fix(affinity-interest-calculator): 限制总分和兴趣匹配分数上限为1.0,确保评分合理

This commit is contained in:
Windpicker-owo
2025-11-04 00:37:40 +08:00
parent 914fe59a10
commit 0abf76a688
2 changed files with 125 additions and 14 deletions

View File

@@ -124,6 +124,10 @@ class BotInterestManager:
tags_info = [f" - '{tag.tag_name}' (权重: {tag.weight:.2f})" for tag in loaded_interests.get_active_tags()]
tags_str = "\n".join(tags_info)
logger.info(f"当前兴趣标签:\n{tags_str}")
# 为加载的标签生成embedding数据库不存储embedding启动时动态生成
logger.info("🧠 为加载的标签生成embedding向量...")
await self._generate_embeddings_for_tags(loaded_interests)
else:
# 生成新的兴趣标签
logger.info("数据库中未找到兴趣标签,开始生成...")
@@ -317,23 +321,35 @@ class BotInterestManager:
return None
async def _generate_embeddings_for_tags(self, interests: BotPersonalityInterests):
"""为所有兴趣标签生成embedding缓存在内存中)"""
"""为所有兴趣标签生成embedding缓存在内存和文件中)"""
if not hasattr(self, "embedding_request"):
raise RuntimeError("❌ Embedding客户端未初始化无法生成embedding")
total_tags = len(interests.interest_tags)
logger.info(f"🧠 开始为 {total_tags} 个兴趣标签生成embedding向量动态生成仅内存缓存...")
# 尝试从文件加载缓存
file_cache = await self._load_embedding_cache_from_file(interests.personality_id)
if file_cache:
logger.info(f"📂 从文件加载 {len(file_cache)} 个embedding缓存")
self.embedding_cache.update(file_cache)
logger.info(f"🧠 开始为 {total_tags} 个兴趣标签生成embedding向量...")
cached_count = 0
memory_cached_count = 0
file_cached_count = 0
generated_count = 0
failed_count = 0
for i, tag in enumerate(interests.interest_tags, 1):
if tag.tag_name in self.embedding_cache:
# 使用内存缓存的embedding
# 使用缓存的embedding(可能来自内存或文件)
tag.embedding = self.embedding_cache[tag.tag_name]
cached_count += 1
logger.debug(f" [{i}/{total_tags}] 🏷️ '{tag.tag_name}' - 使用内存缓存")
if file_cache and tag.tag_name in file_cache:
file_cached_count += 1
logger.debug(f" [{i}/{total_tags}] 📂 '{tag.tag_name}' - 使用文件缓存")
else:
memory_cached_count += 1
logger.debug(f" [{i}/{total_tags}] 💾 '{tag.tag_name}' - 使用内存缓存")
else:
# 动态生成新的embedding
embedding_text = tag.tag_name
@@ -343,9 +359,9 @@ class BotInterestManager:
if embedding:
tag.embedding = embedding # 设置到 tag 对象(内存中)
self.embedding_cache[tag.tag_name] = embedding # 同时缓存
self.embedding_cache[tag.tag_name] = embedding # 同时缓存到内存
generated_count += 1
logger.debug(f"'{tag.tag_name}' embedding动态生成成功并缓存到内存")
logger.debug(f"'{tag.tag_name}' embedding动态生成成功")
else:
failed_count += 1
logger.warning(f"'{tag.tag_name}' embedding生成失败")
@@ -353,14 +369,20 @@ class BotInterestManager:
if failed_count > 0:
raise RuntimeError(f"❌ 有 {failed_count} 个兴趣标签embedding生成失败")
# 如果有新生成的embedding保存到文件
if generated_count > 0:
await self._save_embedding_cache_to_file(interests.personality_id)
logger.info(f"💾 已将 {generated_count} 个新生成的embedding保存到缓存文件")
interests.last_updated = datetime.now()
logger.info("=" * 50)
logger.info("✅ Embedding动态生成完成(仅存储在内存中)!")
logger.info("✅ Embedding生成完成!")
logger.info(f"📊 总标签数: {total_tags}")
logger.info(f"💾 内存缓存命中: {cached_count}")
logger.info(f"<EFBFBD> 文件缓存命中: {file_cached_count}")
logger.info(f"<EFBFBD>💾 内存缓存命中: {memory_cached_count}")
logger.info(f"🆕 新生成: {generated_count}")
logger.info(f"❌ 失败: {failed_count}")
logger.info(f"🗃️ 内存缓存大小: {len(self.embedding_cache)}")
logger.info(f"🗃️ 缓存大小: {len(self.embedding_cache)}")
logger.info("=" * 50)
async def _get_embedding(self, text: str) -> list[float]:
@@ -581,6 +603,13 @@ class BotInterestManager:
logger.debug(
f"最终结果: 总分={result.overall_score:.3f}, 置信度={result.confidence:.3f}, 匹配标签数={len(result.matched_tags)}"
)
# 如果有新生成的扩展embedding保存到缓存文件
if hasattr(self, '_new_expanded_embeddings_generated') and self._new_expanded_embeddings_generated:
await self._save_embedding_cache_to_file(self.current_interests.personality_id)
self._new_expanded_embeddings_generated = False
logger.debug("💾 已保存新生成的扩展embedding到缓存文件")
return result
async def _get_expanded_tag_embedding(self, tag_name: str) -> list[float] | None:
@@ -602,6 +631,7 @@ class BotInterestManager:
# 缓存结果
self.expanded_tag_cache[tag_name] = expanded_tag
self.expanded_embedding_cache[tag_name] = embedding
self._new_expanded_embeddings_generated = True # 标记有新生成的embedding
logger.debug(f"✅ 为标签'{tag_name}'生成并缓存扩展embedding: {expanded_tag[:50]}...")
return embedding
except Exception as e:
@@ -978,6 +1008,79 @@ class BotInterestManager:
logger.error("🔍 错误详情:")
traceback.print_exc()
async def _load_embedding_cache_from_file(self, personality_id: str) -> dict[str, list[float]] | None:
"""从文件加载embedding缓存"""
try:
import orjson
from pathlib import Path
cache_dir = Path("data/embedding")
cache_dir.mkdir(parents=True, exist_ok=True)
cache_file = cache_dir / f"{personality_id}_embeddings.json"
if not cache_file.exists():
logger.debug(f"📂 Embedding缓存文件不存在: {cache_file}")
return None
# 读取缓存文件
with open(cache_file, "rb") as f:
cache_data = orjson.loads(f.read())
# 验证缓存版本和embedding模型
cache_version = cache_data.get("version", 1)
cache_embedding_model = cache_data.get("embedding_model", "")
current_embedding_model = self.embedding_config.model_list[0] if hasattr(self.embedding_config, "model_list") else ""
if cache_embedding_model != current_embedding_model:
logger.warning(f"⚠️ Embedding模型已变更 ({cache_embedding_model}{current_embedding_model}),忽略旧缓存")
return None
embeddings = cache_data.get("embeddings", {})
# 同时加载扩展标签的embedding缓存
expanded_embeddings = cache_data.get("expanded_embeddings", {})
if expanded_embeddings:
self.expanded_embedding_cache.update(expanded_embeddings)
logger.info(f"📂 加载 {len(expanded_embeddings)} 个扩展标签embedding缓存")
logger.info(f"✅ 成功从文件加载 {len(embeddings)} 个标签embedding缓存 (版本: {cache_version}, 模型: {cache_embedding_model})")
return embeddings
except Exception as e:
logger.warning(f"⚠️ 加载embedding缓存文件失败: {e}")
return None
async def _save_embedding_cache_to_file(self, personality_id: str):
"""保存embedding缓存到文件包括扩展标签的embedding"""
try:
import orjson
from pathlib import Path
from datetime import datetime
cache_dir = Path("data/embedding")
cache_dir.mkdir(parents=True, exist_ok=True)
cache_file = cache_dir / f"{personality_id}_embeddings.json"
# 准备缓存数据
current_embedding_model = self.embedding_config.model_list[0] if hasattr(self.embedding_config, "model_list") and self.embedding_config.model_list else ""
cache_data = {
"version": 1,
"personality_id": personality_id,
"embedding_model": current_embedding_model,
"last_updated": datetime.now().isoformat(),
"embeddings": self.embedding_cache,
"expanded_embeddings": self.expanded_embedding_cache, # 同时保存扩展标签的embedding
}
# 写入文件
with open(cache_file, "wb") as f:
f.write(orjson.dumps(cache_data, option=orjson.OPT_INDENT_2))
logger.debug(f"💾 已保存 {len(self.embedding_cache)} 个标签embedding和 {len(self.expanded_embedding_cache)} 个扩展embedding到缓存文件: {cache_file}")
except Exception as e:
logger.warning(f"⚠️ 保存embedding缓存文件失败: {e}")
def get_current_interests(self) -> BotPersonalityInterests | None:
"""获取当前的兴趣标签配置"""
return self.current_interests

View File

@@ -117,17 +117,23 @@ class AffinityInterestCalculator(BaseInterestCalculator):
relationship_score = float(relationship_score) if relationship_score is not None else 0.0
mentioned_score = float(mentioned_score) if mentioned_score is not None else 0.0
total_score = (
raw_total_score = (
interest_match_score * self.score_weights["interest_match"]
+ relationship_score * self.score_weights["relationship"]
+ mentioned_score * self.score_weights["mentioned"]
)
# 限制总分上限为1.0,确保分数在合理范围内
total_score = min(raw_total_score, 1.0)
logger.debug(
f"[Affinity兴趣计算] 综合得分计算: {interest_match_score:.3f}*{self.score_weights['interest_match']} + "
f"{relationship_score:.3f}*{self.score_weights['relationship']} + "
f"{mentioned_score:.3f}*{self.score_weights['mentioned']} = {total_score:.3f}"
f"{mentioned_score:.3f}*{self.score_weights['mentioned']} = {raw_total_score:.3f}"
)
if raw_total_score > 1.0:
logger.debug(f"[Affinity兴趣计算] 原始分数 {raw_total_score:.3f} 超过1.0,已限制为 {total_score:.3f}")
# 5. 考虑连续不回复的阈值调整
adjusted_score = total_score
@@ -202,7 +208,9 @@ class AffinityInterestCalculator(BaseInterestCalculator):
len(match_result.matched_tags) * affinity_config.match_count_bonus, affinity_config.max_match_bonus
)
final_score = match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus
logger.debug(f"兴趣匹配最终得分: {final_score}")
# 限制兴趣匹配分数上限为1.0,防止总分超标
final_score = min(final_score, 1.0)
logger.debug(f"兴趣匹配最终得分: {final_score:.3f} (原始: {match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus:.3f})")
return final_score
else:
logger.debug("兴趣匹配返回0.0: match_result为None")