721 lines
28 KiB
Python
721 lines
28 KiB
Python
"""
|
||
统一记忆管理器 (Unified Memory Manager)
|
||
|
||
整合三层记忆系统:
|
||
- 感知记忆层
|
||
- 短期记忆层
|
||
- 长期记忆层
|
||
|
||
提供统一的接口供外部调用
|
||
"""
|
||
|
||
import asyncio
|
||
import time
|
||
from pathlib import Path
|
||
from typing import Any
|
||
|
||
from src.common.logger import get_logger
|
||
from src.memory_graph.long_term_manager import LongTermMemoryManager
|
||
from src.memory_graph.manager import MemoryManager
|
||
from src.memory_graph.models import JudgeDecision, MemoryBlock, ShortTermMemory
|
||
from src.memory_graph.perceptual_manager import PerceptualMemoryManager
|
||
from src.memory_graph.short_term_manager import ShortTermMemoryManager
|
||
|
||
logger = get_logger(__name__)
|
||
|
||
|
||
class UnifiedMemoryManager:
|
||
"""
|
||
统一记忆管理器
|
||
|
||
整合三层记忆系统,提供统一接口
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
data_dir: Path | None = None,
|
||
memory_manager: MemoryManager | None = None,
|
||
# 感知记忆配置
|
||
perceptual_max_blocks: int = 50,
|
||
perceptual_block_size: int = 5,
|
||
perceptual_activation_threshold: int = 3,
|
||
perceptual_recall_top_k: int = 5,
|
||
perceptual_recall_threshold: float = 0.55,
|
||
# 短期记忆配置
|
||
short_term_max_memories: int = 30,
|
||
short_term_transfer_threshold: float = 0.6,
|
||
# 长期记忆配置
|
||
long_term_batch_size: int = 10,
|
||
long_term_search_top_k: int = 5,
|
||
long_term_decay_factor: float = 0.95,
|
||
long_term_auto_transfer_interval: int = 600,
|
||
# 智能检索配置
|
||
judge_confidence_threshold: float = 0.7,
|
||
):
|
||
"""
|
||
初始化统一记忆管理器
|
||
|
||
Args:
|
||
data_dir: 数据存储目录
|
||
perceptual_max_blocks: 感知记忆堆最大容量
|
||
perceptual_block_size: 每个记忆块的消息数量
|
||
perceptual_activation_threshold: 激活阈值(召回次数)
|
||
perceptual_recall_top_k: 召回时返回的最大块数
|
||
perceptual_recall_threshold: 召回的相似度阈值
|
||
short_term_max_memories: 短期记忆最大数量
|
||
short_term_transfer_threshold: 转移到长期记忆的重要性阈值
|
||
long_term_batch_size: 批量处理的短期记忆数量
|
||
long_term_search_top_k: 检索相似记忆的数量
|
||
long_term_decay_factor: 长期记忆的衰减因子
|
||
long_term_auto_transfer_interval: 自动转移间隔(秒)
|
||
judge_confidence_threshold: 裁判模型的置信度阈值
|
||
"""
|
||
self.data_dir = data_dir or Path("data/memory_graph")
|
||
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
# 配置参数
|
||
self.judge_confidence_threshold = judge_confidence_threshold
|
||
|
||
# 三层管理器
|
||
self.perceptual_manager: PerceptualMemoryManager
|
||
self.short_term_manager: ShortTermMemoryManager
|
||
self.long_term_manager: LongTermMemoryManager
|
||
|
||
# 底层 MemoryManager(长期记忆)
|
||
self.memory_manager: MemoryManager = memory_manager
|
||
|
||
# 配置参数存储(用于初始化)
|
||
self._config = {
|
||
"perceptual": {
|
||
"max_blocks": perceptual_max_blocks,
|
||
"block_size": perceptual_block_size,
|
||
"activation_threshold": perceptual_activation_threshold,
|
||
"recall_top_k": perceptual_recall_top_k,
|
||
"recall_similarity_threshold": perceptual_recall_threshold,
|
||
},
|
||
"short_term": {
|
||
"max_memories": short_term_max_memories,
|
||
"transfer_importance_threshold": short_term_transfer_threshold,
|
||
},
|
||
"long_term": {
|
||
"batch_size": long_term_batch_size,
|
||
"search_top_k": long_term_search_top_k,
|
||
"long_term_decay_factor": long_term_decay_factor,
|
||
},
|
||
}
|
||
|
||
# 状态
|
||
self._initialized = False
|
||
self._auto_transfer_task: asyncio.Task | None = None
|
||
self._auto_transfer_interval = max(10.0, float(long_term_auto_transfer_interval))
|
||
# 优化:降低最大延迟时间,加快转移节奏 (原为 300.0)
|
||
self._max_transfer_delay = min(max(30.0, self._auto_transfer_interval), 60.0)
|
||
self._transfer_wakeup_event: asyncio.Event | None = None
|
||
|
||
logger.info("统一记忆管理器已创建")
|
||
|
||
async def initialize(self) -> None:
|
||
"""初始化统一记忆管理器"""
|
||
if self._initialized:
|
||
logger.warning("统一记忆管理器已经初始化")
|
||
return
|
||
|
||
try:
|
||
logger.debug("开始初始化统一记忆管理器...")
|
||
|
||
# 初始化底层 MemoryManager(长期记忆)
|
||
if self.memory_manager is None:
|
||
# 如果未提供外部 MemoryManager,则创建一个新的
|
||
# 假设 data_dir 是 three_tier 子目录,则 MemoryManager 使用父目录
|
||
# 如果 data_dir 是根目录,则 MemoryManager 使用该目录
|
||
self.memory_manager = MemoryManager(data_dir=self.data_dir)
|
||
await self.memory_manager.initialize()
|
||
else:
|
||
logger.debug("使用外部提供的 MemoryManager")
|
||
# 确保外部 MemoryManager 已初始化
|
||
if not getattr(self.memory_manager, "_initialized", False):
|
||
await self.memory_manager.initialize()
|
||
|
||
# 初始化感知记忆层
|
||
self.perceptual_manager = PerceptualMemoryManager(
|
||
data_dir=self.data_dir,
|
||
**self._config["perceptual"],
|
||
)
|
||
await self.perceptual_manager.initialize()
|
||
|
||
# 初始化短期记忆层
|
||
self.short_term_manager = ShortTermMemoryManager(
|
||
data_dir=self.data_dir,
|
||
**self._config["short_term"],
|
||
)
|
||
await self.short_term_manager.initialize()
|
||
|
||
# 初始化长期记忆层
|
||
self.long_term_manager = LongTermMemoryManager(
|
||
memory_manager=self.memory_manager,
|
||
**self._config["long_term"],
|
||
)
|
||
await self.long_term_manager.initialize()
|
||
|
||
self._initialized = True
|
||
logger.info("统一记忆管理器初始化完成")
|
||
|
||
# 启动自动转移任务
|
||
self._start_auto_transfer_task()
|
||
|
||
except Exception as e:
|
||
logger.error(f"统一记忆管理器初始化失败: {e}")
|
||
raise
|
||
|
||
async def add_message(self, message: dict[str, Any]) -> MemoryBlock | None:
|
||
"""
|
||
添加消息到感知记忆层
|
||
|
||
Args:
|
||
message: 消息字典
|
||
|
||
Returns:
|
||
如果创建了新块,返回 MemoryBlock
|
||
"""
|
||
if not self._initialized:
|
||
await self.initialize()
|
||
|
||
new_block = await self.perceptual_manager.add_message(message)
|
||
|
||
# 注意:感知→短期的转移由召回触发,不是由添加消息触发
|
||
# 转移逻辑在 search_memories 中处理
|
||
|
||
return new_block
|
||
|
||
# 已移除 _process_activated_blocks 方法
|
||
# 转移逻辑现在在 search_memories 中处理:
|
||
# 当召回某个记忆块时,如果其 recall_count >= activation_threshold,
|
||
# 立即将该块转移到短期记忆
|
||
|
||
async def search_memories(
|
||
self, query_text: str, use_judge: bool = True, recent_chat_history: str = ""
|
||
) -> dict[str, Any]:
|
||
"""
|
||
智能检索记忆
|
||
|
||
流程:
|
||
1. 优先检索感知记忆和短期记忆
|
||
2. 使用裁判模型评估是否充足
|
||
3. 如果不充足,生成补充 query 并检索长期记忆
|
||
|
||
Args:
|
||
query_text: 查询文本
|
||
use_judge: 是否使用裁判模型
|
||
recent_chat_history: 最近的聊天历史上下文(可选)
|
||
|
||
Returns:
|
||
检索结果字典,包含:
|
||
- perceptual_blocks: 感知记忆块列表
|
||
- short_term_memories: 短期记忆列表
|
||
- long_term_memories: 长期记忆列表
|
||
- judge_decision: 裁判决策(如果使用)
|
||
"""
|
||
if not self._initialized:
|
||
await self.initialize()
|
||
|
||
try:
|
||
result = {
|
||
"perceptual_blocks": [],
|
||
"short_term_memories": [],
|
||
"long_term_memories": [],
|
||
"judge_decision": None,
|
||
}
|
||
|
||
# 步骤1: 检索感知记忆和短期记忆
|
||
perceptual_blocks_task = asyncio.create_task(self.perceptual_manager.recall_blocks(query_text))
|
||
short_term_memories_task = asyncio.create_task(self.short_term_manager.search_memories(query_text))
|
||
|
||
perceptual_blocks, short_term_memories = await asyncio.gather(
|
||
perceptual_blocks_task,
|
||
short_term_memories_task,
|
||
)
|
||
|
||
# 步骤1.5: 检查需要转移的感知块,推迟到后台处理
|
||
blocks_to_transfer = [
|
||
block
|
||
for block in perceptual_blocks
|
||
if block.metadata.get("needs_transfer", False)
|
||
]
|
||
|
||
if blocks_to_transfer:
|
||
logger.debug(
|
||
f"检测到 {len(blocks_to_transfer)} 个感知记忆需要转移,已交由后台后处理任务执行"
|
||
)
|
||
for block in blocks_to_transfer:
|
||
block.metadata["needs_transfer"] = False
|
||
self._schedule_perceptual_block_transfer(blocks_to_transfer)
|
||
|
||
result["perceptual_blocks"] = perceptual_blocks
|
||
result["short_term_memories"] = short_term_memories
|
||
|
||
# 步骤2: 裁判模型评估
|
||
if use_judge:
|
||
judge_decision = await self._judge_retrieval_sufficiency(
|
||
query_text, perceptual_blocks, short_term_memories, recent_chat_history
|
||
)
|
||
result["judge_decision"] = judge_decision
|
||
|
||
# 步骤3: 如果不充足,检索长期记忆
|
||
if not judge_decision.is_sufficient:
|
||
logger.info("判官判断记忆不足,开始检索长期记忆")
|
||
|
||
queries = [query_text, *judge_decision.additional_queries]
|
||
long_term_memories = await self._retrieve_long_term_memories(
|
||
base_query=query_text,
|
||
queries=queries,
|
||
recent_chat_history=recent_chat_history,
|
||
)
|
||
|
||
result["long_term_memories"] = long_term_memories
|
||
|
||
else:
|
||
# 不使用裁判,直接检索长期记忆
|
||
long_term_memories = await self.memory_manager.search_memories(
|
||
query=query_text,
|
||
top_k=5,
|
||
use_multi_query=False,
|
||
)
|
||
result["long_term_memories"] = long_term_memories
|
||
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"智能检索失败: {e}")
|
||
return {
|
||
"perceptual_blocks": [],
|
||
"short_term_memories": [],
|
||
"long_term_memories": [],
|
||
"error": str(e),
|
||
}
|
||
|
||
async def _judge_retrieval_sufficiency(
|
||
self,
|
||
query: str,
|
||
perceptual_blocks: list[MemoryBlock],
|
||
short_term_memories: list[ShortTermMemory],
|
||
recent_chat_history: str = "",
|
||
) -> JudgeDecision:
|
||
"""
|
||
使用裁判模型评估检索结果是否充足
|
||
|
||
Args:
|
||
query: 原始查询
|
||
perceptual_blocks: 感知记忆块
|
||
short_term_memories: 短期记忆
|
||
recent_chat_history: 最近的聊天历史上下文(可选)
|
||
|
||
Returns:
|
||
裁判决策
|
||
"""
|
||
try:
|
||
from src.config.config import model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.memory_graph.utils.three_tier_formatter import memory_formatter
|
||
|
||
# 使用新的三级记忆格式化器
|
||
perceptual_desc = await memory_formatter.format_perceptual_memory(perceptual_blocks)
|
||
short_term_desc = memory_formatter.format_short_term_memory(short_term_memories)
|
||
|
||
# 构建聊天历史块(如果提供)
|
||
chat_history_block = ""
|
||
if recent_chat_history:
|
||
chat_history_block = f"""**最近的聊天历史:**
|
||
{recent_chat_history}
|
||
|
||
"""
|
||
|
||
prompt = f"""你是一个记忆检索评估专家。你的任务是判断当前检索到的“感知记忆”(即时对话)和“短期记忆”(结构化信息)是否足以支撑一次有深度、有上下文的回复。
|
||
|
||
**核心原则:**
|
||
- **适当检索长期记忆有助于提升回复质量。** 当对话涉及到特定话题、人物、事件或需要回忆过去的经历时,应该检索长期记忆。
|
||
- **判断标准:** 只有当现有记忆无法理解用户意图,或无法形成基本、连贯的回复时,才认为“不充足”。检索长期记忆耗时。除非有需要,否则不要检索。
|
||
- **如果用户在讨论某个具体话题,即使现有记忆有一些相关信息,也可以检索长期记忆来补充更多背景。**
|
||
|
||
**用户查询:**
|
||
{query}
|
||
|
||
{chat_history_block}**检索到的感知记忆(即时对话,格式:【时间 (聊天流)】消息列表):**
|
||
{perceptual_desc or '(无)'}
|
||
|
||
**检索到的短期记忆(结构化信息,自然语言描述):**
|
||
{short_term_desc or '(无)'}
|
||
|
||
**评估指南:**
|
||
1. **分析用户意图**:用户在聊什么?是简单闲聊还是有具体话题?
|
||
2. **检查现有记忆**:
|
||
- 对于闲聊、打招呼、无特定主题的互动 → 现有记忆充足 (`is_sufficient: true`)。
|
||
- 如果涉及具体话题(人物、事件、知识),但现有记忆能提供基本信息 → 现有记忆充足 (`is_sufficient: true`)。
|
||
- 仅当用户明确问及过去的特定事件,或当前信息完全无法理解用户意图时 → 现有记忆不充足 (`is_sufficient: false`)。
|
||
|
||
**输出格式(JSON):**
|
||
```json
|
||
{{
|
||
"is_sufficient": true/false,
|
||
"confidence": 0.85,
|
||
"reasoning": "在这里解释你的判断理由。例如:‘用户只是在打招呼,现有记忆已足够,无需检索长期记忆。’或‘用户问到了一个具体的历史事件,现有记忆完全没有相关信息,必须检索长期记忆。’",
|
||
"missing_aspects": ["缺失的信息1", "缺失的信息2"],
|
||
"additional_queries": ["补充query1", "补充query2"]
|
||
}}
|
||
```
|
||
|
||
请输出JSON:"""
|
||
|
||
# 调用记忆裁判模型
|
||
if not model_config.model_task_config:
|
||
raise ValueError("模型任务配置未加载")
|
||
llm = LLMRequest(
|
||
model_set=model_config.model_task_config.memory_judge,
|
||
request_type="unified_memory.judge",
|
||
)
|
||
|
||
response, _ = await llm.generate_response_async(
|
||
prompt,
|
||
temperature=0.1,
|
||
max_tokens=600,
|
||
)
|
||
|
||
# 解析响应
|
||
import json
|
||
import re
|
||
|
||
json_match = re.search(r"```json\s*(.*?)\s*```", response, re.DOTALL)
|
||
if json_match:
|
||
json_str = json_match.group(1)
|
||
else:
|
||
json_str = response.strip()
|
||
|
||
data = json.loads(json_str)
|
||
|
||
decision = JudgeDecision(
|
||
is_sufficient=data.get("is_sufficient", False),
|
||
confidence=data.get("confidence", 0.5),
|
||
reasoning=data.get("reasoning", ""),
|
||
additional_queries=data.get("additional_queries", []),
|
||
missing_aspects=data.get("missing_aspects", []),
|
||
)
|
||
|
||
return decision
|
||
|
||
except Exception as e:
|
||
logger.error(f"裁判模型评估失败: {e}")
|
||
# 默认判定为不充足,需要检索长期记忆
|
||
return JudgeDecision(
|
||
is_sufficient=False,
|
||
confidence=0.3,
|
||
reasoning=f"裁判模型失败: {e}",
|
||
additional_queries=[query],
|
||
)
|
||
|
||
def _schedule_perceptual_block_transfer(self, blocks: list[MemoryBlock]) -> None:
|
||
"""将感知记忆块转移到短期记忆,后台执行以避免阻塞"""
|
||
if not blocks:
|
||
return
|
||
|
||
task = asyncio.create_task(
|
||
self._transfer_blocks_to_short_term(list(blocks))
|
||
)
|
||
self._attach_background_task_callback(task, "perceptual->short-term transfer")
|
||
|
||
def _attach_background_task_callback(self, task: asyncio.Task, task_name: str) -> None:
|
||
"""确保后台任务异常被记录"""
|
||
|
||
def _callback(done_task: asyncio.Task) -> None:
|
||
try:
|
||
done_task.result()
|
||
except asyncio.CancelledError:
|
||
logger.info(f"{task_name} 后台任务已取消")
|
||
except Exception as exc:
|
||
logger.error(f"{task_name} 后台任务失败: {exc}")
|
||
|
||
task.add_done_callback(_callback)
|
||
|
||
def _trigger_transfer_wakeup(self) -> None:
|
||
"""通知自动转移任务立即检查缓存"""
|
||
if self._transfer_wakeup_event and not self._transfer_wakeup_event.is_set():
|
||
self._transfer_wakeup_event.set()
|
||
|
||
def _calculate_auto_sleep_interval(self) -> float:
|
||
"""根据短期内存压力计算自适应等待间隔"""
|
||
base_interval = self._auto_transfer_interval
|
||
if not getattr(self, "short_term_manager", None):
|
||
return base_interval
|
||
|
||
max_memories = max(1, getattr(self.short_term_manager, "max_memories", 1))
|
||
occupancy = len(self.short_term_manager.memories) / max_memories
|
||
|
||
# 优化:更激进的自适应间隔,加快高负载下的转移
|
||
if occupancy >= 0.8:
|
||
return max(2.0, base_interval * 0.1)
|
||
if occupancy >= 0.5:
|
||
return max(5.0, base_interval * 0.2)
|
||
if occupancy >= 0.3:
|
||
return max(10.0, base_interval * 0.4)
|
||
if occupancy >= 0.1:
|
||
return max(15.0, base_interval * 0.6)
|
||
|
||
return base_interval
|
||
|
||
async def _transfer_blocks_to_short_term(self, blocks: list[MemoryBlock]) -> None:
|
||
"""实际转换逻辑在后台执行"""
|
||
logger.debug(f"正在后台处理 {len(blocks)} 个感知记忆块")
|
||
for block in blocks:
|
||
try:
|
||
stm = await self.short_term_manager.add_from_block(block)
|
||
if not stm:
|
||
continue
|
||
|
||
await self.perceptual_manager.remove_block(block.id)
|
||
self._trigger_transfer_wakeup()
|
||
logger.debug(f"✓ 记忆块 {block.id} 已被转移到短期记忆 {stm.id}")
|
||
except Exception as exc:
|
||
logger.error(f"后台转移失败,记忆块 {block.id}: {exc}")
|
||
|
||
def _build_manual_multi_queries(self, queries: list[str]) -> list[dict[str, float]]:
|
||
"""去重裁判查询并附加权重以进行多查询搜索"""
|
||
deduplicated: list[str] = []
|
||
seen = set()
|
||
for raw in queries:
|
||
text = (raw or "").strip()
|
||
if not text or text in seen:
|
||
continue
|
||
deduplicated.append(text)
|
||
seen.add(text)
|
||
|
||
if len(deduplicated) <= 1:
|
||
return []
|
||
|
||
manual_queries: list[dict[str, Any]] = []
|
||
decay = 0.15
|
||
for idx, text in enumerate(deduplicated):
|
||
weight = max(0.3, 1.0 - idx * decay)
|
||
manual_queries.append({"text": text, "weight": round(weight, 2)})
|
||
|
||
return manual_queries
|
||
|
||
async def _retrieve_long_term_memories(
|
||
self,
|
||
base_query: str,
|
||
queries: list[str],
|
||
recent_chat_history: str = "",
|
||
) -> list[Any]:
|
||
"""可一次性运行多查询搜索的集中式长期检索条目"""
|
||
manual_queries = self._build_manual_multi_queries(queries)
|
||
|
||
context: dict[str, Any] = {}
|
||
if recent_chat_history:
|
||
context["chat_history"] = recent_chat_history
|
||
if manual_queries:
|
||
context["manual_multi_queries"] = manual_queries
|
||
|
||
search_params: dict[str, Any] = {
|
||
"query": base_query,
|
||
"top_k": self._config["long_term"]["search_top_k"],
|
||
"use_multi_query": bool(manual_queries),
|
||
}
|
||
if context:
|
||
search_params["context"] = context
|
||
|
||
memories = await self.memory_manager.search_memories(**search_params)
|
||
unique_memories = self._deduplicate_memories(memories)
|
||
|
||
len(manual_queries) if manual_queries else 1
|
||
return unique_memories
|
||
|
||
def _deduplicate_memories(self, memories: list[Any]) -> list[Any]:
|
||
"""通过 memory.id 去重"""
|
||
seen_ids: set[str] = set()
|
||
unique_memories: list[Any] = []
|
||
|
||
for mem in memories:
|
||
mem_id = getattr(mem, "id", None)
|
||
if mem_id and mem_id in seen_ids:
|
||
continue
|
||
|
||
unique_memories.append(mem)
|
||
if mem_id:
|
||
seen_ids.add(mem_id)
|
||
|
||
return unique_memories
|
||
|
||
|
||
def _start_auto_transfer_task(self) -> None:
|
||
"""启动自动转移任务"""
|
||
if self._auto_transfer_task and not self._auto_transfer_task.done():
|
||
logger.warning("自动转移任务已在运行")
|
||
return
|
||
|
||
if self._transfer_wakeup_event is None:
|
||
self._transfer_wakeup_event = asyncio.Event()
|
||
else:
|
||
self._transfer_wakeup_event.clear()
|
||
|
||
self._auto_transfer_task = asyncio.create_task(self._auto_transfer_loop())
|
||
logger.debug("自动转移任务已启动")
|
||
|
||
async def _auto_transfer_loop(self) -> None:
|
||
"""自动转移循环(批量缓存模式)"""
|
||
transfer_cache: list[ShortTermMemory] = []
|
||
cached_ids: set[str] = set()
|
||
cache_size_threshold = max(1, self._config["long_term"].get("batch_size", 1))
|
||
last_transfer_time = time.monotonic()
|
||
|
||
while True:
|
||
try:
|
||
sleep_interval = self._calculate_auto_sleep_interval()
|
||
if self._transfer_wakeup_event is not None:
|
||
try:
|
||
await asyncio.wait_for(
|
||
self._transfer_wakeup_event.wait(),
|
||
timeout=sleep_interval,
|
||
)
|
||
self._transfer_wakeup_event.clear()
|
||
except asyncio.TimeoutError:
|
||
pass
|
||
else:
|
||
await asyncio.sleep(sleep_interval)
|
||
|
||
memories_to_transfer = self.short_term_manager.get_memories_for_transfer()
|
||
|
||
if memories_to_transfer:
|
||
added = 0
|
||
for memory in memories_to_transfer:
|
||
mem_id = getattr(memory, "id", None)
|
||
if mem_id and mem_id in cached_ids:
|
||
continue
|
||
transfer_cache.append(memory)
|
||
if mem_id:
|
||
cached_ids.add(mem_id)
|
||
added += 1
|
||
|
||
if added:
|
||
logger.debug(
|
||
f"自动转移缓存: 新增{added}条, 当前缓存{len(transfer_cache)}/{cache_size_threshold}"
|
||
)
|
||
|
||
max_memories = max(1, getattr(self.short_term_manager, "max_memories", 1))
|
||
occupancy_ratio = len(self.short_term_manager.memories) / max_memories
|
||
time_since_last_transfer = time.monotonic() - last_transfer_time
|
||
|
||
should_transfer = (
|
||
len(transfer_cache) >= cache_size_threshold
|
||
or occupancy_ratio >= 0.5 # 优化:降低触发阈值 (原为 0.85)
|
||
or (transfer_cache and time_since_last_transfer >= self._max_transfer_delay)
|
||
or len(self.short_term_manager.memories) >= self.short_term_manager.max_memories
|
||
)
|
||
|
||
if should_transfer and transfer_cache:
|
||
logger.debug(
|
||
f"准备批量转移: {len(transfer_cache)}条短期记忆到长期记忆 (占用率 {occupancy_ratio:.0%})"
|
||
)
|
||
|
||
result = await self.long_term_manager.transfer_from_short_term(list(transfer_cache))
|
||
|
||
if result.get("transferred_memory_ids"):
|
||
await self.short_term_manager.clear_transferred_memories(
|
||
result["transferred_memory_ids"]
|
||
)
|
||
transferred_ids = set(result["transferred_memory_ids"])
|
||
transfer_cache = [
|
||
m
|
||
for m in transfer_cache
|
||
if getattr(m, "id", None) not in transferred_ids
|
||
]
|
||
cached_ids.difference_update(transferred_ids)
|
||
|
||
last_transfer_time = time.monotonic()
|
||
logger.debug(f"✅ 批量转移完成: {result}")
|
||
|
||
except asyncio.CancelledError:
|
||
logger.debug("自动转移循环被取消")
|
||
break
|
||
except Exception as e:
|
||
logger.error(f"自动转移循环异常: {e}")
|
||
|
||
async def manual_transfer(self) -> dict[str, Any]:
|
||
"""
|
||
手动触发短期记忆到长期记忆的转移
|
||
|
||
Returns:
|
||
转移结果
|
||
"""
|
||
if not self._initialized:
|
||
await self.initialize()
|
||
|
||
try:
|
||
memories_to_transfer = self.short_term_manager.get_memories_for_transfer()
|
||
|
||
if not memories_to_transfer:
|
||
return {"message": "没有需要转移的记忆", "transferred_count": 0}
|
||
|
||
# 执行转移
|
||
result = await self.long_term_manager.transfer_from_short_term(memories_to_transfer)
|
||
|
||
# 清除已转移的记忆
|
||
if result.get("transferred_memory_ids"):
|
||
await self.short_term_manager.clear_transferred_memories(
|
||
result["transferred_memory_ids"]
|
||
)
|
||
|
||
logger.info(f"手动转移完成: {result}")
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"手动转移失败: {e}")
|
||
return {"error": str(e), "transferred_count": 0}
|
||
|
||
def get_statistics(self) -> dict[str, Any]:
|
||
"""获取三层记忆系统的统计信息"""
|
||
if not self._initialized:
|
||
return {}
|
||
|
||
return {
|
||
"perceptual": self.perceptual_manager.get_statistics(),
|
||
"short_term": self.short_term_manager.get_statistics(),
|
||
"long_term": self.long_term_manager.get_statistics(),
|
||
"total_system_memories": (
|
||
self.perceptual_manager.get_statistics().get("total_messages", 0)
|
||
+ self.short_term_manager.get_statistics().get("total_memories", 0)
|
||
+ self.long_term_manager.get_statistics().get("total_memories", 0)
|
||
),
|
||
}
|
||
|
||
async def shutdown(self) -> None:
|
||
"""关闭统一记忆管理器"""
|
||
if not self._initialized:
|
||
return
|
||
|
||
try:
|
||
logger.info("正在关闭统一记忆管理器...")
|
||
|
||
# 取消自动转移任务
|
||
if self._auto_transfer_task and not self._auto_transfer_task.done():
|
||
self._auto_transfer_task.cancel()
|
||
try:
|
||
await self._auto_transfer_task
|
||
except asyncio.CancelledError:
|
||
pass
|
||
|
||
# 关闭各层管理器
|
||
if self.perceptual_manager:
|
||
await self.perceptual_manager.shutdown()
|
||
|
||
if self.short_term_manager:
|
||
await self.short_term_manager.shutdown()
|
||
|
||
if self.long_term_manager:
|
||
await self.long_term_manager.shutdown()
|
||
|
||
if self.memory_manager:
|
||
await self.memory_manager.shutdown()
|
||
|
||
self._initialized = False
|
||
logger.info("统一记忆管理器已关闭")
|
||
|
||
except Exception as e:
|
||
logger.error(f"关闭统一记忆管理器失败: {e}")
|