Files
Mofox-Core/src/chat/knowledge/qa_manager.py

128 lines
5.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
from typing import Tuple, List, Dict, Optional
from .global_logger import logger
# from . import prompt_template
from .embedding_store import EmbeddingManager
# from .llm_client import LLMClient
from .kg_manager import KGManager
# from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.utils import get_embedding
from src.config.config import global_config
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
class QAManager:
def __init__(
self,
embed_manager: EmbeddingManager,
kg_manager: KGManager,
):
self.embed_manager = embed_manager
self.kg_manager = kg_manager
# TODO: API-Adapter修改标记
self.qa_model = LLMRequest(
model=global_config.model.lpmm_qa,
request_type="lpmm.qa"
)
def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]:
"""处理查询"""
# 生成问题的Embedding
part_start_time = time.perf_counter()
question_embedding = get_embedding(question)
if question_embedding is None:
logger.error("生成问题Embedding失败")
return None
part_end_time = time.perf_counter()
logger.debug(f"Embedding用时{part_end_time - part_start_time:.5f}s")
# 根据问题Embedding查询Relation Embedding库
part_start_time = time.perf_counter()
relation_search_res = self.embed_manager.relation_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_relation_search_top_k,
)
if relation_search_res is not None:
# 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if relation_search_res[0][1] < global_config.lpmm_knowledge.qa_relation_threshold:
# 未找到相关关系
logger.debug("未找到相关关系,跳过关系检索")
relation_search_res = []
part_end_time = time.perf_counter()
logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
for res in relation_search_res:
rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
# TODO: 使用LLM过滤三元组结果
# logger.info(f"LLM过滤三元组用时{time.time() - part_start_time:.2f}s")
# part_start_time = time.time()
# 根据问题Embedding查询Paragraph Embedding库
part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_paragraph_search_top_k,
)
part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
if len(relation_search_res) != 0:
logger.info("找到相关关系将使用RAG进行检索")
# 使用KG检索
part_start_time = time.perf_counter()
result, ppr_node_weights = self.kg_manager.kg_search(
relation_search_res, paragraph_search_res, self.embed_manager
)
part_end_time = time.perf_counter()
logger.info(f"RAG检索用时{part_end_time - part_start_time:.5f}s")
else:
logger.info("未找到相关关系,将使用文段检索结果")
result = paragraph_search_res
ppr_node_weights = None
# 过滤阈值
result = dyn_select_top_k(result, 0.5, 1.0)
for res in result:
raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
return result, ppr_node_weights
else:
return None
def get_knowledge(self, question: str) -> str:
"""获取知识"""
# 处理查询
processed_result = self.process_query(question)
if processed_result is not None:
query_res = processed_result[0]
knowledge = [
(
self.embed_manager.paragraphs_embedding_store.store[res[0]].str,
res[1],
)
for res in query_res
]
found_knowledge = "\n".join(
[f"{i + 1}条知识:{k[0]}\n 该条知识对于问题的相关性:{k[1]}" for i, k in enumerate(knowledge)]
)
if len(found_knowledge) > MAX_KNOWLEDGE_LENGTH:
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
return found_knowledge
else:
logger.debug("LPMM知识库并未初始化可能是从未导入过知识...")
return None