This commit is contained in:
tt-P607
2025-12-02 14:41:10 +08:00
7 changed files with 888 additions and 226 deletions

View File

@@ -51,6 +51,8 @@ httpx[socks]
packaging
rich
psutil
objgraph
Pympler
cryptography
json-repair
reportportal-client

View File

@@ -4,6 +4,7 @@ from datetime import datetime, timedelta
from typing import Any
from src.common.database.compatibility import db_get, db_query
from src.common.database.api.query import QueryBuilder
from src.common.database.core.models import LLMUsage, Messages, OnlineTime
from src.common.logger import get_logger
from src.manager.async_task_manager import AsyncTask
@@ -11,6 +12,11 @@ from src.manager.local_store_manager import local_storage
logger = get_logger("maibot_statistic")
# 统计查询的批次大小
STAT_BATCH_SIZE = 2000
# 内存优化:单次统计最大处理记录数(防止极端情况)
STAT_MAX_RECORDS = 100000
# 彻底异步化:删除原同步包装器 _sync_db_get所有数据库访问统一使用 await db_get。
@@ -314,17 +320,23 @@ class StatisticOutputTask(AsyncTask):
}
# 以最早的时间戳为起始时间获取记录
# 🔧 内存优化:使用分批查询代替全量加载
query_start_time = collect_period[-1][1]
records = (
await db_get(
model_class=LLMUsage,
filters={"timestamp": {"$gte": query_start_time}},
order_by="-timestamp",
)
or []
query_builder = (
QueryBuilder(LLMUsage)
.no_cache()
.filter(timestamp__gte=query_start_time)
.order_by("-timestamp")
)
for record_idx, record in enumerate(records, 1):
total_processed = 0
async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True):
for record in batch:
if total_processed >= STAT_MAX_RECORDS:
logger.warning(f"统计处理记录数达到上限 {STAT_MAX_RECORDS},跳过剩余记录")
break
if not isinstance(record, dict):
continue
@@ -392,7 +404,16 @@ class StatisticOutputTask(AsyncTask):
stats[period_key][TIME_COST_BY_PROVIDER][provider_name].append(time_cost)
break
await StatisticOutputTask._yield_control(record_idx)
total_processed += 1
if total_processed % 500 == 0:
await StatisticOutputTask._yield_control(total_processed, interval=1)
# 检查是否达到上限
if total_processed >= STAT_MAX_RECORDS:
break
# 每批处理完后让出控制权
await asyncio.sleep(0)
# -- 计算派生指标 --
for period_key, period_stats in stats.items():
# 计算模型相关指标
@@ -591,16 +612,16 @@ class StatisticOutputTask(AsyncTask):
}
query_start_time = collect_period[-1][1]
records = (
await db_get(
model_class=OnlineTime,
filters={"end_timestamp": {"$gte": query_start_time}},
order_by="-end_timestamp",
)
or []
# 🔧 内存优化:使用分批查询
query_builder = (
QueryBuilder(OnlineTime)
.no_cache()
.filter(end_timestamp__gte=query_start_time)
.order_by("-end_timestamp")
)
for record_idx, record in enumerate(records, 1):
async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True):
for record in batch:
if not isinstance(record, dict):
continue
@@ -629,7 +650,9 @@ class StatisticOutputTask(AsyncTask):
stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds()
break
await StatisticOutputTask._yield_control(record_idx)
# 每批处理完后让出控制权
await asyncio.sleep(0)
return stats
async def _collect_message_count_for_period(self, collect_period: list[tuple[str, datetime]]) -> dict[str, Any]:
@@ -652,16 +675,21 @@ class StatisticOutputTask(AsyncTask):
}
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
records = (
await db_get(
model_class=Messages,
filters={"time": {"$gte": query_start_timestamp}},
order_by="-time",
)
or []
# 🔧 内存优化:使用分批查询
query_builder = (
QueryBuilder(Messages)
.no_cache()
.filter(time__gte=query_start_timestamp)
.order_by("-time")
)
for message_idx, message in enumerate(records, 1):
total_processed = 0
async for batch in query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True):
for message in batch:
if total_processed >= STAT_MAX_RECORDS:
logger.warning(f"消息统计处理记录数达到上限 {STAT_MAX_RECORDS},跳过剩余记录")
break
if not isinstance(message, dict):
continue
message_time_ts = message.get("time") # This is a float timestamp
@@ -682,7 +710,6 @@ class StatisticOutputTask(AsyncTask):
chat_name = message.get("user_nickname") # SENDER's nickname
else:
# If neither group_id nor sender_id is available for chat identification
logger.warning(f"Message (PK: {message.get('id', 'N/A')}) lacks group_id and user_id for chat stats.")
continue
if not chat_id: # Should not happen if above logic is correct
@@ -702,7 +729,16 @@ class StatisticOutputTask(AsyncTask):
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
break
await StatisticOutputTask._yield_control(message_idx)
total_processed += 1
if total_processed % 500 == 0:
await StatisticOutputTask._yield_control(total_processed, interval=1)
# 检查是否达到上限
if total_processed >= STAT_MAX_RECORDS:
break
# 每批处理完后让出控制权
await asyncio.sleep(0)
return stats
@@ -755,7 +791,38 @@ class StatisticOutputTask(AsyncTask):
current_dict = stat["all_time"][key]
for sub_key, sub_val in val.items():
if sub_key in current_dict:
# For lists (like TIME_COST), this extends. For numbers, this adds.
current_val = current_dict[sub_key]
# 🔧 内存优化:处理压缩格式的 TIME_COST 数据
if isinstance(sub_val, dict) and "sum" in sub_val and "count" in sub_val:
# 压缩格式合并
if isinstance(current_val, dict) and "sum" in current_val:
# 两边都是压缩格式
current_dict[sub_key] = {
"sum": current_val["sum"] + sub_val["sum"],
"count": current_val["count"] + sub_val["count"],
"sum_sq": current_val.get("sum_sq", 0) + sub_val.get("sum_sq", 0),
}
elif isinstance(current_val, list):
# 当前是列表,历史是压缩格式:先压缩当前再合并
curr_sum = sum(current_val) if current_val else 0
curr_count = len(current_val)
curr_sum_sq = sum(v * v for v in current_val) if current_val else 0
current_dict[sub_key] = {
"sum": curr_sum + sub_val["sum"],
"count": curr_count + sub_val["count"],
"sum_sq": curr_sum_sq + sub_val.get("sum_sq", 0),
}
else:
# 未知情况,保留历史值
current_dict[sub_key] = sub_val
elif isinstance(sub_val, list):
# 列表格式extend兼容旧数据但新版不会产生这种情况
if isinstance(current_val, list):
current_dict[sub_key] = current_val + sub_val
else:
current_dict[sub_key] = sub_val
else:
# 数值类型:直接相加
current_dict[sub_key] += sub_val
else:
current_dict[sub_key] = sub_val
@@ -764,8 +831,10 @@ class StatisticOutputTask(AsyncTask):
stat["all_time"][key] += val
# 更新上次完整统计数据的时间戳
# 🔧 内存优化:在保存前压缩 TIME_COST 列表为聚合数据,避免无限增长
compressed_stat_data = self._compress_time_cost_lists(stat["all_time"])
# 将所有defaultdict转换为普通dict以避免类型冲突
clean_stat_data = self._convert_defaultdict_to_dict(stat["all_time"])
clean_stat_data = self._convert_defaultdict_to_dict(compressed_stat_data)
local_storage["last_full_statistics"] = {
"name_mapping": self.name_mapping,
"stat_data": clean_stat_data,
@@ -774,6 +843,54 @@ class StatisticOutputTask(AsyncTask):
return stat
def _compress_time_cost_lists(self, data: dict[str, Any]) -> dict[str, Any]:
"""🔧 内存优化:将 TIME_COST_BY_* 的 list 压缩为聚合数据
原始格式: {"model_a": [1.2, 2.3, 3.4, ...]} (可能无限增长)
压缩格式: {"model_a": {"sum": 6.9, "count": 3, "sum_sq": 18.29}}
这样合并时只需要累加 sum/count/sum_sq不会无限增长。
avg = sum / count
std = sqrt(sum_sq / count - (sum / count)^2)
"""
# TIME_COST 相关的 key 前缀
time_cost_keys = [
TIME_COST_BY_TYPE, TIME_COST_BY_USER, TIME_COST_BY_MODEL,
TIME_COST_BY_MODULE, TIME_COST_BY_PROVIDER
]
result = dict(data) # 浅拷贝
for key in time_cost_keys:
if key not in result:
continue
original = result[key]
if not isinstance(original, dict):
continue
compressed = {}
for sub_key, values in original.items():
if isinstance(values, list):
# 原始列表格式,需要压缩
if values:
total = sum(values)
count = len(values)
sum_sq = sum(v * v for v in values)
compressed[sub_key] = {"sum": total, "count": count, "sum_sq": sum_sq}
else:
compressed[sub_key] = {"sum": 0.0, "count": 0, "sum_sq": 0.0}
elif isinstance(values, dict) and "sum" in values and "count" in values:
# 已经是压缩格式,直接保留
compressed[sub_key] = values
else:
# 未知格式,保留原值
compressed[sub_key] = values
result[key] = compressed
return result
def _convert_defaultdict_to_dict(self, data):
# sourcery skip: dict-comprehension, extract-duplicate-method, inline-immediately-returned-variable, merge-duplicate-blocks
"""递归转换defaultdict为普通dict"""
@@ -884,16 +1001,16 @@ class StatisticOutputTask(AsyncTask):
time_labels = [t.strftime("%H:%M") for t in time_points]
interval_seconds = interval_minutes * 60
# 单次查询 LLMUsage
llm_records = (
await db_get(
model_class=LLMUsage,
filters={"timestamp": {"$gte": start_time}},
order_by="-timestamp",
# 🔧 内存优化:使用分批查询 LLMUsage
llm_query_builder = (
QueryBuilder(LLMUsage)
.no_cache()
.filter(timestamp__gte=start_time)
.order_by("-timestamp")
)
or []
)
for record_idx, record in enumerate(llm_records, 1):
async for batch in llm_query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True):
for record in batch:
if not isinstance(record, dict) or not record.get("timestamp"):
continue
record_time = record["timestamp"]
@@ -917,18 +1034,18 @@ class StatisticOutputTask(AsyncTask):
cost_by_module[module_name] = [0.0] * len(time_points)
cost_by_module[module_name][idx] += cost
await StatisticOutputTask._yield_control(record_idx)
await asyncio.sleep(0)
# 单次查询 Messages
msg_records = (
await db_get(
model_class=Messages,
filters={"time": {"$gte": start_time.timestamp()}},
order_by="-time",
# 🔧 内存优化:使用分批查询 Messages
msg_query_builder = (
QueryBuilder(Messages)
.no_cache()
.filter(time__gte=start_time.timestamp())
.order_by("-time")
)
or []
)
for msg_idx, msg in enumerate(msg_records, 1):
async for batch in msg_query_builder.iter_batches(batch_size=STAT_BATCH_SIZE, as_dict=True):
for msg in batch:
if not isinstance(msg, dict) or not msg.get("time"):
continue
msg_ts = msg["time"]
@@ -947,7 +1064,7 @@ class StatisticOutputTask(AsyncTask):
message_by_chat[chat_name] = [0] * len(time_points)
message_by_chat[chat_name][idx] += 1
await StatisticOutputTask._yield_control(msg_idx)
await asyncio.sleep(0)
return {
"time_labels": time_labels,

View File

@@ -1,5 +1,7 @@
"""
错别字生成器 - 基于拼音和字频的中文错别字生成工具
内存优化使用单例模式避免重复创建拼音字典约20992个汉字映射
"""
import math
@@ -8,6 +10,7 @@ import random
import time
from collections import defaultdict
from pathlib import Path
from threading import Lock
import orjson
import rjieba
@@ -17,6 +20,59 @@ from src.common.logger import get_logger
logger = get_logger("typo_gen")
# 🔧 全局单例和缓存
_typo_generator_singleton: "ChineseTypoGenerator | None" = None
_singleton_lock = Lock()
_shared_pinyin_dict: dict | None = None
_shared_char_frequency: dict | None = None
def get_typo_generator(
error_rate: float = 0.3,
min_freq: int = 5,
tone_error_rate: float = 0.2,
word_replace_rate: float = 0.3,
max_freq_diff: int = 200,
) -> "ChineseTypoGenerator":
"""
获取错别字生成器单例(内存优化)
如果参数与缓存的单例不同,会更新参数但复用拼音字典和字频数据。
参数:
error_rate: 单字替换概率
min_freq: 最小字频阈值
tone_error_rate: 声调错误概率
word_replace_rate: 整词替换概率
max_freq_diff: 最大允许的频率差异
返回:
ChineseTypoGenerator 实例
"""
global _typo_generator_singleton
with _singleton_lock:
if _typo_generator_singleton is None:
_typo_generator_singleton = ChineseTypoGenerator(
error_rate=error_rate,
min_freq=min_freq,
tone_error_rate=tone_error_rate,
word_replace_rate=word_replace_rate,
max_freq_diff=max_freq_diff,
)
logger.info("ChineseTypoGenerator 单例已创建")
else:
# 更新参数但复用字典
_typo_generator_singleton.set_params(
error_rate=error_rate,
min_freq=min_freq,
tone_error_rate=tone_error_rate,
word_replace_rate=word_replace_rate,
max_freq_diff=max_freq_diff,
)
return _typo_generator_singleton
class ChineseTypoGenerator:
def __init__(self, error_rate=0.3, min_freq=5, tone_error_rate=0.2, word_replace_rate=0.3, max_freq_diff=200):
@@ -30,18 +86,24 @@ class ChineseTypoGenerator:
word_replace_rate: 整词替换概率
max_freq_diff: 最大允许的频率差异
"""
global _shared_pinyin_dict, _shared_char_frequency
self.error_rate = error_rate
self.min_freq = min_freq
self.tone_error_rate = tone_error_rate
self.word_replace_rate = word_replace_rate
self.max_freq_diff = max_freq_diff
# 加载数据
# print("正在加载汉字数据库,请稍候...")
# logger.info("正在加载汉字数据库,请稍候...")
# 🔧 内存优化:复用全局缓存的拼音字典和字频数据
if _shared_pinyin_dict is None:
_shared_pinyin_dict = self._create_pinyin_dict()
logger.debug("拼音字典已创建并缓存")
self.pinyin_dict = _shared_pinyin_dict
self.pinyin_dict = self._create_pinyin_dict()
self.char_frequency = self._load_or_create_char_frequency()
if _shared_char_frequency is None:
_shared_char_frequency = self._load_or_create_char_frequency()
logger.debug("字频数据已加载并缓存")
self.char_frequency = _shared_char_frequency
def _load_or_create_char_frequency(self):
"""
@@ -433,7 +495,7 @@ class ChineseTypoGenerator:
def set_params(self, **kwargs):
"""
设置参数
设置参数(静默模式,供单例复用时调用)
可设置参数:
error_rate: 单字替换概率
@@ -445,9 +507,6 @@ class ChineseTypoGenerator:
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
print(f"参数 {key} 已设置为 {value}")
else:
print(f"警告: 参数 {key} 不存在")
def main():

View File

@@ -16,7 +16,7 @@ from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from src.common.data_models.database_data_model import DatabaseUserInfo
from .typo_generator import ChineseTypoGenerator
from .typo_generator import get_typo_generator
logger = get_logger("chat_utils")
@@ -443,7 +443,8 @@ def process_llm_response(text: str, enable_splitter: bool = True, enable_chinese
# logger.warning(f"回复过长 ({len(cleaned_text)} 字符),返回默认回复")
# return ["懒得说"]
typo_generator = ChineseTypoGenerator(
# 🔧 内存优化:使用单例工厂函数,避免重复创建拼音字典
typo_generator = get_typo_generator(
error_rate=global_config.chinese_typo.error_rate,
min_freq=global_config.chinese_typo.min_freq,
tone_error_rate=global_config.chinese_typo.tone_error_rate,

View File

@@ -5,8 +5,10 @@
- 聚合查询
- 排序和分页
- 关联查询
- 流式迭代(内存优化)
"""
from collections.abc import AsyncIterator
from typing import Any, Generic, TypeVar
from sqlalchemy import and_, asc, desc, func, or_, select
@@ -183,6 +185,84 @@ class QueryBuilder(Generic[T]):
self._use_cache = False
return self
async def iter_batches(
self,
batch_size: int = 1000,
*,
as_dict: bool = True,
) -> AsyncIterator[list[T] | list[dict[str, Any]]]:
"""分批迭代获取结果(内存优化)
使用 LIMIT/OFFSET 分页策略,避免一次性加载全部数据到内存。
适用于大数据量的统计、导出等场景。
Args:
batch_size: 每批获取的记录数默认1000
as_dict: 为True时返回字典格式
Yields:
每批的模型实例列表或字典列表
Example:
async for batch in query_builder.iter_batches(batch_size=500):
for record in batch:
process(record)
"""
offset = 0
while True:
# 构建带分页的查询
paginated_stmt = self._stmt.offset(offset).limit(batch_size)
async with get_db_session() as session:
result = await session.execute(paginated_stmt)
# .all() 已经返回 list无需再包装
instances = result.scalars().all()
if not instances:
# 没有更多数据
break
# 在 session 内部转换为字典列表
instances_dicts = [_model_to_dict(inst) for inst in instances]
if as_dict:
yield instances_dicts
else:
yield [_dict_to_model(self.model, row) for row in instances_dicts]
# 如果返回的记录数小于 batch_size说明已经是最后一批
if len(instances) < batch_size:
break
offset += batch_size
async def iter_all(
self,
batch_size: int = 1000,
*,
as_dict: bool = True,
) -> AsyncIterator[T | dict[str, Any]]:
"""逐条迭代所有结果(内存优化)
内部使用分批获取,但对外提供逐条迭代的接口。
适用于需要逐条处理但数据量很大的场景。
Args:
batch_size: 内部分批大小默认1000
as_dict: 为True时返回字典格式
Yields:
单个模型实例或字典
Example:
async for record in query_builder.iter_all():
process(record)
"""
async for batch in self.iter_batches(batch_size=batch_size, as_dict=as_dict):
for item in batch:
yield item
async def all(self, *, as_dict: bool = False) -> list[T] | list[dict[str, Any]]:
"""获取所有结果

383
src/common/mem_monitor.py Normal file
View File

@@ -0,0 +1,383 @@
# mem_monitor.py
"""
内存监控工具模块
用于监控和诊断 MoFox-Bot 的内存使用情况,包括:
- RSS/VMS 内存使用追踪
- tracemalloc 内存分配差异分析
- 对象类型增长监控 (objgraph)
- 类型内存占用分析 (Pympler)
通过环境变量 MEM_MONITOR_ENABLED 控制是否启用(默认禁用)
日志输出到独立文件 logs/mem_monitor.log
"""
import logging
import os
import threading
import time
import tracemalloc
from datetime import datetime
from logging.handlers import RotatingFileHandler
from pathlib import Path
from typing import TYPE_CHECKING
import objgraph
import psutil
from pympler import muppy, summary
if TYPE_CHECKING:
from psutil import Process
# 创建独立的内存监控日志器
def _setup_mem_logger() -> logging.Logger:
"""设置独立的内存监控日志器,输出到单独的文件"""
logger = logging.getLogger("mem_monitor")
logger.setLevel(logging.DEBUG)
logger.propagate = False # 不传播到父日志器,避免污染主日志
# 清除已有的处理器
logger.handlers.clear()
# 创建日志目录
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# 文件处理器 - 带日期的日志文件,支持轮转
log_file = log_dir / f"mem_monitor_{datetime.now().strftime('%Y%m%d')}.log"
file_handler = RotatingFileHandler(
log_file,
maxBytes=50 * 1024 * 1024, # 50MB
backupCount=5,
encoding="utf-8",
)
file_handler.setLevel(logging.DEBUG)
# 格式化器
formatter = logging.Formatter(
"%(asctime)s | %(levelname)-7s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
file_handler.setFormatter(formatter)
# 控制台处理器 - 只输出重要信息
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
logger = _setup_mem_logger()
_process: "Process" = psutil.Process()
_last_snapshot: tracemalloc.Snapshot | None = None
_last_type_summary: list | None = None
_monitor_thread: threading.Thread | None = None
_stop_event: threading.Event = threading.Event()
# 环境变量控制是否启用,防止所有环境一起开
MEM_MONITOR_ENABLED = False
def start_tracemalloc(max_frames: int = 25) -> None:
"""启动 tracemalloc 内存追踪
Args:
max_frames: 追踪的最大栈帧数,越大越详细但开销越大
"""
if not tracemalloc.is_tracing():
tracemalloc.start(max_frames)
logger.info("tracemalloc started with max_frames=%s", max_frames)
else:
logger.info("tracemalloc already started")
def stop_tracemalloc() -> None:
"""停止 tracemalloc 内存追踪"""
if tracemalloc.is_tracing():
tracemalloc.stop()
logger.info("tracemalloc stopped")
def log_rss(tag: str = "periodic") -> dict[str, float]:
"""记录当前进程的 RSS 和 VMS 内存使用
Args:
tag: 日志标签,用于区分不同的采样点
Returns:
包含 rss_mb 和 vms_mb 的字典
"""
mem = _process.memory_info()
rss_mb = mem.rss / (1024 * 1024)
vms_mb = mem.vms / (1024 * 1024)
logger.info("[MEM %s] RSS=%.1f MiB, VMS=%.1f MiB", tag, rss_mb, vms_mb)
return {"rss_mb": rss_mb, "vms_mb": vms_mb}
def log_tracemalloc_diff(tag: str = "periodic", limit: int = 20):
global _last_snapshot
if not tracemalloc.is_tracing():
logger.warning("tracemalloc is not tracing, skip diff")
return
snapshot = tracemalloc.take_snapshot()
if _last_snapshot is None:
logger.info("[TM %s] first snapshot captured", tag)
_last_snapshot = snapshot
return
logger.info("[TM %s] top %s memory diffs (by traceback):", tag, limit)
top_stats = snapshot.compare_to(_last_snapshot, "traceback")
for idx, stat in enumerate(top_stats[:limit], start=1):
logger.info(
"[TM %s] #%d: size_diff=%s, count_diff=%s",
tag, idx, stat.size_diff, stat.count_diff
)
# 打完整调用栈
for line in stat.traceback.format():
logger.info("[TM %s] %s", tag, line)
_last_snapshot = snapshot
def log_object_growth(limit: int = 20) -> None:
"""使用 objgraph 查看最近一段时间哪些对象类型数量增长
Args:
limit: 显示的最大增长类型数
"""
logger.info("==== Objgraph growth (top %s) ====", limit)
try:
# objgraph.show_growth 默认输出到 stdout需要捕获输出
import io
import sys
# 捕获 stdout
old_stdout = sys.stdout
sys.stdout = buffer = io.StringIO()
try:
objgraph.show_growth(limit=limit)
finally:
sys.stdout = old_stdout
output = buffer.getvalue()
if output.strip():
for line in output.strip().split("\n"):
logger.info("[OG] %s", line)
else:
logger.info("[OG] No object growth detected")
except Exception:
logger.exception("objgraph.show_growth failed")
def log_type_memory_diff() -> None:
"""使用 Pympler 查看各类型对象占用的内存变化"""
global _last_type_summary
import io
import sys
all_objects = muppy.get_objects()
curr = summary.summarize(all_objects)
# 捕获 Pympler 的输出summary.print_ 也是输出到 stdout
old_stdout = sys.stdout
sys.stdout = buffer = io.StringIO()
try:
if _last_type_summary is None:
logger.info("==== Pympler initial type summary ====")
summary.print_(curr)
else:
logger.info("==== Pympler type memory diff ====")
diff = summary.get_diff(_last_type_summary, curr)
summary.print_(diff)
finally:
sys.stdout = old_stdout
output = buffer.getvalue()
if output.strip():
for line in output.strip().split("\n"):
logger.info("[PY] %s", line)
_last_type_summary = curr
def periodic_mem_monitor(interval_sec: int = 900, tracemalloc_limit: int = 20, objgraph_limit: int = 20) -> None:
"""后台循环:定期记录 RSS、tracemalloc diff、对象增长情况
Args:
interval_sec: 采样间隔(秒)
tracemalloc_limit: tracemalloc 差异显示限制
objgraph_limit: objgraph 增长显示限制
"""
if not MEM_MONITOR_ENABLED:
logger.info("Memory monitor disabled via MEM_MONITOR_ENABLED=0")
return
start_tracemalloc()
logger.info("Memory monitor thread started, interval=%s sec", interval_sec)
counter = 0
while not _stop_event.is_set():
# 使用 Event.wait 替代 time.sleep支持优雅退出
if _stop_event.wait(timeout=interval_sec):
break
try:
counter += 1
log_rss("periodic")
log_tracemalloc_diff("periodic", limit=tracemalloc_limit)
log_object_growth(limit=objgraph_limit)
if counter % 3 == 0:
log_type_memory_diff()
except Exception:
logger.exception("Memory monitor iteration failed")
logger.info("Memory monitor thread stopped")
def start_background_monitor(interval_sec: int = 300, tracemalloc_limit: int = 20, objgraph_limit: int = 20) -> bool:
"""在项目入口调用,用线程避免阻塞主 event loop
Args:
interval_sec: 采样间隔(秒)
tracemalloc_limit: tracemalloc 差异显示限制
objgraph_limit: objgraph 增长显示限制
Returns:
是否成功启动监控线程
"""
global _monitor_thread
if not MEM_MONITOR_ENABLED:
logger.info("Memory monitor not started (disabled via MEM_MONITOR_ENABLED env var).")
return False
if _monitor_thread is not None and _monitor_thread.is_alive():
logger.warning("Memory monitor thread already running")
return True
_stop_event.clear()
_monitor_thread = threading.Thread(
target=periodic_mem_monitor,
kwargs={
"interval_sec": interval_sec,
"tracemalloc_limit": tracemalloc_limit,
"objgraph_limit": objgraph_limit,
},
daemon=True,
name="MemoryMonitorThread",
)
_monitor_thread.start()
logger.info("Memory monitor thread created (interval=%s sec)", interval_sec)
return True
def stop_background_monitor(timeout: float = 5.0) -> None:
"""停止后台内存监控线程
Args:
timeout: 等待线程退出的超时时间(秒)
"""
global _monitor_thread
if _monitor_thread is None or not _monitor_thread.is_alive():
logger.debug("Memory monitor thread not running")
return
logger.info("Stopping memory monitor thread...")
_stop_event.set()
_monitor_thread.join(timeout=timeout)
if _monitor_thread.is_alive():
logger.warning("Memory monitor thread did not stop within timeout")
else:
logger.info("Memory monitor thread stopped successfully")
_monitor_thread = None
def manual_dump(tag: str = "manual") -> dict:
"""手动触发一次采样,可以挂在 HTTP /debug/mem 上
Args:
tag: 日志标签
Returns:
包含内存信息的字典
"""
logger.info("Manual memory dump started: %s", tag)
mem_info = log_rss(tag)
log_tracemalloc_diff(tag)
log_object_growth()
log_type_memory_diff()
logger.info("Manual memory dump finished: %s", tag)
return mem_info
def debug_leak_for_type(type_name: str, max_depth: int = 5, filename: str | None = None) -> bool:
"""对某个可疑类型画引用图,看是谁抓着它不放
建议只在本地/测试环境用,这个可能比较慢。
Args:
type_name: 要调试的类型名(如 'MySession'
max_depth: 引用图的最大深度
filename: 输出文件名,默认为 "{type_name}_backrefs.png"
Returns:
是否成功生成引用图
"""
if filename is None:
filename = f"{type_name}_backrefs.png"
try:
objs = objgraph.by_type(type_name)
if not objs:
logger.info("No objects of type %s", type_name)
return False
# 随便拿几个代表对象看引用链
roots = objs[:3]
logger.info(
"Generating backrefs graph for %s (num_roots=%s, max_depth=%s, file=%s)",
type_name,
len(roots),
max_depth,
filename,
)
objgraph.show_backrefs(
roots,
max_depth=max_depth,
filename=filename,
)
logger.info("Backrefs graph generated: %s", filename)
return True
except Exception:
logger.exception("debug_leak_for_type(%s) failed", type_name)
return False
def get_memory_stats() -> dict:
"""获取当前内存统计信息
Returns:
包含各项内存指标的字典
"""
mem = _process.memory_info()
return {
"rss_mb": mem.rss / (1024 * 1024),
"vms_mb": mem.vms / (1024 * 1024),
"tracemalloc_enabled": tracemalloc.is_tracing(),
"monitor_thread_alive": _monitor_thread is not None and _monitor_thread.is_alive(),
}

View File

@@ -21,6 +21,11 @@ from src.common.core_sink_manager import (
shutdown_core_sink_manager,
)
from src.common.logger import get_logger
from src.common.mem_monitor import (
MEM_MONITOR_ENABLED,
start_background_monitor,
stop_background_monitor,
)
# 全局背景任务集合
_background_tasks = set()
@@ -212,6 +217,12 @@ class MainSystem:
self._shutting_down = True
logger.info("开始系统清理流程...")
# 停止内存监控线程(无需 await同步操作
try:
stop_background_monitor(timeout=3.0)
except Exception as e:
logger.error(f"停止内存监控时出错: {e}")
cleanup_tasks = []
# 停止消息批处理器
@@ -568,6 +579,15 @@ MoFox_Bot(第三方修改版)
except Exception as e:
logger.error(f"启动适配器失败: {e}")
# 启动内存监控
try:
if MEM_MONITOR_ENABLED:
started = start_background_monitor(interval_sec=300)
if started:
logger.info("[DEV] 已启动 (间隔=300s)")
except Exception as e:
logger.error(f"启动内存监控失败: {e}")
async def _init_planning_components(self) -> None:
"""初始化计划相关组件"""
# 初始化月度计划管理器