Files
Mofox-Core/src/plugins/PFC/reply_generator.py
2025-04-28 10:30:11 +00:00

181 lines
9.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Tuple, List, Dict, Any
from src.common.logger import get_module_logger
from ..models.utils_model import LLMRequest
from ...config.config import global_config
from .chat_observer import ChatObserver
from .reply_checker import ReplyChecker
from src.individuality.individuality import Individuality
from .observation_info import ObservationInfo
from .conversation_info import ConversationInfo
from src.plugins.utils.chat_message_builder import build_readable_messages
logger = get_module_logger("reply_generator")
# --- 定义 Prompt 模板 ---
# Prompt for direct_reply (首次回复)
PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊请根据以下信息生成一条回复
当前对话目标:{goals_str}
最近的聊天记录:
{chat_history_text}
请根据上述信息,结合聊天记录,回复对方。该回复应该:
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
可以回复得自然随意自然一些,就像真人一样,注意把握聊天内容,整体风格可以平和、简短,不要刻意突出自身学科背景,不要说你说过的话,可以简短,多简短都可以,但是避免冗长。
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。
请直接输出回复内容,不需要任何额外格式。"""
# Prompt for send_new_message (追问/补充)
PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息:
当前对话目标:{goals_str}
最近的聊天记录:
{chat_history_text}
请根据上述信息,结合聊天记录,继续发一条新消息(例如对之前消息的补充,深入话题,或追问等等)。该消息应该:
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容
请注意把握聊天内容,不用太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
这条消息可以自然随意自然一些,就像真人一样,注意把握聊天内容,整体风格可以平和、简短,不要刻意突出自身学科背景,不要说你说过的话,可以简短,多简短都可以,但是避免冗长。
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出消息内容。
不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。
请直接输出回复内容,不需要任何额外格式。"""
class ReplyGenerator:
"""回复生成器"""
def __init__(self, stream_id: str, private_name: str):
self.llm = LLMRequest(
model=global_config.llm_PFC_chat,
temperature=global_config.llm_PFC_chat["temp"],
max_tokens=300,
request_type="reply_generation",
)
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=3)
self.identity_detail_info = Individuality.get_instance().get_prompt(type="identity", x_person=2, level=2)
self.name = global_config.BOT_NICKNAME
self.private_name = private_name
self.chat_observer = ChatObserver.get_instance(stream_id, private_name)
self.reply_checker = ReplyChecker(stream_id, private_name)
# 修改 generate 方法签名,增加 action_type 参数
async def generate(
self, observation_info: ObservationInfo, conversation_info: ConversationInfo, action_type: str
) -> str:
"""生成回复
Args:
observation_info: 观察信息
conversation_info: 对话信息
action_type: 当前执行的动作类型 ('direct_reply''send_new_message')
Returns:
str: 生成的回复
"""
# 构建提示词
logger.debug(
f"[私聊][{self.private_name}]开始生成回复 (动作类型: {action_type}):当前目标: {conversation_info.goal_list}"
)
# --- 构建通用 Prompt 参数 ---
# (这部分逻辑基本不变)
# 构建对话目标 (goals_str)
goals_str = ""
if conversation_info.goal_list:
for goal_reason in conversation_info.goal_list:
if isinstance(goal_reason, dict):
goal = goal_reason.get("goal", "目标内容缺失")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
goal = str(goal_reason)
reasoning = "没有明确原因"
goal = str(goal) if goal is not None else "目标内容缺失"
reasoning = str(reasoning) if reasoning is not None else "没有明确原因"
goals_str += f"- 目标:{goal}\n 原因:{reasoning}\n"
else:
goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况
# 获取聊天历史记录 (chat_history_text)
chat_history_text = observation_info.chat_history_str
if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages:
new_messages_list = observation_info.unprocessed_messages
new_messages_str = await build_readable_messages(
new_messages_list,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
chat_history_text += f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
elif not chat_history_text:
chat_history_text = "还没有聊天记录。"
# 构建 Persona 文本 (persona_text)
identity_details_only = self.identity_detail_info
identity_addon = ""
if isinstance(identity_details_only, str):
pronouns = ["", "", ""]
for p in pronouns:
if identity_details_only.startswith(p):
identity_details_only = identity_details_only[len(p) :]
break
if identity_details_only.endswith(""):
identity_details_only = identity_details_only[:-1]
cleaned_details = identity_details_only.strip(", ")
if cleaned_details:
identity_addon = f"并且{cleaned_details}"
persona_text = f"你的名字是{self.name}{self.personality_info}{identity_addon}"
# --- 选择 Prompt ---
if action_type == "send_new_message":
prompt_template = PROMPT_SEND_NEW_MESSAGE
logger.info(f"[私聊][{self.private_name}]使用 PROMPT_SEND_NEW_MESSAGE (追问生成)")
else: # 默认使用 direct_reply 的 prompt
prompt_template = PROMPT_DIRECT_REPLY
logger.info(f"[私聊][{self.private_name}]使用 PROMPT_DIRECT_REPLY (首次/非连续回复生成)")
# --- 格式化最终的 Prompt ---
prompt = prompt_template.format(
persona_text=persona_text, goals_str=goals_str, chat_history_text=chat_history_text
)
# --- 调用 LLM 生成 ---
logger.debug(f"[私聊][{self.private_name}]发送到LLM的生成提示词:\n------\n{prompt}\n------")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"[私聊][{self.private_name}]生成的回复: {content}")
# 移除旧的检查新消息逻辑,这应该由 conversation 控制流处理
return content
except Exception as e:
logger.error(f"[私聊][{self.private_name}]生成回复时出错: {e}")
return "抱歉,我现在有点混乱,让我重新思考一下..."
# check_reply 方法保持不变
async def check_reply(
self, reply: str, goal: str, chat_history: List[Dict[str, Any]], chat_history_str: str, retry_count: int = 0
) -> Tuple[bool, str, bool]:
"""检查回复是否合适
(此方法逻辑保持不变)
"""
return await self.reply_checker.check(reply, goal, chat_history, chat_history_str, retry_count)