Files
Mofox-Core/src/plugins/PFC/pfc_KnowledgeFetcher.py
墨梓柒 fd052cd43b feat(KnowledgeFetcher): 添加LPMM知识库查询功能
为KnowledgeFetcher类新增_lpmm_get_knowledge方法,用于从LPMM知识库中获取相关知识。同时,在fetch方法中整合了LPMM知识库查询结果,以提供更全面的知识参考。
2025-04-25 18:32:11 +08:00

79 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import List, Tuple
from src.common.logger import get_module_logger
from src.plugins.memory_system.Hippocampus import HippocampusManager
from ..models.utils_model import LLMRequest
from ...config.config import global_config
from ..chat.message import Message
from ..knowledge.knowledge_lib import qa_manager
logger = get_module_logger("knowledge_fetcher")
class KnowledgeFetcher:
"""知识调取器"""
def __init__(self):
self.llm = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
max_tokens=1000,
request_type="knowledge_fetch",
)
def _lpmm_get_knowledge(self, query: str) -> str:
"""获取相关知识
Args:
query: 查询内容
Returns:
str: 构造好的,带相关度的知识
"""
logger.debug("正在从LPMM知识库中获取知识")
try:
knowledge_info = qa_manager.get_knowledge(query)
logger.debug(f"LPMM知识库查询结果: {knowledge_info:150}")
return knowledge_info
except Exception as e:
logger.error(f"LPMM知识库搜索工具执行失败: {str(e)}")
return "未找到匹配的知识"
async def fetch(self, query: str, chat_history: List[Message]) -> Tuple[str, str]:
"""获取相关知识
Args:
query: 查询内容
chat_history: 聊天历史
Returns:
Tuple[str, str]: (获取的知识, 知识来源)
"""
# 构建查询上下文
chat_history_text = ""
for msg in chat_history:
# sender = msg.message_info.user_info.user_nickname or f"用户{msg.message_info.user_info.user_id}"
chat_history_text += f"{msg.detailed_plain_text}\n"
# 从记忆中获取相关知识
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=f"{query}\n{chat_history_text}",
max_memory_num=3,
max_memory_length=2,
max_depth=3,
fast_retrieval=False,
)
knowledge = ""
if related_memory:
sources = []
for memory in related_memory:
knowledge += memory[1] + "\n"
sources.append(f"记忆片段{memory[0]}")
knowledge = knowledge.strip(), "".join(sources)
knowledge +="现在有以下**知识**可供参考:\n 请记住这些**知识**,并根据**知识**回答问题。\n"
knowledge += self._lpmm_get_knowledge(query)
return "未找到相关知识", "无记忆匹配"