feat:拆分重命名模型配置,修复动作恢复问题

This commit is contained in:
SengokuCola
2025-05-27 14:28:41 +08:00
parent 5b8e4c0690
commit 0391111c82
19 changed files with 119 additions and 118 deletions

View File

@@ -78,10 +78,10 @@ class DefaultExpressor:
self.log_prefix = "expressor"
# TODO: API-Adapter修改标记
self.express_model = LLMRequest(
model=global_config.model.normal,
temperature=global_config.model.normal["temp"],
model=global_config.model.focus_expressor,
temperature=global_config.model.focus_expressor["temp"],
max_tokens=256,
request_type="response_heartflow",
request_type="focus_expressor",
)
self.heart_fc_sender = HeartFCSender()

View File

@@ -27,9 +27,6 @@ class ActionProcessor(BaseProcessor):
"""初始化观察处理器"""
super().__init__()
# TODO: API-Adapter修改标记
self.model_summary = LLMRequest(
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def process_info(
self,

View File

@@ -71,10 +71,10 @@ class MindProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.sub_heartflow,
temperature=global_config.model.sub_heartflow["temp"],
model=global_config.model.focus_chat_mind,
temperature=global_config.model.focus_chat_mind["temp"],
max_tokens=800,
request_type="sub_heart_flow",
request_type="focus_chat_mind",
)
self.current_mind = ""

View File

@@ -54,10 +54,10 @@ class SelfProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.sub_heartflow,
temperature=global_config.model.sub_heartflow["temp"],
model=global_config.model.focus_self_recognize,
temperature=global_config.model.focus_self_recognize["temp"],
max_tokens=800,
request_type="self_identify",
request_type="focus_self_identify",
)
name = chat_manager.get_stream_name(self.subheartflow_id)

View File

@@ -49,9 +49,9 @@ class ToolProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.log_prefix = f"[{subheartflow_id}:ToolExecutor] "
self.llm_model = LLMRequest(
model=global_config.model.tool_use,
model=global_config.model.focus_tool_use,
max_tokens=500,
request_type="tool_execution",
request_type="focus_tool",
)
self.structured_info = []

View File

@@ -61,10 +61,10 @@ class WorkingMemoryProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.sub_heartflow,
temperature=global_config.model.sub_heartflow["temp"],
model=global_config.model.focus_chat_mind,
temperature=global_config.model.focus_chat_mind["temp"],
max_tokens=800,
request_type="working_memory",
request_type="focus_working_memory",
)
name = chat_manager.get_stream_name(self.subheartflow_id)

View File

@@ -36,7 +36,7 @@ class MemoryActivator:
def __init__(self):
# TODO: API-Adapter修改标记
self.summary_model = LLMRequest(
model=global_config.model.summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
model=global_config.model.memory_summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
)
self.running_memory = []

View File

@@ -28,8 +28,7 @@ class ActionManager:
self._registered_actions: Dict[str, ActionInfo] = {}
# 当前正在使用的动作集合,默认加载默认动作
self._using_actions: Dict[str, ActionInfo] = {}
# 临时备份原始使用中的动作
self._original_actions_backup: Optional[Dict[str, ActionInfo]] = None
# 默认动作集,仅作为快照,用于恢复默认
self._default_actions: Dict[str, ActionInfo] = {}
@@ -278,22 +277,18 @@ class ActionManager:
return True
def temporarily_remove_actions(self, actions_to_remove: List[str]) -> None:
"""临时移除使用集中的指定动作,备份原始使用集"""
if self._original_actions_backup is None:
self._original_actions_backup = self._using_actions.copy()
"""临时移除使用集中的指定动作"""
for name in actions_to_remove:
self._using_actions.pop(name, None)
def restore_actions(self) -> None:
"""恢复之前备份的原始使用"""
if self._original_actions_backup is not None:
self._using_actions = self._original_actions_backup.copy()
self._original_actions_backup = None
"""恢复到默认动作"""
logger.debug(f"恢复动作集: 从 {list(self._using_actions.keys())} 恢复到默认动作集 {list(self._default_actions.keys())}")
self._using_actions = self._default_actions.copy()
def restore_default_actions(self) -> None:
"""恢复默认动作集到使用集"""
self._using_actions = self._default_actions.copy()
self._original_actions_backup = None
def get_action(self, action_name: str) -> Optional[Type[BaseAction]]:
"""

View File

@@ -78,9 +78,9 @@ class ActionPlanner:
self.log_prefix = log_prefix
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.plan,
model=global_config.model.focus_planner,
max_tokens=1000,
request_type="action_planning", # 用于动作规划
request_type="focus_planner", # 用于动作规划
)
self.action_manager = action_manager
@@ -161,6 +161,10 @@ class ActionPlanner:
action = "no_reply"
reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用跳过规划"
logger.info(f"{self.log_prefix}{reasoning}")
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"current_mind": current_mind,
@@ -241,10 +245,10 @@ class ActionPlanner:
f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
)
# 恢复原始动作集
# 恢复到默认动作集
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}恢复了原始动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
f"{self.log_prefix}恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}

View File

@@ -33,7 +33,7 @@ class MemoryManager:
self._id_map: Dict[str, MemoryItem] = {}
self.llm_summarizer = LLMRequest(
model=global_config.model.summary, temperature=0.3, max_tokens=512, request_type="memory_summarization"
model=global_config.model.focus_working_memory, temperature=0.3, max_tokens=512, request_type="memory_summarization"
)
@property

View File

@@ -88,34 +88,34 @@ class BackgroundTaskManager:
f"聊天状态更新任务已启动 间隔:{STATE_UPDATE_INTERVAL_SECONDS}s",
"_state_update_task",
),
(
self._run_cleanup_cycle,
"info",
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
"_cleanup_task",
),
# 新增私聊激活任务配置
(
# Use lambda to pass the interval to the runner function
lambda: self._run_private_chat_activation_cycle(PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS),
"debug",
f"私聊激活检查任务已启动 间隔:{PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS}s",
"_private_chat_activation_task",
),
]
# 根据 chat_mode 条件添加专注评估任务
# 根据 chat_mode 条件添加其他任务
if not (global_config.chat.chat_mode == "normal"):
task_configs.append(
task_configs.extend([
(
self._run_cleanup_cycle,
"info",
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
"_cleanup_task",
),
# 新增私聊激活任务配置
(
# Use lambda to pass the interval to the runner function
lambda: self._run_private_chat_activation_cycle(PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS),
"debug",
f"私聊激活检查任务已启动 间隔:{PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS}s",
"_private_chat_activation_task",
),
(
self._run_into_focus_cycle,
"debug", # 设为debug避免过多日志
f"专注评估任务已启动 间隔:{INTEREST_EVAL_INTERVAL_SECONDS}s",
"_into_focus_task",
)
)
])
else:
logger.info("聊天模式为 normal跳过启动专注评估任务")
logger.info("聊天模式为 normal跳过启动清理任务、私聊激活任务和专注评估任务")
# 统一启动所有任务
for task_func, log_level, log_msg, task_attr_name in task_configs:

View File

@@ -66,10 +66,6 @@ class ChattingObservation(Observation):
self.oldest_messages = []
self.oldest_messages_str = ""
self.compressor_prompt = ""
# TODO: API-Adapter修改标记
self.model_summary = LLMRequest(
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def initialize(self):
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)

View File

@@ -193,7 +193,6 @@ class MemoryGraph:
class Hippocampus:
def __init__(self):
self.memory_graph = MemoryGraph()
self.llm_topic_judge = None
self.model_summary = None
self.entorhinal_cortex = None
self.parahippocampal_gyrus = None
@@ -205,8 +204,7 @@ class Hippocampus:
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
# TODO: API-Adapter修改标记
self.llm_topic_judge = LLMRequest(global_config.model.topic_judge, request_type="memory")
self.model_summary = LLMRequest(global_config.model.summary, request_type="memory")
self.model_summary = LLMRequest(global_config.model.memory_summary, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""
@@ -344,7 +342,7 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
topics_response = await self.model_summary.generate_response(self.find_topic_llm(text, topic_num))
# 提取关键词
keywords = re.findall(r"<([^>]+)>", topics_response[0])
@@ -699,7 +697,7 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
topics_response = await self.model_summary.generate_response(self.find_topic_llm(text, topic_num))
# 提取关键词
keywords = re.findall(r"<([^>]+)>", topics_response[0])
@@ -1126,7 +1124,7 @@ class ParahippocampalGyrus:
# 2. 使用LLM提取关键主题
topic_num = self.hippocampus.calculate_topic_num(input_text, compress_rate)
topics_response = await self.hippocampus.llm_topic_judge.generate_response(
topics_response = await self.hippocampus.model_summary.generate_response(
self.hippocampus.find_topic_llm(input_text, topic_num)
)

View File

@@ -17,7 +17,7 @@ class NormalChatGenerator:
def __init__(self):
# TODO: API-Adapter修改标记
self.model_reasoning = LLMRequest(
model=global_config.model.reasoning,
model=global_config.model.normal_chat_1,
temperature=0.7,
max_tokens=3000,
request_type="response_reasoning",
@@ -30,7 +30,7 @@ class NormalChatGenerator:
)
self.model_sum = LLMRequest(
model=global_config.model.summary, temperature=0.7, max_tokens=3000, request_type="relation"
model=global_config.model.memory_summary, temperature=0.7, max_tokens=3000, request_type="relation"
)
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"

View File

@@ -130,6 +130,7 @@ class ImageManager:
# 根据配置决定是否保存图片
if global_config.emoji.save_emoji:
# 生成文件名和路径
logger.debug(f"保存表情包: {image_hash}")
current_timestamp = time.time()
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
@@ -156,7 +157,7 @@ class ImageManager:
description=description,
timestamp=current_timestamp,
)
logger.trace(f"保存表情包元数据: {file_path}")
# logger.debug(f"保存表情包元数据: {file_path}")
except Exception as e:
logger.error(f"保存表情包文件或元数据失败: {str(e)}")

View File

@@ -178,10 +178,10 @@ class EmojiConfig(ConfigBase):
check_interval: int = 120
"""表情包检查间隔(分钟)"""
save_pic: bool = False
save_pic: bool = True
"""是否保存图片"""
save_emoji: bool = False
save_emoji: bool = True
"""是否保存表情包"""
cache_emoji: bool = True
@@ -384,26 +384,32 @@ class ModelConfig(ConfigBase):
normal: dict[str, Any] = field(default_factory=lambda: {})
"""普通模型配置"""
topic_judge: dict[str, Any] = field(default_factory=lambda: {})
"""主题判断模型配置"""
summary: dict[str, Any] = field(default_factory=lambda: {})
"""摘要模型配置"""
memory_summary: dict[str, Any] = field(default_factory=lambda: {})
"""记忆的概括模型配置"""
vlm: dict[str, Any] = field(default_factory=lambda: {})
"""视觉语言模型配置"""
heartflow: dict[str, Any] = field(default_factory=lambda: {})
"""心流模型配置"""
observation: dict[str, Any] = field(default_factory=lambda: {})
"""观察模型配置"""
sub_heartflow: dict[str, Any] = field(default_factory=lambda: {})
"""子心流模型配置"""
focus_working_memory: dict[str, Any] = field(default_factory=lambda: {})
"""专注工作记忆模型配置"""
plan: dict[str, Any] = field(default_factory=lambda: {})
"""划模型配置"""
focus_chat_mind: dict[str, Any] = field(default_factory=lambda: {})
"""专注聊天规划模型配置"""
focus_self_recognize: dict[str, Any] = field(default_factory=lambda: {})
"""专注自我识别模型配置"""
focus_tool_use: dict[str, Any] = field(default_factory=lambda: {})
"""专注工具使用模型配置"""
focus_planner: dict[str, Any] = field(default_factory=lambda: {})
"""专注规划模型配置"""
focus_expressor: dict[str, Any] = field(default_factory=lambda: {})
"""专注表达器模型配置"""
embedding: dict[str, Any] = field(default_factory=lambda: {})
"""嵌入模型配置"""
@@ -417,5 +423,6 @@ class ModelConfig(ConfigBase):
pfc_reply_checker: dict[str, Any] = field(default_factory=lambda: {})
"""PFC回复检查模型配置"""
tool_use: dict[str, Any] = field(default_factory=lambda: {})
"""工具使用模型配置"""

View File

@@ -459,6 +459,7 @@ class LLMRequest:
logger.error(
f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
)
print(request_content)
print(response)
# 尝试获取并记录服务器返回的详细错误信息
try:
@@ -499,8 +500,8 @@ class LLMRequest:
if global_config.model.normal.get("name") == old_model_name:
global_config.model.normal["name"] = self.model_name
logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
if global_config.model.reasoning.get("name") == old_model_name:
global_config.model.reasoning["name"] = self.model_name
if global_config.model.normal_chat_1.get("name") == old_model_name:
global_config.model.normal_chat_1["name"] = self.model_name
logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}")
if payload and "model" in payload:

View File

@@ -1,18 +1,9 @@
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import json
from src.common.logger_manager import get_logger
from src.tools.tool_can_use import get_all_tool_definitions, get_tool_instance
logger = get_logger("tool_use")
class ToolUser:
def __init__(self):
self.llm_model_tool = LLMRequest(
model=global_config.model.tool_use, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
@staticmethod
def _define_tools():
"""获取所有已注册工具的定义

View File

@@ -196,7 +196,7 @@ pfc_chatting = false # 是否启用PFC聊天该功能仅作用于私聊
model_max_output_length = 800 # 模型单次返回的最大token数
#这个模型必须是推理模型
[model.reasoning] # 一般聊天模式的推理回复模型
[model.normal_chat_1] # 一般聊天模式的首要回复模型,推荐使用 推理模型
name = "Pro/deepseek-ai/DeepSeek-R1"
provider = "SILICONFLOW"
pri_in = 1.0 #模型的输入价格(非必填,可以记录消耗)
@@ -210,13 +210,7 @@ pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
#默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.topic_judge] #主题判断模型建议使用qwen2.5 7b
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0.35
pri_out = 0.35
[model.summary] #概括模型建议使用qwen2.5 32b 及以上
[model.memory_summary] # 记忆的概括模型建议使用qwen2.5 32b 及以上
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
@@ -228,12 +222,6 @@ provider = "SILICONFLOW"
pri_in = 0.35
pri_out = 0.35
[model.heartflow] # 用于控制麦麦是否参与聊天的模型
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.observation] #观察模型,压缩聊天内容,建议用免费的
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
name = "Qwen/Qwen2.5-7B-Instruct"
@@ -241,19 +229,48 @@ provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.sub_heartflow] #心流:认真聊天时,生成麦麦的内心想法,必须使用具有工具调用能力的模型
[model.focus_working_memory] #工作记忆模型建议使用qwen2.5 32b
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.focus_chat_mind] #聊天规划:认真聊天时,生成麦麦对聊天的规划想法
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8
temp = 0.3 #模型的温度新V3建议0.1-0.3
[model.plan] #决策:认真聊天时,负责决定麦麦该做什么
[model.focus_tool_use] #工具调用模型需要使用支持工具调用的模型建议使用qwen2.5 32b
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.focus_planner] #决策:认真聊天时,负责决定麦麦该做什么
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8
#表达器模型,用于生成表达方式
[model.focus_expressor]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8
temp = 0.3
#自我识别模型,用于自我认知和身份识别
[model.focus_self_recognize]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8
temp = 0.3
#嵌入模型
[model.embedding] #嵌入
@@ -263,6 +280,9 @@ pri_in = 0
pri_out = 0
#私聊PFC需要开启PFC功能默认三个模型均为硅基流动v3如果需要支持多人同时私聊或频繁调用建议把其中的一个或两个换成官方v3或其它模型以免撞到429
#PFC决策模型
@@ -289,15 +309,6 @@ pri_in = 2
pri_out = 8
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
[model.tool_use] #工具调用模型需要使用支持工具调用的模型建议使用qwen2.5 32b
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26