f"[{info_type}]:{info_content}") + else: + person_unknown_infos.append(info_type) + + # 如果有已知信息,添加到已知信息列表 + if person_known_infos: + known_info_str = ";".join(person_known_infos) + ";" + persons_with_known_info.append((person_name, known_info_str)) + + # 如果有未知信息,添加到未知信息列表 + if person_unknown_infos: + persons_with_unknown_info.append((person_name, person_unknown_infos)) + + # 先输出有已知信息的人员 + for person_name, known_info_str in persons_with_known_info: + persons_infos_str += f"你对 {person_name} 的了解:{known_info_str}\n" + + # 统一处理未知信息,避免重复的警告文本 + if persons_with_unknown_info: + unknown_persons_details = [] + for person_name, unknown_types in persons_with_unknown_info: + unknown_types_str = "、".join(unknown_types) + unknown_persons_details.append(f"{person_name}的[{unknown_types_str}]") + + if len(unknown_persons_details) == 1: + persons_infos_str += ( + f"你不了解{unknown_persons_details[0]}信息,不要胡乱回答,可以直接说不知道或忘记了;\n" + ) + else: + unknown_all_str = "、".join(unknown_persons_details) + persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n" + + return persons_infos_str + + def get_cache_status(self) -> str: + """获取缓存状态信息,用于调试和监控""" + status_lines = [f"{self.log_prefix} 实时信息缓存状态:"] + status_lines.append(f"获取请求缓存数:{len(self.info_fetching_cache)}") + status_lines.append(f"结果缓存用户数:{len(self.info_fetched_cache)}") + + if self.info_fetched_cache: + for person_id, info_types in self.info_fetched_cache.items(): + person_name = list(info_types.values())[0]["person_name"] if info_types else person_id + status_lines.append(f" 用户 {person_name}: {len(info_types)} 个信息类型") + for info_type, info_data in info_types.items(): + ttl = info_data["ttl"] + unknow = info_data["unknow"] + status = "未知" if unknow else "已知" + status_lines.append(f" {info_type}: {status} (TTL: {ttl})") + + return "\n".join(status_lines) + + +# 初始化提示词 +init_real_time_info_prompts() \ No newline at end of file diff --git a/src/chat/focus_chat/info_processors/relationship_processor.py b/src/chat/focus_chat/info_processors/relationship_processor.py index e16def9fe..dff6d0931 100644 --- a/src/chat/focus_chat/info_processors/relationship_processor.py +++ b/src/chat/focus_chat/info_processors/relationship_processor.py @@ -5,18 +5,13 @@ from src.config.config import global_config import time import traceback from src.common.logger import get_logger -from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.chat.message_receive.chat_stream import get_chat_manager from src.person_info.relationship_manager import get_relationship_manager from .base_processor import BaseProcessor from typing import List from typing import Dict from src.chat.focus_chat.info.info_base import InfoBase -from src.chat.focus_chat.info.relation_info import RelationInfo -from json_repair import repair_json from src.person_info.person_info import get_person_info_manager -import json -import asyncio from src.chat.utils.chat_message_builder import ( get_raw_msg_by_timestamp_with_chat, get_raw_msg_by_timestamp_with_chat_inclusive, @@ -36,62 +31,21 @@ SEGMENT_CLEANUP_CONFIG = { } -logger = get_logger("processor") +logger = get_logger("relationship_build_processor") -def init_prompt(): - relationship_prompt = """ -<聊天记录> -{chat_observe_info} - - -{name_block} -现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息: -1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,对ta的印象,最近发生的事等等。 -2.请注意,请不要重复调取相同的信息,已经调取的信息如下: -{info_cache_block} -3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}} - -请以json格式输出,例如: - -{{ - "info_type": "信息类型", -}} - -请严格按照json输出格式,不要输出多余内容: -""" - Prompt(relationship_prompt, "relationship_prompt") - - fetch_info_prompt = """ +class RelationshipBuildProcessor(BaseProcessor): + """关系构建处理器 -{name_block} -以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解: -{person_impression_block} -{points_text_block} - -请从中提取用户"{person_name}"的有关"{info_type}"信息 -请以json格式输出,例如: - -{{ - {info_json_str} -}} - -请严格按照json输出格式,不要输出多余内容: -""" - Prompt(fetch_info_prompt, "fetch_person_info_prompt") - - -class PersonImpressionpProcessor(BaseProcessor): - log_prefix = "关系" + 负责跟踪用户消息活动、管理消息段、触发关系构建和印象更新 + """ + + log_prefix = "关系构建" def __init__(self, subheartflow_id: str): super().__init__() self.subheartflow_id = subheartflow_id - self.info_fetching_cache: List[Dict[str, any]] = [] - self.info_fetched_cache: Dict[ - str, Dict[str, any] - ] = {} # {person_id: {"info": str, "ttl": int, "start_time": float}} # 新的消息段缓存结构: # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]} @@ -107,19 +61,8 @@ class PersonImpressionpProcessor(BaseProcessor): # 最后清理时间,用于定期清理老消息段 self.last_cleanup_time = 0.0 - self.llm_model = LLMRequest( - model=global_config.model.relation, - request_type="focus.relationship", - ) - - # 小模型用于即时信息提取 - self.instant_llm_model = LLMRequest( - model=global_config.model.utils_small, - request_type="focus.relationship.instant", - ) - name = get_chat_manager().get_stream_name(self.subheartflow_id) - self.log_prefix = f"[{name}] " + self.log_prefix = f"[{name}] 关系构建" # 加载持久化的缓存 self._load_cache() @@ -444,17 +387,7 @@ class PersonImpressionpProcessor(BaseProcessor): List[InfoBase]: 处理后的结构化信息列表 """ await self.build_relation(observations) - - relation_info_str = await self.relation_identify(observations, action_type, action_data) - - if relation_info_str: - relation_info = RelationInfo() - relation_info.set_relation_info(relation_info_str) - else: - relation_info = None - return None - - return [relation_info] + return [] # 关系构建处理器不返回信息,只负责后台构建关系 async def build_relation(self, observations: List[Observation] = None): """构建关系""" @@ -512,208 +445,12 @@ class PersonImpressionpProcessor(BaseProcessor): for person_id in users_to_build_relationship: segments = self.person_engaged_cache[person_id] # 异步执行关系构建 + import asyncio asyncio.create_task(self.update_impression_on_segments(person_id, self.subheartflow_id, segments)) # 移除已处理的用户缓存 del self.person_engaged_cache[person_id] self._save_cache() - async def relation_identify( - self, - observations: List[Observation] = None, - action_type: str = None, - action_data: dict = None, - ): - """ - 从人物获取信息 - """ - - chat_observe_info = "" - current_time = time.time() - if observations: - for observation in observations: - if isinstance(observation, ChattingObservation): - chat_observe_info = observation.get_observe_info() - # latest_message_time = observation.last_observe_time - # 从聊天观察中提取用户信息并更新消息段 - # 获取最新的非bot消息来更新消息段 - latest_messages = get_raw_msg_by_timestamp_with_chat( - self.subheartflow_id, - self.last_processed_message_time, - current_time, - limit=50, # 获取自上次处理后的消息 - ) - if latest_messages: - # 处理所有新的非bot消息 - for latest_msg in latest_messages: - user_id = latest_msg.get("user_id") - platform = latest_msg.get("user_platform") or latest_msg.get("chat_info_platform") - msg_time = latest_msg.get("time", 0) - - if ( - user_id - and platform - and user_id != global_config.bot.qq_account - and msg_time > self.last_processed_message_time - ): - from src.person_info.person_info import PersonInfoManager - - person_id = PersonInfoManager.get_person_id(platform, user_id) - self._update_message_segments(person_id, msg_time) - logger.debug( - f"{self.log_prefix} 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}" - ) - self.last_processed_message_time = max(self.last_processed_message_time, msg_time) - break - - for person_id in list(self.info_fetched_cache.keys()): - for info_type in list(self.info_fetched_cache[person_id].keys()): - self.info_fetched_cache[person_id][info_type]["ttl"] -= 1 - if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0: - del self.info_fetched_cache[person_id][info_type] - if not self.info_fetched_cache[person_id]: - del self.info_fetched_cache[person_id] - - if action_type != "reply": - return None - - target_message = action_data.get("reply_to", "") - - if ":" in target_message: - parts = target_message.split(":", 1) - elif ":" in target_message: - parts = target_message.split(":", 1) - else: - logger.warning(f"reply_to格式不正确: {target_message},跳过关系识别") - return None - - if len(parts) != 2: - logger.warning(f"reply_to格式不正确: {target_message},跳过关系识别") - return None - - sender = parts[0].strip() - text = parts[1].strip() - - person_info_manager = get_person_info_manager() - person_id = person_info_manager.get_person_id_by_person_name(sender) - - if not person_id: - logger.warning(f"未找到用户 {sender} 的ID,跳过关系识别") - return None - - nickname_str = ",".join(global_config.bot.alias_names) - name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" - - info_cache_block = "" - if self.info_fetching_cache: - # 对于每个(person_id, info_type)组合,只保留最新的记录 - latest_records = {} - for info_fetching in self.info_fetching_cache: - key = (info_fetching["person_id"], info_fetching["info_type"]) - if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]: - latest_records[key] = info_fetching - - # 按时间排序并生成显示文本 - sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"]) - for info_fetching in sorted_records: - info_cache_block += ( - f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n" - ) - - prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format( - chat_observe_info=chat_observe_info, - name_block=name_block, - info_cache_block=info_cache_block, - person_name=sender, - target_message=text, - ) - - try: - logger.info(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n") - content, _ = await self.llm_model.generate_response_async(prompt=prompt) - if content: - # print(f"content: {content}") - content_json = json.loads(repair_json(content)) - - # 检查是否返回了不需要查询的标志 - if "none" in content_json: - logger.info(f"{self.log_prefix} LLM判断当前不需要查询任何信息:{content_json.get('none', '')}") - # 跳过新的信息提取,但仍会处理已有缓存 - else: - info_type = content_json.get("info_type") - if info_type: - self.info_fetching_cache.append( - { - "person_id": person_id, - "person_name": sender, - "info_type": info_type, - "start_time": time.time(), - "forget": False, - } - ) - if len(self.info_fetching_cache) > 20: - self.info_fetching_cache.pop(0) - - logger.info(f"{self.log_prefix} 调取用户 {sender} 的[{info_type}]信息。") - - # 执行信息提取 - await self._fetch_single_info_instant(person_id, info_type, time.time()) - else: - logger.warning(f"{self.log_prefix} LLM did not return a valid info_type. Response: {content}") - - except Exception as e: - logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}") - logger.error(traceback.format_exc()) - - # 7. 合并缓存和新处理的信息 - persons_infos_str = "" - # 处理已获取到的信息 - if self.info_fetched_cache: - persons_with_known_info = [] # 有已知信息的人员 - persons_with_unknown_info = [] # 有未知信息的人员 - - for person_id in self.info_fetched_cache: - person_known_infos = [] - person_unknown_infos = [] - person_name = "" - - for info_type in self.info_fetched_cache[person_id]: - person_name = self.info_fetched_cache[person_id][info_type]["person_name"] - if not self.info_fetched_cache[person_id][info_type]["unknow"]: - info_content = self.info_fetched_cache[person_id][info_type]["info"] - person_known_infos.append(f"[{info_type}]:{info_content}") - else: - person_unknown_infos.append(info_type) - - # 如果有已知信息,添加到已知信息列表 - if person_known_infos: - known_info_str = ";".join(person_known_infos) + ";" - persons_with_known_info.append((person_name, known_info_str)) - - # 如果有未知信息,添加到未知信息列表 - if person_unknown_infos: - persons_with_unknown_info.append((person_name, person_unknown_infos)) - - # 先输出有已知信息的人员 - for person_name, known_info_str in persons_with_known_info: - persons_infos_str += f"你对 {person_name} 的了解:{known_info_str}\n" - - # 统一处理未知信息,避免重复的警告文本 - if persons_with_unknown_info: - unknown_persons_details = [] - for person_name, unknown_types in persons_with_unknown_info: - unknown_types_str = "、".join(unknown_types) - unknown_persons_details.append(f"{person_name}的[{unknown_types_str}]") - - if len(unknown_persons_details) == 1: - persons_infos_str += ( - f"你不了解{unknown_persons_details[0]}信息,不要胡乱回答,可以直接说不知道或忘记了;\n" - ) - else: - unknown_all_str = "、".join(unknown_persons_details) - persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n" - - return persons_infos_str - # ================================ # 关系构建模块 # 负责触发关系构建、整合消息段、更新用户印象 @@ -783,169 +520,3 @@ class PersonImpressionpProcessor(BaseProcessor): except Exception as e: logger.error(f"为 {person_id} 更新印象时发生错误: {e}") logger.error(traceback.format_exc()) - - # ================================ - # 信息调取模块 - # 负责实时分析对话需求、提取用户信息、管理信息缓存 - # ================================ - - async def _fetch_single_info_instant(self, person_id: str, info_type: str, start_time: float): - """ - 使用小模型提取单个信息类型 - """ - person_info_manager = get_person_info_manager() - - # 首先检查 info_list 缓存 - info_list = await person_info_manager.get_value(person_id, "info_list") or [] - cached_info = None - person_name = await person_info_manager.get_value(person_id, "person_name") - - # print(f"info_list: {info_list}") - - # 查找对应的 info_type - for info_item in info_list: - if info_item.get("info_type") == info_type: - cached_info = info_item.get("info_content") - logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name} 的 {info_type} 信息: {cached_info}") - break - - # 如果缓存中有信息,直接使用 - if cached_info: - if person_id not in self.info_fetched_cache: - self.info_fetched_cache[person_id] = {} - - self.info_fetched_cache[person_id][info_type] = { - "info": cached_info, - "ttl": 2, - "start_time": start_time, - "person_name": person_name, - "unknow": cached_info == "none", - } - logger.info(f"{self.log_prefix} 记得 {person_name} 的 {info_type}: {cached_info}") - return - - try: - person_name = await person_info_manager.get_value(person_id, "person_name") - person_impression = await person_info_manager.get_value(person_id, "impression") - if person_impression: - person_impression_block = ( - f"<对{person_name}的总体了解>\n{person_impression}\n" - ) - else: - person_impression_block = "" - - points = await person_info_manager.get_value(person_id, "points") - if points: - points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points]) - points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n" - else: - points_text_block = "" - - if not points_text_block and not person_impression_block: - if person_id not in self.info_fetched_cache: - self.info_fetched_cache[person_id] = {} - self.info_fetched_cache[person_id][info_type] = { - "info": "none", - "ttl": 2, - "start_time": start_time, - "person_name": person_name, - "unknow": True, - } - logger.info(f"{self.log_prefix} 完全不认识 {person_name}") - await self._save_info_to_cache(person_id, info_type, "none") - return - - nickname_str = ",".join(global_config.bot.alias_names) - name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" - prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format( - name_block=name_block, - info_type=info_type, - person_impression_block=person_impression_block, - person_name=person_name, - info_json_str=f'"{info_type}": "有关{info_type}的信息内容"', - points_text_block=points_text_block, - ) - except Exception: - logger.error(traceback.format_exc()) - return - - try: - # 使用小模型进行即时提取 - content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt) - - if content: - content_json = json.loads(repair_json(content)) - if info_type in content_json: - info_content = content_json[info_type] - is_unknown = info_content == "none" or not info_content - - # 保存到运行时缓存 - if person_id not in self.info_fetched_cache: - self.info_fetched_cache[person_id] = {} - self.info_fetched_cache[person_id][info_type] = { - "info": "unknow" if is_unknown else info_content, - "ttl": 3, - "start_time": start_time, - "person_name": person_name, - "unknow": is_unknown, - } - - # 保存到持久化缓存 (info_list) - await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none") - - if not is_unknown: - logger.info(f"{self.log_prefix} 思考得到,{person_name} 的 {info_type}: {content}") - else: - logger.info(f"{self.log_prefix} 思考了也不知道{person_name} 的 {info_type} 信息") - else: - logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name} 的 {info_type} 信息失败。") - except Exception as e: - logger.error(f"{self.log_prefix} 执行小模型请求获取用户信息时出错: {e}") - logger.error(traceback.format_exc()) - - async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str): - """ - 将提取到的信息保存到 person_info 的 info_list 字段中 - - Args: - person_id: 用户ID - info_type: 信息类型 - info_content: 信息内容 - """ - try: - person_info_manager = get_person_info_manager() - - # 获取现有的 info_list - info_list = await person_info_manager.get_value(person_id, "info_list") or [] - - # 查找是否已存在相同 info_type 的记录 - found_index = -1 - for i, info_item in enumerate(info_list): - if isinstance(info_item, dict) and info_item.get("info_type") == info_type: - found_index = i - break - - # 创建新的信息记录 - new_info_item = { - "info_type": info_type, - "info_content": info_content, - } - - if found_index >= 0: - # 更新现有记录 - info_list[found_index] = new_info_item - logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id} 的 {info_type} 信息缓存") - else: - # 添加新记录 - info_list.append(new_info_item) - logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id} 的 {info_type} 信息缓存") - - # 保存更新后的 info_list - await person_info_manager.update_one_field(person_id, "info_list", info_list) - - except Exception as e: - logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}") - logger.error(traceback.format_exc()) - - -init_prompt() diff --git a/src/chat/focus_chat/planners/planner_simple.py b/src/chat/focus_chat/planners/planner_simple.py index e891a9769..20f41c711 100644 --- a/src/chat/focus_chat/planners/planner_simple.py +++ b/src/chat/focus_chat/planners/planner_simple.py @@ -236,14 +236,6 @@ class ActionPlanner(BasePlanner): action_data["loop_start_time"] = loop_start_time - memory_str = "" - if running_memorys: - memory_str = "以下是当前在聊天中,你回忆起的记忆:\n" - for running_memory in running_memorys: - memory_str += f"{running_memory['content']}\n" - if memory_str: - action_data["memory_block"] = memory_str - # 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data if extracted_action not in current_available_actions: diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 6957884f4..df64e0f10 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -329,7 +329,13 @@ class FocusChatProcessorConfig(ConfigBase): """专注聊天处理器配置类""" person_impression_processor: bool = True - """是否启用关系识别处理器""" + """是否启用关系识别处理器(已废弃,为了兼容性保留)""" + + relationship_build_processor: bool = True + """是否启用关系构建处理器""" + + real_time_info_processor: bool = True + """是否启用实时信息提取处理器""" tool_use_processor: bool = True """是否启用工具使用处理器"""