Files
Mofox-Core/src/experimental/PFC/action_planner.py
SengokuCola 25d9032e62 better:重整配置,分离表达,聊天模式区分
重整配置文件路径,添加更多配置选项
分离了人设表达方式和学习到的表达方式
将聊天模式区分为normal focus和auto
2025-05-20 22:42:16 +08:00

492 lines
27 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
from typing import Tuple, Optional # 增加了 Optional
from src.common.logger_manager import get_logger
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.experimental.PFC.chat_observer import ChatObserver
from src.experimental.PFC.pfc_utils import get_items_from_json
from src.individuality.individuality import individuality
from src.experimental.PFC.observation_info import ObservationInfo
from src.experimental.PFC.conversation_info import ConversationInfo
from src.chat.utils.chat_message_builder import build_readable_messages
logger = get_logger("pfc_action_planner")
# --- 定义 Prompt 模板 ---
# Prompt(1): 首次回复或非连续回复时的决策 Prompt
PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊请根据以下【所有信息】审慎且灵活的决策下一步行动可以回复可以倾听可以调取知识甚至可以屏蔽对方
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
【上一次行动的详细情况和结果】
{last_action_context}
【时间和超时提示】
{time_since_last_bot_message_info}{timeout_context}
【最近的对话记录】(包括你已成功发送的消息 和 新收到的消息)
{chat_history_text}
------
可选行动类型以及解释:
fetch_knowledge: 需要调取知识或记忆,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时选择
direct_reply: 直接回复对方
rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择
end_conversation: 结束对话,对方长时间没回复或者当你觉得对话告一段落时可以选择
block_and_ignore: 更加极端的结束对话方式,直接结束对话并在一段时间内无视对方所有发言(屏蔽),当对话让你感到十分不适,或你遭到各类骚扰时选择
请以JSON格式输出你的决策
{{
"action": "选择的行动类型 (必须是上面列表中的一个)",
"reason": "选择该行动的详细原因 (必须有解释你是如何根据“上一次行动结果”、“对话记录”和自身设定人设做出合理判断的)"
}}
注意请严格按照JSON格式输出不要包含任何其他内容。"""
# Prompt(2): 上一次成功回复后,决定继续发言时的决策 Prompt
PROMPT_FOLLOW_UP = """{persona_text}。现在你在参与一场QQ私聊刚刚你已经回复了对方请根据以下【所有信息】审慎且灵活的决策下一步行动可以继续发送新消息可以等待可以倾听可以调取知识甚至可以屏蔽对方
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
【上一次行动的详细情况和结果】
{last_action_context}
【时间和超时提示】
{time_since_last_bot_message_info}{timeout_context}
【最近的对话记录】(包括你已成功发送的消息 和 新收到的消息)
{chat_history_text}
------
可选行动类型以及解释:
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
wait: 暂时不说话,留给对方交互空间,等待对方回复(尤其是在你刚发言后、或上次发言因重复、发言过多被拒时、或不确定做什么时,这是不错的选择)
listening: 倾听对方发言(虽然你刚发过言,但如果对方立刻回复且明显话没说完,可以选择这个)
send_new_message: 发送一条新消息继续对话,允许适当的追问、补充、深入话题,或开启相关新话题。**但是避免在因重复被拒后立即使用,也不要在对方没有回复的情况下过多的“消息轰炸”或重复发言**
rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择
end_conversation: 结束对话,对方长时间没回复或者当你觉得对话告一段落时可以选择
block_and_ignore: 更加极端的结束对话方式,直接结束对话并在一段时间内无视对方所有发言(屏蔽),当对话让你感到十分不适,或你遭到各类骚扰时选择
请以JSON格式输出你的决策
{{
"action": "选择的行动类型 (必须是上面列表中的一个)",
"reason": "选择该行动的详细原因 (必须有解释你是如何根据“上一次行动结果”、“对话记录”和自身设定人设做出合理判断的。请说明你为什么选择继续发言而不是等待,以及打算发送什么类型的新消息连续发言,必须记录已经发言了几次)"
}}
注意请严格按照JSON格式输出不要包含任何其他内容。"""
# 新增Prompt(3): 决定是否在结束对话前发送告别语
PROMPT_END_DECISION = """{persona_text}。刚刚你决定结束一场 QQ 私聊。
【你们之前的聊天记录】
{chat_history_text}
你觉得你们的对话已经完整结束了吗?有时候,在对话自然结束后再说点什么可能会有点奇怪,但有时也可能需要一条简短的消息来圆满结束。
如果觉得确实有必要再发一条简短、自然、符合你人设的告别消息(比如 "好,下次再聊~""嗯,先这样吧"),就输出 "yes"
如果觉得当前状态下直接结束对话更好,没有必要再发消息,就输出 "no"
请以 JSON 格式输出你的选择:
{{
"say_bye": "yes/no",
"reason": "选择 yes 或 no 的原因和内心想法 (简要说明)"
}}
注意:请严格按照 JSON 格式输出,不要包含任何其他内容。"""
# ActionPlanner 类定义,顶格
class ActionPlanner:
"""行动规划器"""
def __init__(self, stream_id: str, private_name: str):
self.llm = LLMRequest(
model=global_config.llm_PFC_action_planner,
temperature=global_config.llm_PFC_action_planner["temp"],
max_tokens=1500,
request_type="action_planning",
)
self.personality_info = individuality.get_prompt(x_person=2, level=3)
self.name = global_config.bot.nickname
self.private_name = private_name
self.chat_observer = ChatObserver.get_instance(stream_id, private_name)
# self.action_planner_info = ActionPlannerInfo() # 移除未使用的变量
# 修改 plan 方法签名,增加 last_successful_reply_action 参数
async def plan(
self,
observation_info: ObservationInfo,
conversation_info: ConversationInfo,
last_successful_reply_action: Optional[str],
) -> Tuple[str, str]:
"""规划下一步行动
Args:
observation_info: 决策信息
conversation_info: 对话信息
last_successful_reply_action: 上一次成功的回复动作类型 ('direct_reply''send_new_message' 或 None)
Returns:
Tuple[str, str]: (行动类型, 行动原因)
"""
# --- 获取 Bot 上次发言时间信息 ---
# (这部分逻辑不变)
time_since_last_bot_message_info = ""
try:
bot_id = str(global_config.bot.qq_account)
if hasattr(observation_info, "chat_history") and observation_info.chat_history:
for i in range(len(observation_info.chat_history) - 1, -1, -1):
msg = observation_info.chat_history[i]
if not isinstance(msg, dict):
continue
sender_info = msg.get("user_info", {})
sender_id = str(sender_info.get("user_id")) if isinstance(sender_info, dict) else None
msg_time = msg.get("time")
if sender_id == bot_id and msg_time:
time_diff = time.time() - msg_time
if time_diff < 60.0:
time_since_last_bot_message_info = (
f"提示:你上一条成功发送的消息是在 {time_diff:.1f} 秒前。\n"
)
break
else:
logger.debug(
f"[私聊][{self.private_name}]Observation info chat history is empty or not available for bot time check."
)
except AttributeError:
logger.warning(
f"[私聊][{self.private_name}]ObservationInfo object might not have chat_history attribute yet for bot time check."
)
except Exception as e:
logger.warning(f"[私聊][{self.private_name}]获取 Bot 上次发言时间时出错: {e}")
# --- 获取超时提示信息 ---
# (这部分逻辑不变)
timeout_context = ""
try:
if hasattr(conversation_info, "goal_list") and conversation_info.goal_list:
last_goal_dict = conversation_info.goal_list[-1]
if isinstance(last_goal_dict, dict) and "goal" in last_goal_dict:
last_goal_text = last_goal_dict["goal"]
if isinstance(last_goal_text, str) and "分钟,思考接下来要做什么" in last_goal_text:
try:
timeout_minutes_text = last_goal_text.split("")[0].replace("你等待了", "")
timeout_context = f"重要提示:对方已经长时间({timeout_minutes_text})没有回复你的消息了(这可能代表对方繁忙/不想回复/没注意到你的消息等情况,或在对方看来本次聊天已告一段落),请基于此情况规划下一步。\n"
except Exception:
timeout_context = "重要提示:对方已经长时间没有回复你的消息了(这可能代表对方繁忙/不想回复/没注意到你的消息等情况,或在对方看来本次聊天已告一段落),请基于此情况规划下一步。\n"
else:
logger.debug(
f"[私聊][{self.private_name}]Conversation info goal_list is empty or not available for timeout check."
)
except AttributeError:
logger.warning(
f"[私聊][{self.private_name}]ConversationInfo object might not have goal_list attribute yet for timeout check."
)
except Exception as e:
logger.warning(f"[私聊][{self.private_name}]检查超时目标时出错: {e}")
# --- 构建通用 Prompt 参数 ---
logger.debug(
f"[私聊][{self.private_name}]开始规划行动:当前目标: {getattr(conversation_info, 'goal_list', '不可用')}"
)
# 构建对话目标 (goals_str)
goals_str = ""
try:
if hasattr(conversation_info, "goal_list") and conversation_info.goal_list:
for goal_reason in conversation_info.goal_list:
if isinstance(goal_reason, dict):
goal = goal_reason.get("goal", "目标内容缺失")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
goal = str(goal_reason)
reasoning = "没有明确原因"
goal = str(goal) if goal is not None else "目标内容缺失"
reasoning = str(reasoning) if reasoning is not None else "没有明确原因"
goals_str += f"- 目标:{goal}\n 原因:{reasoning}\n"
if not goals_str:
goals_str = "- 目前没有明确对话目标,请考虑设定一个。\n"
else:
goals_str = "- 目前没有明确对话目标,请考虑设定一个。\n"
except AttributeError:
logger.warning(
f"[私聊][{self.private_name}]ConversationInfo object might not have goal_list attribute yet."
)
goals_str = "- 获取对话目标时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建对话目标字符串时出错: {e}")
goals_str = "- 构建对话目标时出错。\n"
# --- 知识信息字符串构建开始 ---
knowledge_info_str = "【已获取的相关知识和记忆】\n"
try:
# 检查 conversation_info 是否有 knowledge_list 并且不为空
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
# 最多只显示最近的 5 条知识,防止 Prompt 过长
recent_knowledge = conversation_info.knowledge_list[-5:]
for i, knowledge_item in enumerate(recent_knowledge):
if isinstance(knowledge_item, dict):
query = knowledge_item.get("query", "未知查询")
knowledge = knowledge_item.get("knowledge", "无知识内容")
source = knowledge_item.get("source", "未知来源")
# 只取知识内容的前 2000 个字,避免太长
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
knowledge_info_str += (
f"{i + 1}. 关于 '{query}' 的知识 (来源: {source}):\n {knowledge_snippet}\n"
)
else:
# 处理列表里不是字典的异常情况
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
if not recent_knowledge: # 如果 knowledge_list 存在但为空
knowledge_info_str += "- 暂无相关知识和记忆。\n"
else:
# 如果 conversation_info 没有 knowledge_list 属性,或者列表为空
knowledge_info_str += "- 暂无相关知识记忆。\n"
except AttributeError:
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
knowledge_info_str += "- 获取知识列表时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
knowledge_info_str += "- 处理知识列表时出错。\n"
# --- 知识信息字符串构建结束 ---
# 获取聊天历史记录 (chat_history_text)
try:
if hasattr(observation_info, "chat_history") and observation_info.chat_history:
chat_history_text = observation_info.chat_history_str
if not chat_history_text:
chat_history_text = "还没有聊天记录。\n"
else:
chat_history_text = "还没有聊天记录。\n"
if hasattr(observation_info, "new_messages_count") and observation_info.new_messages_count > 0:
if hasattr(observation_info, "unprocessed_messages") and observation_info.unprocessed_messages:
new_messages_list = observation_info.unprocessed_messages
new_messages_str = await build_readable_messages(
new_messages_list,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
)
chat_history_text += (
f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
)
else:
logger.warning(
f"[私聊][{self.private_name}]ObservationInfo has new_messages_count > 0 but unprocessed_messages is empty or missing."
)
except AttributeError:
logger.warning(
f"[私聊][{self.private_name}]ObservationInfo object might be missing expected attributes for chat history."
)
chat_history_text = "获取聊天记录时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]处理聊天记录时发生未知错误: {e}")
chat_history_text = "处理聊天记录时出错。\n"
# 构建 Persona 文本 (persona_text)
persona_text = f"你的名字是{self.name}{self.personality_info}"
# 构建行动历史和上一次行动结果 (action_history_summary, last_action_context)
# (这部分逻辑不变)
action_history_summary = "你最近执行的行动历史:\n"
last_action_context = "关于你【上一次尝试】的行动:\n"
action_history_list = []
try:
if hasattr(conversation_info, "done_action") and conversation_info.done_action:
action_history_list = conversation_info.done_action[-5:]
else:
logger.debug(f"[私聊][{self.private_name}]Conversation info done_action is empty or not available.")
except AttributeError:
logger.warning(
f"[私聊][{self.private_name}]ConversationInfo object might not have done_action attribute yet."
)
except Exception as e:
logger.error(f"[私聊][{self.private_name}]访问行动历史时出错: {e}")
if not action_history_list:
action_history_summary += "- 还没有执行过行动。\n"
last_action_context += "- 这是你规划的第一个行动。\n"
else:
for i, action_data in enumerate(action_history_list):
action_type = "未知"
plan_reason = "未知"
status = "未知"
final_reason = ""
action_time = ""
if isinstance(action_data, dict):
action_type = action_data.get("action", "未知")
plan_reason = action_data.get("plan_reason", "未知规划原因")
status = action_data.get("status", "未知")
final_reason = action_data.get("final_reason", "")
action_time = action_data.get("time", "")
elif isinstance(action_data, tuple):
# 假设旧格式兼容
if len(action_data) > 0:
action_type = action_data[0]
if len(action_data) > 1:
plan_reason = action_data[1] # 可能是规划原因或最终原因
if len(action_data) > 2:
status = action_data[2]
if status == "recall" and len(action_data) > 3:
final_reason = action_data[3]
elif status == "done" and action_type in ["direct_reply", "send_new_message"]:
plan_reason = "成功发送" # 简化显示
reason_text = f", 失败/取消原因: {final_reason}" if final_reason else ""
summary_line = f"- 时间:{action_time}, 尝试行动:'{action_type}', 状态:{status}{reason_text}"
action_history_summary += summary_line + "\n"
if i == len(action_history_list) - 1:
last_action_context += f"- 上次【规划】的行动是: '{action_type}'\n"
last_action_context += f"- 当时规划的【原因】是: {plan_reason}\n"
if status == "done":
last_action_context += "- 该行动已【成功执行】。\n"
# 记录这次成功的行动类型,供下次决策
# self.last_successful_action_type = action_type # 不在这里记录,由 conversation 控制
elif status == "recall":
last_action_context += "- 但该行动最终【未能执行/被取消】。\n"
if final_reason:
last_action_context += f"- 【重要】失败/取消的具体原因是: “{final_reason}\n"
else:
last_action_context += "- 【重要】失败/取消原因未明确记录。\n"
# self.last_successful_action_type = None # 行动失败,清除记录
else:
last_action_context += f"- 该行动当前状态: {status}\n"
# self.last_successful_action_type = None # 非完成状态,清除记录
# --- 选择 Prompt ---
if last_successful_reply_action in ["direct_reply", "send_new_message"]:
prompt_template = PROMPT_FOLLOW_UP
logger.debug(f"[私聊][{self.private_name}]使用 PROMPT_FOLLOW_UP (追问决策)")
else:
prompt_template = PROMPT_INITIAL_REPLY
logger.debug(f"[私聊][{self.private_name}]使用 PROMPT_INITIAL_REPLY (首次/非连续回复决策)")
# --- 格式化最终的 Prompt ---
prompt = prompt_template.format(
persona_text=persona_text,
goals_str=goals_str if goals_str.strip() else "- 目前没有明确对话目标,请考虑设定一个。",
action_history_summary=action_history_summary,
last_action_context=last_action_context,
time_since_last_bot_message_info=time_since_last_bot_message_info,
timeout_context=timeout_context,
chat_history_text=chat_history_text if chat_history_text.strip() else "还没有聊天记录。",
knowledge_info_str=knowledge_info_str,
)
logger.debug(f"[私聊][{self.private_name}]发送到LLM的最终提示词:\n------\n{prompt}\n------")
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"[私聊][{self.private_name}]LLM (行动规划) 原始返回内容: {content}")
# --- 初始行动规划解析 ---
success, initial_result = get_items_from_json(
content,
self.private_name,
"action",
"reason",
default_values={"action": "wait", "reason": "LLM返回格式错误或未提供原因默认等待"},
)
initial_action = initial_result.get("action", "wait")
initial_reason = initial_result.get("reason", "LLM未提供原因默认等待")
# 检查是否需要进行结束对话决策 ---
if initial_action == "end_conversation":
logger.info(f"[私聊][{self.private_name}]初步规划结束对话,进入告别决策...")
# 使用新的 PROMPT_END_DECISION
end_decision_prompt = PROMPT_END_DECISION.format(
persona_text=persona_text, # 复用之前的 persona_text
chat_history_text=chat_history_text, # 复用之前的 chat_history_text
)
logger.debug(
f"[私聊][{self.private_name}]发送到LLM的结束决策提示词:\n------\n{end_decision_prompt}\n------"
)
try:
end_content, _ = await self.llm.generate_response_async(end_decision_prompt) # 再次调用LLM
logger.debug(f"[私聊][{self.private_name}]LLM (结束决策) 原始返回内容: {end_content}")
# 解析结束决策的JSON
end_success, end_result = get_items_from_json(
end_content,
self.private_name,
"say_bye",
"reason",
default_values={"say_bye": "no", "reason": "结束决策LLM返回格式错误默认不告别"},
required_types={"say_bye": str, "reason": str}, # 明确类型
)
say_bye_decision = end_result.get("say_bye", "no").lower() # 转小写方便比较
end_decision_reason = end_result.get("reason", "未提供原因")
if end_success and say_bye_decision == "yes":
# 决定要告别,返回新的 'say_goodbye' 动作
logger.info(
f"[私聊][{self.private_name}]结束决策: yes, 准备生成告别语. 原因: {end_decision_reason}"
)
# 注意:这里的 reason 可以考虑拼接初始原因和结束决策原因,或者只用结束决策原因
final_action = "say_goodbye"
final_reason = f"决定发送告别语。决策原因: {end_decision_reason} (原结束理由: {initial_reason})"
return final_action, final_reason
else:
# 决定不告别 (包括解析失败或明确说no)
logger.info(
f"[私聊][{self.private_name}]结束决策: no, 直接结束对话. 原因: {end_decision_reason}"
)
# 返回原始的 'end_conversation' 动作
final_action = "end_conversation"
final_reason = initial_reason # 保持原始的结束理由
return final_action, final_reason
except Exception as end_e:
logger.error(f"[私聊][{self.private_name}]调用结束决策LLM或处理结果时出错: {str(end_e)}")
# 出错时,默认执行原始的结束对话
logger.warning(f"[私聊][{self.private_name}]结束决策出错,将按原计划执行 end_conversation")
return "end_conversation", initial_reason # 返回原始动作和原因
else:
action = initial_action
reason = initial_reason
# 验证action类型 (保持不变)
valid_actions = [
"direct_reply",
"send_new_message",
"fetch_knowledge",
"wait",
"listening",
"rethink_goal",
"end_conversation", # 仍然需要验证,因为可能从上面决策后返回
"block_and_ignore",
"say_goodbye", # 也要验证这个新动作
]
if action not in valid_actions:
logger.warning(f"[私聊][{self.private_name}]LLM返回了未知的行动类型: '{action}',强制改为 wait")
reason = f"(原始行动'{action}'无效已强制改为wait) {reason}"
action = "wait"
logger.info(f"[私聊][{self.private_name}]规划的行动: {action}")
logger.info(f"[私聊][{self.private_name}]行动原因: {reason}")
return action, reason
except Exception as e:
# 外层异常处理保持不变
logger.error(f"[私聊][{self.private_name}]规划行动时调用 LLM 或处理结果出错: {str(e)}")
return "wait", f"行动规划处理中发生错误,暂时等待: {str(e)}"