feat:拆分重命名模型配置,修复动作恢复问题
This commit is contained in:
@@ -78,10 +78,10 @@ class DefaultExpressor:
|
||||
self.log_prefix = "expressor"
|
||||
# TODO: API-Adapter修改标记
|
||||
self.express_model = LLMRequest(
|
||||
model=global_config.model.normal,
|
||||
temperature=global_config.model.normal["temp"],
|
||||
model=global_config.model.focus_expressor,
|
||||
temperature=global_config.model.focus_expressor["temp"],
|
||||
max_tokens=256,
|
||||
request_type="response_heartflow",
|
||||
request_type="focus_expressor",
|
||||
)
|
||||
self.heart_fc_sender = HeartFCSender()
|
||||
|
||||
|
||||
@@ -27,9 +27,6 @@ class ActionProcessor(BaseProcessor):
|
||||
"""初始化观察处理器"""
|
||||
super().__init__()
|
||||
# TODO: API-Adapter修改标记
|
||||
self.model_summary = LLMRequest(
|
||||
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
)
|
||||
|
||||
async def process_info(
|
||||
self,
|
||||
|
||||
@@ -71,10 +71,10 @@ class MindProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.sub_heartflow,
|
||||
temperature=global_config.model.sub_heartflow["temp"],
|
||||
model=global_config.model.focus_chat_mind,
|
||||
temperature=global_config.model.focus_chat_mind["temp"],
|
||||
max_tokens=800,
|
||||
request_type="sub_heart_flow",
|
||||
request_type="focus_chat_mind",
|
||||
)
|
||||
|
||||
self.current_mind = ""
|
||||
|
||||
@@ -54,10 +54,10 @@ class SelfProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.sub_heartflow,
|
||||
temperature=global_config.model.sub_heartflow["temp"],
|
||||
model=global_config.model.focus_self_recognize,
|
||||
temperature=global_config.model.focus_self_recognize["temp"],
|
||||
max_tokens=800,
|
||||
request_type="self_identify",
|
||||
request_type="focus_self_identify",
|
||||
)
|
||||
|
||||
name = chat_manager.get_stream_name(self.subheartflow_id)
|
||||
|
||||
@@ -49,9 +49,9 @@ class ToolProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
self.log_prefix = f"[{subheartflow_id}:ToolExecutor] "
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.tool_use,
|
||||
model=global_config.model.focus_tool_use,
|
||||
max_tokens=500,
|
||||
request_type="tool_execution",
|
||||
request_type="focus_tool",
|
||||
)
|
||||
self.structured_info = []
|
||||
|
||||
|
||||
@@ -61,10 +61,10 @@ class WorkingMemoryProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.sub_heartflow,
|
||||
temperature=global_config.model.sub_heartflow["temp"],
|
||||
model=global_config.model.focus_chat_mind,
|
||||
temperature=global_config.model.focus_chat_mind["temp"],
|
||||
max_tokens=800,
|
||||
request_type="working_memory",
|
||||
request_type="focus_working_memory",
|
||||
)
|
||||
|
||||
name = chat_manager.get_stream_name(self.subheartflow_id)
|
||||
|
||||
@@ -36,7 +36,7 @@ class MemoryActivator:
|
||||
def __init__(self):
|
||||
# TODO: API-Adapter修改标记
|
||||
self.summary_model = LLMRequest(
|
||||
model=global_config.model.summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
|
||||
model=global_config.model.memory_summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
|
||||
)
|
||||
self.running_memory = []
|
||||
|
||||
|
||||
@@ -28,8 +28,7 @@ class ActionManager:
|
||||
self._registered_actions: Dict[str, ActionInfo] = {}
|
||||
# 当前正在使用的动作集合,默认加载默认动作
|
||||
self._using_actions: Dict[str, ActionInfo] = {}
|
||||
# 临时备份原始使用中的动作
|
||||
self._original_actions_backup: Optional[Dict[str, ActionInfo]] = None
|
||||
|
||||
|
||||
# 默认动作集,仅作为快照,用于恢复默认
|
||||
self._default_actions: Dict[str, ActionInfo] = {}
|
||||
@@ -278,22 +277,18 @@ class ActionManager:
|
||||
return True
|
||||
|
||||
def temporarily_remove_actions(self, actions_to_remove: List[str]) -> None:
|
||||
"""临时移除使用集中的指定动作,备份原始使用集"""
|
||||
if self._original_actions_backup is None:
|
||||
self._original_actions_backup = self._using_actions.copy()
|
||||
"""临时移除使用集中的指定动作"""
|
||||
for name in actions_to_remove:
|
||||
self._using_actions.pop(name, None)
|
||||
|
||||
def restore_actions(self) -> None:
|
||||
"""恢复之前备份的原始使用集"""
|
||||
if self._original_actions_backup is not None:
|
||||
self._using_actions = self._original_actions_backup.copy()
|
||||
self._original_actions_backup = None
|
||||
"""恢复到默认动作集"""
|
||||
logger.debug(f"恢复动作集: 从 {list(self._using_actions.keys())} 恢复到默认动作集 {list(self._default_actions.keys())}")
|
||||
self._using_actions = self._default_actions.copy()
|
||||
|
||||
def restore_default_actions(self) -> None:
|
||||
"""恢复默认动作集到使用集"""
|
||||
self._using_actions = self._default_actions.copy()
|
||||
self._original_actions_backup = None
|
||||
|
||||
def get_action(self, action_name: str) -> Optional[Type[BaseAction]]:
|
||||
"""
|
||||
|
||||
@@ -78,9 +78,9 @@ class ActionPlanner:
|
||||
self.log_prefix = log_prefix
|
||||
# LLM规划器配置
|
||||
self.planner_llm = LLMRequest(
|
||||
model=global_config.model.plan,
|
||||
model=global_config.model.focus_planner,
|
||||
max_tokens=1000,
|
||||
request_type="action_planning", # 用于动作规划
|
||||
request_type="focus_planner", # 用于动作规划
|
||||
)
|
||||
|
||||
self.action_manager = action_manager
|
||||
@@ -161,6 +161,10 @@ class ActionPlanner:
|
||||
action = "no_reply"
|
||||
reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用,跳过规划"
|
||||
logger.info(f"{self.log_prefix}{reasoning}")
|
||||
self.action_manager.restore_actions()
|
||||
logger.debug(
|
||||
f"{self.log_prefix}恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
)
|
||||
return {
|
||||
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
|
||||
"current_mind": current_mind,
|
||||
@@ -241,10 +245,10 @@ class ActionPlanner:
|
||||
f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
|
||||
)
|
||||
|
||||
# 恢复原始动作集
|
||||
# 恢复到默认动作集
|
||||
self.action_manager.restore_actions()
|
||||
logger.debug(
|
||||
f"{self.log_prefix}恢复了原始动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
f"{self.log_prefix}恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
)
|
||||
|
||||
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}
|
||||
|
||||
@@ -33,7 +33,7 @@ class MemoryManager:
|
||||
self._id_map: Dict[str, MemoryItem] = {}
|
||||
|
||||
self.llm_summarizer = LLMRequest(
|
||||
model=global_config.model.summary, temperature=0.3, max_tokens=512, request_type="memory_summarization"
|
||||
model=global_config.model.focus_working_memory, temperature=0.3, max_tokens=512, request_type="memory_summarization"
|
||||
)
|
||||
|
||||
@property
|
||||
|
||||
@@ -88,34 +88,34 @@ class BackgroundTaskManager:
|
||||
f"聊天状态更新任务已启动 间隔:{STATE_UPDATE_INTERVAL_SECONDS}s",
|
||||
"_state_update_task",
|
||||
),
|
||||
(
|
||||
self._run_cleanup_cycle,
|
||||
"info",
|
||||
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
|
||||
"_cleanup_task",
|
||||
),
|
||||
# 新增私聊激活任务配置
|
||||
(
|
||||
# Use lambda to pass the interval to the runner function
|
||||
lambda: self._run_private_chat_activation_cycle(PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS),
|
||||
"debug",
|
||||
f"私聊激活检查任务已启动 间隔:{PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS}s",
|
||||
"_private_chat_activation_task",
|
||||
),
|
||||
]
|
||||
|
||||
# 根据 chat_mode 条件添加专注评估任务
|
||||
# 根据 chat_mode 条件添加其他任务
|
||||
if not (global_config.chat.chat_mode == "normal"):
|
||||
task_configs.append(
|
||||
task_configs.extend([
|
||||
(
|
||||
self._run_cleanup_cycle,
|
||||
"info",
|
||||
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
|
||||
"_cleanup_task",
|
||||
),
|
||||
# 新增私聊激活任务配置
|
||||
(
|
||||
# Use lambda to pass the interval to the runner function
|
||||
lambda: self._run_private_chat_activation_cycle(PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS),
|
||||
"debug",
|
||||
f"私聊激活检查任务已启动 间隔:{PRIVATE_CHAT_ACTIVATION_CHECK_INTERVAL_SECONDS}s",
|
||||
"_private_chat_activation_task",
|
||||
),
|
||||
(
|
||||
self._run_into_focus_cycle,
|
||||
"debug", # 设为debug,避免过多日志
|
||||
f"专注评估任务已启动 间隔:{INTEREST_EVAL_INTERVAL_SECONDS}s",
|
||||
"_into_focus_task",
|
||||
)
|
||||
)
|
||||
])
|
||||
else:
|
||||
logger.info("聊天模式为 normal,跳过启动专注评估任务")
|
||||
logger.info("聊天模式为 normal,跳过启动清理任务、私聊激活任务和专注评估任务")
|
||||
|
||||
# 统一启动所有任务
|
||||
for task_func, log_level, log_msg, task_attr_name in task_configs:
|
||||
|
||||
@@ -66,10 +66,6 @@ class ChattingObservation(Observation):
|
||||
self.oldest_messages = []
|
||||
self.oldest_messages_str = ""
|
||||
self.compressor_prompt = ""
|
||||
# TODO: API-Adapter修改标记
|
||||
self.model_summary = LLMRequest(
|
||||
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
)
|
||||
|
||||
async def initialize(self):
|
||||
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
|
||||
|
||||
@@ -193,7 +193,6 @@ class MemoryGraph:
|
||||
class Hippocampus:
|
||||
def __init__(self):
|
||||
self.memory_graph = MemoryGraph()
|
||||
self.llm_topic_judge = None
|
||||
self.model_summary = None
|
||||
self.entorhinal_cortex = None
|
||||
self.parahippocampal_gyrus = None
|
||||
@@ -205,8 +204,7 @@ class Hippocampus:
|
||||
# 从数据库加载记忆图
|
||||
self.entorhinal_cortex.sync_memory_from_db()
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_topic_judge = LLMRequest(global_config.model.topic_judge, request_type="memory")
|
||||
self.model_summary = LLMRequest(global_config.model.summary, request_type="memory")
|
||||
self.model_summary = LLMRequest(global_config.model.memory_summary, request_type="memory")
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表"""
|
||||
@@ -344,7 +342,7 @@ class Hippocampus:
|
||||
# 使用LLM提取关键词
|
||||
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
|
||||
# logger.info(f"提取关键词数量: {topic_num}")
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
|
||||
topics_response = await self.model_summary.generate_response(self.find_topic_llm(text, topic_num))
|
||||
|
||||
# 提取关键词
|
||||
keywords = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
@@ -699,7 +697,7 @@ class Hippocampus:
|
||||
# 使用LLM提取关键词
|
||||
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
|
||||
# logger.info(f"提取关键词数量: {topic_num}")
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
|
||||
topics_response = await self.model_summary.generate_response(self.find_topic_llm(text, topic_num))
|
||||
|
||||
# 提取关键词
|
||||
keywords = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
@@ -1126,7 +1124,7 @@ class ParahippocampalGyrus:
|
||||
|
||||
# 2. 使用LLM提取关键主题
|
||||
topic_num = self.hippocampus.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.hippocampus.llm_topic_judge.generate_response(
|
||||
topics_response = await self.hippocampus.model_summary.generate_response(
|
||||
self.hippocampus.find_topic_llm(input_text, topic_num)
|
||||
)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class NormalChatGenerator:
|
||||
def __init__(self):
|
||||
# TODO: API-Adapter修改标记
|
||||
self.model_reasoning = LLMRequest(
|
||||
model=global_config.model.reasoning,
|
||||
model=global_config.model.normal_chat_1,
|
||||
temperature=0.7,
|
||||
max_tokens=3000,
|
||||
request_type="response_reasoning",
|
||||
@@ -30,7 +30,7 @@ class NormalChatGenerator:
|
||||
)
|
||||
|
||||
self.model_sum = LLMRequest(
|
||||
model=global_config.model.summary, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
model=global_config.model.memory_summary, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
)
|
||||
self.current_model_type = "r1" # 默认使用 R1
|
||||
self.current_model_name = "unknown model"
|
||||
|
||||
@@ -130,6 +130,7 @@ class ImageManager:
|
||||
# 根据配置决定是否保存图片
|
||||
if global_config.emoji.save_emoji:
|
||||
# 生成文件名和路径
|
||||
logger.debug(f"保存表情包: {image_hash}")
|
||||
current_timestamp = time.time()
|
||||
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
|
||||
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
|
||||
@@ -156,7 +157,7 @@ class ImageManager:
|
||||
description=description,
|
||||
timestamp=current_timestamp,
|
||||
)
|
||||
logger.trace(f"保存表情包元数据: {file_path}")
|
||||
# logger.debug(f"保存表情包元数据: {file_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"保存表情包文件或元数据失败: {str(e)}")
|
||||
|
||||
|
||||
@@ -178,10 +178,10 @@ class EmojiConfig(ConfigBase):
|
||||
check_interval: int = 120
|
||||
"""表情包检查间隔(分钟)"""
|
||||
|
||||
save_pic: bool = False
|
||||
save_pic: bool = True
|
||||
"""是否保存图片"""
|
||||
|
||||
save_emoji: bool = False
|
||||
save_emoji: bool = True
|
||||
"""是否保存表情包"""
|
||||
|
||||
cache_emoji: bool = True
|
||||
@@ -384,27 +384,33 @@ class ModelConfig(ConfigBase):
|
||||
normal: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""普通模型配置"""
|
||||
|
||||
topic_judge: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""主题判断模型配置"""
|
||||
|
||||
summary: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""摘要模型配置"""
|
||||
memory_summary: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""记忆的概括模型配置"""
|
||||
|
||||
vlm: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""视觉语言模型配置"""
|
||||
|
||||
heartflow: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""心流模型配置"""
|
||||
|
||||
observation: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""观察模型配置"""
|
||||
|
||||
sub_heartflow: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""子心流模型配置"""
|
||||
|
||||
plan: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""计划模型配置"""
|
||||
focus_working_memory: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注工作记忆模型配置"""
|
||||
|
||||
focus_chat_mind: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注聊天规划模型配置"""
|
||||
|
||||
focus_self_recognize: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注自我识别模型配置"""
|
||||
|
||||
focus_tool_use: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注工具使用模型配置"""
|
||||
|
||||
focus_planner: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注规划模型配置"""
|
||||
|
||||
focus_expressor: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""专注表达器模型配置"""
|
||||
|
||||
embedding: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""嵌入模型配置"""
|
||||
|
||||
@@ -417,5 +423,6 @@ class ModelConfig(ConfigBase):
|
||||
pfc_reply_checker: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""PFC回复检查模型配置"""
|
||||
|
||||
tool_use: dict[str, Any] = field(default_factory=lambda: {})
|
||||
"""工具使用模型配置"""
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -459,6 +459,7 @@ class LLMRequest:
|
||||
logger.error(
|
||||
f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
|
||||
)
|
||||
print(request_content)
|
||||
print(response)
|
||||
# 尝试获取并记录服务器返回的详细错误信息
|
||||
try:
|
||||
@@ -499,8 +500,8 @@ class LLMRequest:
|
||||
if global_config.model.normal.get("name") == old_model_name:
|
||||
global_config.model.normal["name"] = self.model_name
|
||||
logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
|
||||
if global_config.model.reasoning.get("name") == old_model_name:
|
||||
global_config.model.reasoning["name"] = self.model_name
|
||||
if global_config.model.normal_chat_1.get("name") == old_model_name:
|
||||
global_config.model.normal_chat_1["name"] = self.model_name
|
||||
logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}")
|
||||
|
||||
if payload and "model" in payload:
|
||||
|
||||
@@ -1,18 +1,9 @@
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
import json
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.tools.tool_can_use import get_all_tool_definitions, get_tool_instance
|
||||
|
||||
logger = get_logger("tool_use")
|
||||
|
||||
|
||||
class ToolUser:
|
||||
def __init__(self):
|
||||
self.llm_model_tool = LLMRequest(
|
||||
model=global_config.model.tool_use, temperature=0.2, max_tokens=1000, request_type="tool_use"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _define_tools():
|
||||
"""获取所有已注册工具的定义
|
||||
|
||||
@@ -196,7 +196,7 @@ pfc_chatting = false # 是否启用PFC聊天,该功能仅作用于私聊,与
|
||||
model_max_output_length = 800 # 模型单次返回的最大token数
|
||||
|
||||
#这个模型必须是推理模型
|
||||
[model.reasoning] # 一般聊天模式的推理回复模型
|
||||
[model.normal_chat_1] # 一般聊天模式的首要回复模型,推荐使用 推理模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.0 #模型的输入价格(非必填,可以记录消耗)
|
||||
@@ -210,13 +210,7 @@ pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
|
||||
#默认temp 0.2 如果你使用的是老V3或者其他模型,请自己修改temp参数
|
||||
temp = 0.2 #模型的温度,新V3建议0.1-0.3
|
||||
|
||||
[model.topic_judge] #主题判断模型:建议使用qwen2.5 7b
|
||||
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0.35
|
||||
pri_out = 0.35
|
||||
|
||||
[model.summary] #概括模型,建议使用qwen2.5 32b 及以上
|
||||
[model.memory_summary] # 记忆的概括模型,建议使用qwen2.5 32b 及以上
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
@@ -228,12 +222,6 @@ provider = "SILICONFLOW"
|
||||
pri_in = 0.35
|
||||
pri_out = 0.35
|
||||
|
||||
[model.heartflow] # 用于控制麦麦是否参与聊天的模型
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
[model.observation] #观察模型,压缩聊天内容,建议用免费的
|
||||
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
name = "Qwen/Qwen2.5-7B-Instruct"
|
||||
@@ -241,19 +229,48 @@ provider = "SILICONFLOW"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
[model.sub_heartflow] #心流:认真聊天时,生成麦麦的内心想法,必须使用具有工具调用能力的模型
|
||||
[model.focus_working_memory] #工作记忆模型,建议使用qwen2.5 32b
|
||||
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
[model.focus_chat_mind] #聊天规划:认真聊天时,生成麦麦对聊天的规划想法
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
temp = 0.3 #模型的温度,新V3建议0.1-0.3
|
||||
|
||||
[model.plan] #决策:认真聊天时,负责决定麦麦该做什么
|
||||
[model.focus_tool_use] #工具调用模型,需要使用支持工具调用的模型,建议使用qwen2.5 32b
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
[model.focus_planner] #决策:认真聊天时,负责决定麦麦该做什么
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
|
||||
#表达器模型,用于生成表达方式
|
||||
[model.focus_expressor]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
temp = 0.3
|
||||
|
||||
#自我识别模型,用于自我认知和身份识别
|
||||
[model.focus_self_recognize]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
temp = 0.3
|
||||
|
||||
#嵌入模型
|
||||
|
||||
[model.embedding] #嵌入
|
||||
@@ -263,6 +280,9 @@ pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#私聊PFC:需要开启PFC功能,默认三个模型均为硅基流动v3,如果需要支持多人同时私聊或频繁调用,建议把其中的一个或两个换成官方v3或其它模型,以免撞到429
|
||||
|
||||
#PFC决策模型
|
||||
@@ -289,15 +309,6 @@ pri_in = 2
|
||||
pri_out = 8
|
||||
|
||||
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
|
||||
[model.tool_use] #工具调用模型,需要使用支持工具调用的模型,建议使用qwen2.5 32b
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user