Files
Mofox-Core/src/chat/utils/statistic.py

1702 lines
71 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, Dict, Tuple, List
import asyncio
import concurrent.futures
from src.common.logger import get_logger
from src.manager.async_task_manager import AsyncTask
from ...common.database.database import db # This db is the Peewee database instance
from ...common.database.database_model import OnlineTime, LLMUsage, Messages # Import the Peewee model
from src.manager.local_store_manager import local_storage
logger = get_logger("maibot_statistic")
# HFC统计相关的键
HFC_TOTAL_CYCLES = "hfc_total_cycles"
HFC_CYCLES_BY_CHAT = "hfc_cycles_by_chat"
HFC_CYCLES_BY_ACTION = "hfc_cycles_by_action"
HFC_CYCLES_BY_VERSION = "hfc_cycles_by_version"
HFC_AVG_TIME_BY_CHAT = "hfc_avg_time_by_chat"
HFC_AVG_TIME_BY_ACTION = "hfc_avg_time_by_action"
HFC_AVG_TIME_BY_VERSION = "hfc_avg_time_by_version"
HFC_ACTIONS_BY_CHAT = "hfc_actions_by_chat" # 群聊×动作交叉统计
# 统计数据的键
TOTAL_REQ_CNT = "total_requests"
TOTAL_COST = "total_cost"
REQ_CNT_BY_TYPE = "requests_by_type"
REQ_CNT_BY_USER = "requests_by_user"
REQ_CNT_BY_MODEL = "requests_by_model"
REQ_CNT_BY_MODULE = "requests_by_module"
IN_TOK_BY_TYPE = "in_tokens_by_type"
IN_TOK_BY_USER = "in_tokens_by_user"
IN_TOK_BY_MODEL = "in_tokens_by_model"
IN_TOK_BY_MODULE = "in_tokens_by_module"
OUT_TOK_BY_TYPE = "out_tokens_by_type"
OUT_TOK_BY_USER = "out_tokens_by_user"
OUT_TOK_BY_MODEL = "out_tokens_by_model"
OUT_TOK_BY_MODULE = "out_tokens_by_module"
TOTAL_TOK_BY_TYPE = "tokens_by_type"
TOTAL_TOK_BY_USER = "tokens_by_user"
TOTAL_TOK_BY_MODEL = "tokens_by_model"
TOTAL_TOK_BY_MODULE = "tokens_by_module"
COST_BY_TYPE = "costs_by_type"
COST_BY_USER = "costs_by_user"
COST_BY_MODEL = "costs_by_model"
COST_BY_MODULE = "costs_by_module"
ONLINE_TIME = "online_time"
TOTAL_MSG_CNT = "total_messages"
MSG_CNT_BY_CHAT = "messages_by_chat"
class OnlineTimeRecordTask(AsyncTask):
"""在线时间记录任务"""
def __init__(self):
super().__init__(task_name="Online Time Record Task", run_interval=60)
self.record_id: int | None = None # Changed to int for Peewee's default ID
"""记录ID"""
self._init_database() # 初始化数据库
@staticmethod
def _init_database():
"""初始化数据库"""
with db.atomic(): # Use atomic operations for schema changes
OnlineTime.create_table(safe=True) # Creates table if it doesn't exist, Peewee handles indexes from model
async def run(self):
try:
current_time = datetime.now()
extended_end_time = current_time + timedelta(minutes=1)
if self.record_id:
# 如果有记录,则更新结束时间
query = OnlineTime.update(end_timestamp=extended_end_time).where(OnlineTime.id == self.record_id)
updated_rows = query.execute()
if updated_rows == 0:
# Record might have been deleted or ID is stale, try to find/create
self.record_id = None # Reset record_id to trigger find/create logic below
if not self.record_id: # Check again if record_id was reset or initially None
# 如果没有记录,检查一分钟以内是否已有记录
# Look for a record whose end_timestamp is recent enough to be considered ongoing
recent_record = (
OnlineTime.select()
.where(OnlineTime.end_timestamp >= (current_time - timedelta(minutes=1)))
.order_by(OnlineTime.end_timestamp.desc())
.first()
)
if recent_record:
# 如果有记录,则更新结束时间
self.record_id = recent_record.id
recent_record.end_timestamp = extended_end_time
recent_record.save()
else:
# 若没有记录,则插入新的在线时间记录
new_record = OnlineTime.create(
timestamp=current_time.timestamp(), # 添加此行
start_timestamp=current_time,
end_timestamp=extended_end_time,
duration=5, # 初始时长为5分钟
)
self.record_id = new_record.id
except Exception as e:
logger.error(f"在线时间记录失败,错误信息:{e}")
def _format_online_time(online_seconds: int) -> str:
"""
格式化在线时间
:param online_seconds: 在线时间(秒)
:return: 格式化后的在线时间字符串
"""
total_oneline_time = timedelta(seconds=online_seconds)
days = total_oneline_time.days
hours = total_oneline_time.seconds // 3600
minutes = (total_oneline_time.seconds // 60) % 60
seconds = total_oneline_time.seconds % 60
if days > 0:
# 如果在线时间超过1天则格式化为"X天X小时X分钟"
return f"{total_oneline_time.days}{hours}小时{minutes}分钟{seconds}"
elif hours > 0:
# 如果在线时间超过1小时则格式化为"X小时X分钟X秒"
return f"{hours}小时{minutes}分钟{seconds}"
else:
# 其他情况格式化为"X分钟X秒"
return f"{minutes}分钟{seconds}"
class StatisticOutputTask(AsyncTask):
"""统计输出任务"""
SEP_LINE = "-" * 84
def __init__(self, record_file_path: str = "maibot_statistics.html"):
# 延迟300秒启动运行间隔300秒
super().__init__(task_name="Statistics Data Output Task", wait_before_start=0, run_interval=300)
self.name_mapping: Dict[str, Tuple[str, float]] = {}
"""
联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间timestamp)}
注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新
"""
self.record_file_path: str = record_file_path
"""
记录文件路径
"""
now = datetime.now()
if "deploy_time" in local_storage:
# 如果存在部署时间,则使用该时间作为全量统计的起始时间
deploy_time = datetime.fromtimestamp(local_storage["deploy_time"])
else:
# 否则,使用最大时间范围,并记录部署时间为当前时间
deploy_time = datetime(2000, 1, 1)
local_storage["deploy_time"] = now.timestamp()
self.stat_period: List[Tuple[str, timedelta, str]] = [
("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time"
("last_7_days", timedelta(days=7), "最近7天"),
("last_24_hours", timedelta(days=1), "最近24小时"),
("last_3_hours", timedelta(hours=3), "最近3小时"),
("last_hour", timedelta(hours=1), "最近1小时"),
]
"""
统计时间段 [(统计名称, 统计时间段, 统计描述), ...]
"""
def _statistic_console_output(self, stats: Dict[str, Any], now: datetime):
"""
输出统计数据到控制台
:param stats: 统计数据
:param now: 基准当前时间
"""
# 输出最近一小时的统计数据
output = [
self.SEP_LINE,
f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})",
self.SEP_LINE,
self._format_total_stat(stats["last_hour"]),
"",
self._format_model_classified_stat(stats["last_hour"]),
"",
self._format_chat_stat(stats["last_hour"]),
self.SEP_LINE,
"",
]
logger.info("\n" + "\n".join(output))
async def run(self):
try:
now = datetime.now()
# 使用线程池并行执行耗时操作
loop = asyncio.get_event_loop()
# 在线程池中并行执行数据收集和之前的HTML生成如果存在
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在收集统计数据...")
# 数据收集任务
collect_task = loop.run_in_executor(executor, self._collect_all_statistics, now)
# 等待数据收集完成
stats = await collect_task
logger.info("统计数据收集完成")
# 并行执行控制台输出和HTML报告生成
console_task = loop.run_in_executor(executor, self._statistic_console_output, stats, now)
html_task = loop.run_in_executor(executor, self._generate_html_report, stats, now)
# 等待两个输出任务完成
await asyncio.gather(console_task, html_task)
logger.info("统计数据输出完成")
except Exception as e:
logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}")
async def run_async_background(self):
"""
备选方案:完全异步后台运行统计输出
使用此方法可以让统计任务完全非阻塞
"""
async def _async_collect_and_output():
try:
import concurrent.futures
now = datetime.now()
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在后台收集统计数据...")
# 创建后台任务,不等待完成
collect_task = asyncio.create_task(
loop.run_in_executor(executor, self._collect_all_statistics, now)
)
stats = await collect_task
logger.info("统计数据收集完成")
# 创建并发的输出任务
output_tasks = [
asyncio.create_task(loop.run_in_executor(executor, self._statistic_console_output, stats, now)),
asyncio.create_task(loop.run_in_executor(executor, self._generate_html_report, stats, now)),
]
# 等待所有输出任务完成
await asyncio.gather(*output_tasks)
logger.info("统计数据后台输出完成")
except Exception as e:
logger.exception(f"后台统计数据输出过程中发生异常:{e}")
# 创建后台任务,立即返回
asyncio.create_task(_async_collect_and_output())
# -- 以下为统计数据收集方法 --
@staticmethod
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的LLM请求统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
TOTAL_REQ_CNT: 0,
REQ_CNT_BY_TYPE: defaultdict(int),
REQ_CNT_BY_USER: defaultdict(int),
REQ_CNT_BY_MODEL: defaultdict(int),
REQ_CNT_BY_MODULE: defaultdict(int),
IN_TOK_BY_TYPE: defaultdict(int),
IN_TOK_BY_USER: defaultdict(int),
IN_TOK_BY_MODEL: defaultdict(int),
IN_TOK_BY_MODULE: defaultdict(int),
OUT_TOK_BY_TYPE: defaultdict(int),
OUT_TOK_BY_USER: defaultdict(int),
OUT_TOK_BY_MODEL: defaultdict(int),
OUT_TOK_BY_MODULE: defaultdict(int),
TOTAL_TOK_BY_TYPE: defaultdict(int),
TOTAL_TOK_BY_USER: defaultdict(int),
TOTAL_TOK_BY_MODEL: defaultdict(int),
TOTAL_TOK_BY_MODULE: defaultdict(int),
TOTAL_COST: 0.0,
COST_BY_TYPE: defaultdict(float),
COST_BY_USER: defaultdict(float),
COST_BY_MODEL: defaultdict(float),
COST_BY_MODULE: defaultdict(float),
}
for period_key, _ in collect_period
}
# 以最早的时间戳为起始时间获取记录
# Assuming LLMUsage.timestamp is a DateTimeField
query_start_time = collect_period[-1][1]
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time):
record_timestamp = record.timestamp # This is already a datetime object
for idx, (_, period_start) in enumerate(collect_period):
if record_timestamp >= period_start:
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_REQ_CNT] += 1
request_type = record.request_type or "unknown"
user_id = record.user_id or "unknown" # user_id is TextField, already string
model_name = record.model_name or "unknown"
# 提取模块名:如果请求类型包含".",取第一个"."之前的部分
module_name = request_type.split(".")[0] if "." in request_type else request_type
stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1
stats[period_key][REQ_CNT_BY_USER][user_id] += 1
stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1
stats[period_key][REQ_CNT_BY_MODULE][module_name] += 1
prompt_tokens = record.prompt_tokens or 0
completion_tokens = record.completion_tokens or 0
total_tokens = prompt_tokens + completion_tokens
stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens
stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens
stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens
stats[period_key][IN_TOK_BY_MODULE][module_name] += prompt_tokens
stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens
stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens
stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens
stats[period_key][OUT_TOK_BY_MODULE][module_name] += completion_tokens
stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens
stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens
stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens
stats[period_key][TOTAL_TOK_BY_MODULE][module_name] += total_tokens
cost = record.cost or 0.0
stats[period_key][TOTAL_COST] += cost
stats[period_key][COST_BY_TYPE][request_type] += cost
stats[period_key][COST_BY_USER][user_id] += cost
stats[period_key][COST_BY_MODEL][model_name] += cost
stats[period_key][COST_BY_MODULE][module_name] += cost
break
return stats
@staticmethod
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]:
"""
收集指定时间段的在线时间统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
ONLINE_TIME: 0.0,
}
for period_key, _ in collect_period
}
query_start_time = collect_period[-1][1]
# Assuming OnlineTime.end_timestamp is a DateTimeField
for record in OnlineTime.select().where(OnlineTime.end_timestamp >= query_start_time):
# record.end_timestamp and record.start_timestamp are datetime objects
record_end_timestamp = record.end_timestamp
record_start_timestamp = record.start_timestamp
for idx, (_, period_boundary_start) in enumerate(collect_period):
if record_end_timestamp >= period_boundary_start:
# Calculate effective end time for this record in relation to 'now'
effective_end_time = min(record_end_timestamp, now)
for period_key, current_period_start_time in collect_period[idx:]:
# Determine the portion of the record that falls within this specific statistical period
overlap_start = max(record_start_timestamp, current_period_start_time)
overlap_end = effective_end_time # Already capped by 'now' and record's own end
if overlap_end > overlap_start:
stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds()
break
return stats
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的消息统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
TOTAL_MSG_CNT: 0,
MSG_CNT_BY_CHAT: defaultdict(int),
}
for period_key, _ in collect_period
}
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
for message in Messages.select().where(Messages.time >= query_start_timestamp):
message_time_ts = message.time # This is a float timestamp
chat_id = None
chat_name = None
# Logic based on Peewee model structure, aiming to replicate original intent
if message.chat_info_group_id:
chat_id = f"g{message.chat_info_group_id}"
chat_name = message.chat_info_group_name or f"{message.chat_info_group_id}"
elif message.user_id: # Fallback to sender's info for chat_id if not a group_info based chat
# This uses the message SENDER's ID as per original logic's fallback
chat_id = f"u{message.user_id}" # SENDER's user_id
chat_name = message.user_nickname # SENDER's nickname
else:
# If neither group_id nor sender_id is available for chat identification
logger.warning(
f"Message (PK: {message.id if hasattr(message, 'id') else 'N/A'}) lacks group_id and user_id for chat stats."
)
continue
if not chat_id: # Should not happen if above logic is correct
continue
# Update name_mapping
if chat_id in self.name_mapping:
if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]:
self.name_mapping[chat_id] = (chat_name, message_time_ts)
else:
self.name_mapping[chat_id] = (chat_name, message_time_ts)
for idx, (_, period_start_dt) in enumerate(collect_period):
if message_time_ts >= period_start_dt.timestamp():
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_MSG_CNT] += 1
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
break
return stats
def _collect_hfc_data_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的HFC统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
# 为每个时间段初始化空的统计数据
stats = {
period_key: {
HFC_TOTAL_CYCLES: 0,
HFC_CYCLES_BY_CHAT: defaultdict(int),
HFC_CYCLES_BY_ACTION: defaultdict(int),
HFC_CYCLES_BY_VERSION: defaultdict(int),
HFC_AVG_TIME_BY_CHAT: defaultdict(lambda: {"decision": 0, "action": 0, "total": 0}),
HFC_AVG_TIME_BY_ACTION: defaultdict(lambda: {"decision": 0, "action": 0, "total": 0}),
HFC_AVG_TIME_BY_VERSION: defaultdict(lambda: {"decision": 0, "action": 0, "total": 0}),
HFC_ACTIONS_BY_CHAT: defaultdict(lambda: defaultdict(int)), # 群聊×动作交叉统计
}
for period_key, _ in collect_period
}
try:
import json
from pathlib import Path
hfc_stats_file = Path("data/hfc/time.json")
if not hfc_stats_file.exists():
logger.info("HFC统计文件不存在跳过HFC统计")
return stats
# 读取HFC统计数据
with open(hfc_stats_file, 'r', encoding='utf-8') as f:
hfc_data = json.load(f)
# 处理每个chat_id和版本的统计数据
for stats_key, chat_stats in hfc_data.items():
chat_id = chat_stats.get("chat_id", "unknown")
version = chat_stats.get("version", "unknown")
last_updated_str = chat_stats.get("last_updated")
if not last_updated_str:
continue
# 解析最后更新时间
try:
last_updated = datetime.fromisoformat(last_updated_str.replace('Z', '+00:00'))
if last_updated.tzinfo:
last_updated = last_updated.replace(tzinfo=None)
except:
continue
# 对于"全部时间",所有数据都包含
# 对于其他时间段,只包含在时间范围内更新的数据
applicable_periods = []
for period_key, period_start in collect_period:
if period_key == "all_time" or last_updated >= period_start:
applicable_periods.append(period_key)
if not applicable_periods:
continue
# 处理整体统计
overall = chat_stats.get("overall", {})
total_records = overall.get("total_records", 0)
avg_step_times = overall.get("avg_step_times", {})
# 计算决策时间和动作时间
action_time = avg_step_times.get("执行动作", 0)
total_time = overall.get("avg_total_time", 0)
decision_time = max(0, total_time - action_time)
for period_key in applicable_periods:
stats[period_key][HFC_TOTAL_CYCLES] += total_records
stats[period_key][HFC_CYCLES_BY_CHAT][chat_id] += total_records
stats[period_key][HFC_CYCLES_BY_VERSION][version] += total_records
# 处理按动作类型的统计
by_action = chat_stats.get("by_action", {})
for action_type, action_data in by_action.items():
count = action_data.get("count", 0)
action_step_times = action_data.get("avg_step_times", {})
action_total_time = action_data.get("avg_total_time", 0)
# 计算该动作类型的决策时间和动作时间
action_exec_time = action_step_times.get("执行动作", 0)
action_decision_time = max(0, action_total_time - action_exec_time)
for period_key in applicable_periods:
stats[period_key][HFC_CYCLES_BY_ACTION][action_type] += count
# 群聊×动作交叉统计
stats[period_key][HFC_ACTIONS_BY_CHAT][chat_id][action_type] += count
# 累加时间统计(用于后续计算加权平均)
# 这里我们需要重新设计数据结构来存储累计值
if chat_id not in stats[period_key][HFC_AVG_TIME_BY_CHAT]:
stats[period_key][HFC_AVG_TIME_BY_CHAT][chat_id] = {"decision": 0, "action": 0, "total": 0, "count": 0}
if action_type not in stats[period_key][HFC_AVG_TIME_BY_ACTION]:
stats[period_key][HFC_AVG_TIME_BY_ACTION][action_type] = {"decision": 0, "action": 0, "total": 0, "count": 0}
if version not in stats[period_key][HFC_AVG_TIME_BY_VERSION]:
stats[period_key][HFC_AVG_TIME_BY_VERSION][version] = {"decision": 0, "action": 0, "total": 0, "count": 0}
# 累加加权值(时间*数量)
stats[period_key][HFC_AVG_TIME_BY_CHAT][chat_id]["decision"] += decision_time * total_records
stats[period_key][HFC_AVG_TIME_BY_CHAT][chat_id]["action"] += action_time * total_records
stats[period_key][HFC_AVG_TIME_BY_CHAT][chat_id]["total"] += total_time * total_records
stats[period_key][HFC_AVG_TIME_BY_CHAT][chat_id]["count"] += total_records
stats[period_key][HFC_AVG_TIME_BY_ACTION][action_type]["decision"] += action_decision_time * count
stats[period_key][HFC_AVG_TIME_BY_ACTION][action_type]["action"] += action_exec_time * count
stats[period_key][HFC_AVG_TIME_BY_ACTION][action_type]["total"] += action_total_time * count
stats[period_key][HFC_AVG_TIME_BY_ACTION][action_type]["count"] += count
stats[period_key][HFC_AVG_TIME_BY_VERSION][version]["decision"] += decision_time * total_records
stats[period_key][HFC_AVG_TIME_BY_VERSION][version]["action"] += action_time * total_records
stats[period_key][HFC_AVG_TIME_BY_VERSION][version]["total"] += total_time * total_records
stats[period_key][HFC_AVG_TIME_BY_VERSION][version]["count"] += total_records
except Exception as e:
logger.error(f"收集HFC统计数据失败: {e}")
# 计算加权平均时间
for period_key in stats:
for stat_type in [HFC_AVG_TIME_BY_CHAT, HFC_AVG_TIME_BY_ACTION, HFC_AVG_TIME_BY_VERSION]:
for key, time_data in stats[period_key][stat_type].items():
if time_data.get("count", 0) > 0:
count = time_data["count"]
stats[period_key][stat_type][key] = {
"decision": time_data["decision"] / count,
"action": time_data["action"] / count,
"total": time_data["total"] / count
}
else:
stats[period_key][stat_type][key] = {"decision": 0, "action": 0, "total": 0}
return stats
def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]:
"""
收集各时间段的统计数据
:param now: 基准当前时间
"""
last_all_time_stat = None
if "last_full_statistics" in local_storage:
# 如果存在上次完整统计数据,则使用该数据进行增量统计
last_stat = local_storage["last_full_statistics"] # 上次完整统计数据
self.name_mapping = last_stat["name_mapping"] # 上次完整统计数据的名称映射
last_all_time_stat = last_stat["stat_data"] # 上次完整统计的统计数据
last_stat_timestamp = datetime.fromtimestamp(last_stat["timestamp"]) # 上次完整统计数据的时间戳
self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段
self.stat_period.append(("all_time", now - last_stat_timestamp, "自部署以来的"))
stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period]
stat = {item[0]: {} for item in self.stat_period}
model_req_stat = self._collect_model_request_for_period(stat_start_timestamp)
online_time_stat = self._collect_online_time_for_period(stat_start_timestamp, now)
message_count_stat = self._collect_message_count_for_period(stat_start_timestamp)
# HFC统计数据收集
hfc_stat = self._collect_hfc_data_for_period(stat_start_timestamp)
# 统计数据合并
# 合并四类统计数据
for period_key, _ in stat_start_timestamp:
stat[period_key].update(model_req_stat[period_key])
stat[period_key].update(online_time_stat[period_key])
stat[period_key].update(message_count_stat[period_key])
stat[period_key].update(hfc_stat[period_key])
if last_all_time_stat:
# 若存在上次完整统计数据,则将其与当前统计数据合并
for key, val in last_all_time_stat.items():
# 跳过已删除的SUCCESS_RATE相关key
if key in ["hfc_success_rate_by_chat", "hfc_success_rate_by_action", "hfc_success_rate_by_version"]:
continue
# 确保当前统计数据中存在该key
if key not in stat["all_time"]:
continue
if isinstance(val, dict):
# 是字典类型,则进行合并
for sub_key, sub_val in val.items():
# 检查是否是HFC的嵌套字典时间数据
if key in [HFC_AVG_TIME_BY_CHAT, HFC_AVG_TIME_BY_ACTION, HFC_AVG_TIME_BY_VERSION] and isinstance(sub_val, dict):
# 对于HFC时间数据需要特殊处理
if sub_key not in stat["all_time"][key]:
stat["all_time"][key][sub_key] = {"decision": 0, "action": 0, "total": 0}
# 合并嵌套的时间数据
for time_type, time_val in sub_val.items():
if time_type in stat["all_time"][key][sub_key]:
stat["all_time"][key][sub_key][time_type] += time_val
elif key == HFC_ACTIONS_BY_CHAT and isinstance(sub_val, dict):
# 对于群聊×动作交叉统计的二层嵌套字典,需要特殊处理
if sub_key not in stat["all_time"][key]:
stat["all_time"][key][sub_key] = {}
# 合并二层嵌套的动作数据
for action_type, action_count in sub_val.items():
if action_type in stat["all_time"][key][sub_key]:
stat["all_time"][key][sub_key][action_type] += action_count
else:
stat["all_time"][key][sub_key][action_type] = action_count
else:
# 普通的数值或字典合并
if sub_key in stat["all_time"][key]:
stat["all_time"][key][sub_key] += sub_val
else:
stat["all_time"][key][sub_key] = sub_val
else:
# 直接合并
stat["all_time"][key] += val
# 更新上次完整统计数据的时间戳
local_storage["last_full_statistics"] = {
"name_mapping": self.name_mapping,
"stat_data": stat["all_time"],
"timestamp": now.timestamp(),
}
return stat
# -- 以下为统计数据格式化方法 --
@staticmethod
def _format_total_stat(stats: Dict[str, Any]) -> str:
"""
格式化总统计数据
"""
output = [
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
f"总消息数: {stats[TOTAL_MSG_CNT]}",
f"总请求数: {stats[TOTAL_REQ_CNT]}",
f"总花费: {stats[TOTAL_COST]:.4f}¥",
"",
]
return "\n".join(output)
@staticmethod
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
"""
格式化按模型分类的统计数据
"""
if stats[TOTAL_REQ_CNT] <= 0:
return ""
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
output = [
"按模型分类统计:",
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费",
]
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name
in_tokens = stats[IN_TOK_BY_MODEL][model_name]
out_tokens = stats[OUT_TOK_BY_MODEL][model_name]
tokens = stats[TOTAL_TOK_BY_MODEL][model_name]
cost = stats[COST_BY_MODEL][model_name]
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
output.append("")
return "\n".join(output)
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
"""
格式化聊天统计数据
"""
if stats[TOTAL_MSG_CNT] <= 0:
return ""
output = ["聊天消息统计:", " 联系人/群组名称 消息数量"]
output.extend(
f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}"
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items())
)
output.append("")
return "\n".join(output)
def _generate_html_report(self, stat: dict[str, Any], now: datetime):
"""
生成HTML格式的统计报告
:param stat: 统计数据
:param now: 基准当前时间
:return: HTML格式的统计报告
"""
tab_list = [
f'<button class="tab-link" onclick="showTab(event, \'{period[0]}\')">{period[2]}</button>'
for period in self.stat_period
]
# 添加图表选项卡
tab_list.append('<button class="tab-link" onclick="showTab(event, \'charts\')">数据图表</button>')
# 添加HFC统计选项卡
tab_list.append('<button class="tab-link" onclick="showTab(event, \'hfc_stats\')">HFC统计</button>')
def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str:
"""
格式化一个时间段的统计数据到html div块
:param stat_data: 统计数据
:param div_id: div的ID
:param start_time: 统计时间段开始时间
"""
# format总在线时间
# 按模型分类统计
model_rows = "\n".join(
[
f"<tr>"
f"<td>{model_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.4f} ¥</td>"
f"</tr>"
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
]
)
# 按请求类型分类统计
type_rows = "\n".join(
[
f"<tr>"
f"<td>{req_type}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.4f} ¥</td>"
f"</tr>"
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
]
)
# 按模块分类统计
module_rows = "\n".join(
[
f"<tr>"
f"<td>{module_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[COST_BY_MODULE][module_name]:.4f} ¥</td>"
f"</tr>"
for module_name, count in sorted(stat_data[REQ_CNT_BY_MODULE].items())
]
)
# 聊天消息统计
chat_rows = "\n".join(
[
f"<tr><td>{self.name_mapping[chat_id][0]}</td><td>{count}</td></tr>"
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items())
]
)
# 生成HTML
return f"""
<div id=\"{div_id}\" class=\"tab-content\">
<p class=\"info-item\">
<strong>统计时段: </strong>
{start_time.strftime("%Y-%m-%d %H:%M:%S")} ~ {now.strftime("%Y-%m-%d %H:%M:%S")}
</p>
<p class=\"info-item\"><strong>总在线时间: </strong>{_format_online_time(stat_data[ONLINE_TIME])}</p>
<p class=\"info-item\"><strong>总消息数: </strong>{stat_data[TOTAL_MSG_CNT]}</p>
<p class=\"info-item\"><strong>总请求数: </strong>{stat_data[TOTAL_REQ_CNT]}</p>
<p class=\"info-item\"><strong>总花费: </strong>{stat_data[TOTAL_COST]:.4f} ¥</p>
<h2>按模型分类统计</h2>
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr></thead>
<tbody>
{model_rows}
</tbody>
</table>
<h2>按模块分类统计</h2>
<table>
<thead>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{module_rows}
</tbody>
</table>
<h2>按请求类型分类统计</h2>
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{type_rows}
</tbody>
</table>
<h2>聊天消息统计</h2>
<table>
<thead>
<tr><th>联系人/群组名称</th><th>消息数量</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
</div>
"""
tab_content_list = [
_format_stat_data(stat[period[0]], period[0], now - period[1])
for period in self.stat_period
if period[0] != "all_time"
]
tab_content_list.append(
_format_stat_data(stat["all_time"], "all_time", datetime.fromtimestamp(local_storage["deploy_time"]))
)
# 添加图表内容
chart_data = self._generate_chart_data(stat)
tab_content_list.append(self._generate_chart_tab(chart_data))
# 添加HFC统计内容
tab_content_list.append(self._generate_hfc_stats_tab(stat))
joined_tab_list = "\n".join(tab_list)
joined_tab_content = "\n".join(tab_content_list)
html_template = (
"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>MaiBot运行统计报告</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f7f6;
color: #333;
line-height: 1.6;
}
.container {
max-width: 900px;
margin: 20px auto;
background-color: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1, h2 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 10px;
margin-top: 0;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
p {
margin-bottom: 10px;
}
.info-item {
background-color: #ecf0f1;
padding: 8px 12px;
border-radius: 4px;
margin-bottom: 8px;
font-size: 0.95em;
}
.info-item strong {
color: #2980b9;
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
font-size: 0.9em;
}
th, td {
border: 1px solid #ddd;
padding: 10px;
text-align: left;
}
th {
background-color: #3498db;
color: white;
font-weight: bold;
}
tr:nth-child(even) {
background-color: #f9f9f9;
}
.footer {
text-align: center;
margin-top: 30px;
font-size: 0.8em;
color: #7f8c8d;
}
.tabs {
overflow: hidden;
background: #ecf0f1;
display: flex;
}
.tabs button {
background: inherit; border: none; outline: none;
padding: 14px 16px; cursor: pointer;
transition: 0.3s; font-size: 16px;
}
.tabs button:hover {
background-color: #d4dbdc;
}
.tabs button.active {
background-color: #b3bbbd;
}
.tab-content {
display: none;
padding: 20px;
background-color: #fff;
border: 1px solid #ccc;
}
.tab-content.active {
display: block;
}
</style>
</head>
<body>
"""
+ f"""
<div class="container">
<h1>MaiBot运行统计报告</h1>
<p class="info-item"><strong>统计截止时间:</strong> {now.strftime("%Y-%m-%d %H:%M:%S")}</p>
<div class="tabs">
{joined_tab_list}
</div>
{joined_tab_content}
</div>
"""
+ """
<script>
let i, tab_content, tab_links;
tab_content = document.getElementsByClassName("tab-content");
tab_links = document.getElementsByClassName("tab-link");
tab_content[0].classList.add("active");
tab_links[0].classList.add("active");
function showTab(evt, tabName) {{
for (i = 0; i < tab_content.length; i++) tab_content[i].classList.remove("active");
for (i = 0; i < tab_links.length; i++) tab_links[i].classList.remove("active");
document.getElementById(tabName).classList.add("active");
evt.currentTarget.classList.add("active");
}}
</script>
</body>
</html>
"""
)
with open(self.record_file_path, "w", encoding="utf-8") as f:
f.write(html_template)
def _generate_chart_data(self, stat: dict[str, Any]) -> dict:
"""生成图表数据"""
now = datetime.now()
chart_data = {}
# 支持多个时间范围
time_ranges = [
("6h", 6, 10), # 6小时10分钟间隔
("12h", 12, 15), # 12小时15分钟间隔
("24h", 24, 15), # 24小时15分钟间隔
("48h", 48, 30), # 48小时30分钟间隔
]
for range_key, hours, interval_minutes in time_ranges:
range_data = self._collect_interval_data(now, hours, interval_minutes)
chart_data[range_key] = range_data
return chart_data
def _collect_interval_data(self, now: datetime, hours: int, interval_minutes: int) -> dict:
"""收集指定时间范围内每个间隔的数据"""
# 生成时间点
start_time = now - timedelta(hours=hours)
time_points = []
current_time = start_time
while current_time <= now:
time_points.append(current_time)
current_time += timedelta(minutes=interval_minutes)
# 初始化数据结构
total_cost_data = [0] * len(time_points)
cost_by_model = {}
cost_by_module = {}
message_by_chat = {}
time_labels = [t.strftime("%H:%M") for t in time_points]
interval_seconds = interval_minutes * 60
# 查询LLM使用记录
query_start_time = start_time
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time):
record_time = record.timestamp
# 找到对应的时间间隔索引
time_diff = (record_time - start_time).total_seconds()
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
# 累加总花费数据
cost = record.cost or 0.0
total_cost_data[interval_index] += cost
# 累加按模型分类的花费
model_name = record.model_name or "unknown"
if model_name not in cost_by_model:
cost_by_model[model_name] = [0] * len(time_points)
cost_by_model[model_name][interval_index] += cost
# 累加按模块分类的花费
request_type = record.request_type or "unknown"
module_name = request_type.split(".")[0] if "." in request_type else request_type
if module_name not in cost_by_module:
cost_by_module[module_name] = [0] * len(time_points)
cost_by_module[module_name][interval_index] += cost
# 查询消息记录
query_start_timestamp = start_time.timestamp()
for message in Messages.select().where(Messages.time >= query_start_timestamp):
message_time_ts = message.time
# 找到对应的时间间隔索引
time_diff = message_time_ts - query_start_timestamp
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
# 确定聊天流名称
chat_name = None
if message.chat_info_group_id:
chat_name = message.chat_info_group_name or f"{message.chat_info_group_id}"
elif message.user_id:
chat_name = message.user_nickname or f"用户{message.user_id}"
else:
continue
if not chat_name:
continue
# 累加消息数
if chat_name not in message_by_chat:
message_by_chat[chat_name] = [0] * len(time_points)
message_by_chat[chat_name][interval_index] += 1
return {
"time_labels": time_labels,
"total_cost_data": total_cost_data,
"cost_by_model": cost_by_model,
"cost_by_module": cost_by_module,
"message_by_chat": message_by_chat,
}
def _generate_hfc_stats_tab(self, stat: dict[str, Any]) -> str:
"""生成HFC统计选项卡HTML内容"""
def _get_chat_display_name(chat_id):
"""获取聊天显示名称"""
if chat_id in self.name_mapping:
return self.name_mapping[chat_id][0]
else:
return chat_id
def _generate_overview_section(data, title):
"""生成总览部分"""
total_cycles = data.get(HFC_TOTAL_CYCLES, 0)
if total_cycles == 0:
return f"<h3>{title}</h3><p>暂无HFC数据</p>"
def _generate_chat_action_table(actions_by_chat):
"""生成群聊×动作选择率表格"""
if not actions_by_chat:
return "<h4>按群聊的动作选择率</h4><p>暂无数据</p>"
# 获取所有动作类型
all_actions = set()
for chat_actions in actions_by_chat.values():
all_actions.update(chat_actions.keys())
if not all_actions:
return "<h4>按群聊的动作选择率</h4><p>暂无数据</p>"
all_actions = sorted(all_actions)
# 生成表头
action_headers = ""
for action in all_actions:
action_display = action
if action == "no_reply":
action_display = "不回复"
action_headers += f"<th>{action_display}</th>"
# 生成表格行
table_rows = ""
for chat_id in sorted(actions_by_chat.keys()):
chat_actions = actions_by_chat[chat_id]
chat_total = sum(chat_actions.values())
if chat_total == 0:
continue
chat_display_name = _get_chat_display_name(chat_id)
table_rows += f"<tr><td>{chat_display_name}</td>"
# 为每个动作生成百分比
for action in all_actions:
count = chat_actions.get(action, 0)
percentage = (count / chat_total * 100) if chat_total > 0 else 0
table_rows += f"<td>{count} ({percentage:.1f}%)</td>"
table_rows += f"<td>{chat_total}</td></tr>"
return f"""
<h4>按群聊的动作选择率</h4>
<table>
<thead>
<tr><th>群聊名称</th>{action_headers}<th>总计</th></tr>
</thead>
<tbody>
{table_rows}
</tbody>
</table>
<p class="info-item"><strong>说明:</strong>显示每个群聊中不同动作类型的选择次数及占比。</p>
"""
cycles_by_chat = data.get(HFC_CYCLES_BY_CHAT, {})
cycles_by_action = data.get(HFC_CYCLES_BY_ACTION, {})
cycles_by_version = data.get(HFC_CYCLES_BY_VERSION, {})
avg_time_by_chat = data.get(HFC_AVG_TIME_BY_CHAT, {})
avg_time_by_action = data.get(HFC_AVG_TIME_BY_ACTION, {})
avg_time_by_version = data.get(HFC_AVG_TIME_BY_VERSION, {})
actions_by_chat = data.get(HFC_ACTIONS_BY_CHAT, {})
# 按群聊统计表格
chat_rows = ""
for chat_id in sorted(cycles_by_chat.keys()):
cycles = cycles_by_chat[chat_id]
time_data = avg_time_by_chat.get(chat_id, {"decision": 0, "action": 0, "total": 0})
decision_time = time_data.get("decision", 0)
action_time = time_data.get("action", 0)
total_time = time_data.get("total", 0)
chat_display_name = _get_chat_display_name(chat_id)
chat_rows += f"""
<tr>
<td>{chat_display_name}</td>
<td>{cycles}</td>
<td>{decision_time:.2f}s</td>
<td>{action_time:.2f}s</td>
<td>{total_time:.2f}s</td>
</tr>"""
# 按动作类型统计表格 - 添加说明
action_rows = ""
for action_type in sorted(cycles_by_action.keys()):
cycles = cycles_by_action[action_type]
time_data = avg_time_by_action.get(action_type, {"decision": 0, "action": 0, "total": 0})
decision_time = time_data.get("decision", 0)
action_time = time_data.get("action", 0)
total_time = time_data.get("total", 0)
# 为no_reply添加说明
action_display = action_type
if action_type == "no_reply":
action_display = f"{action_type} (不回复决策)"
action_rows += f"""
<tr>
<td>{action_display}</td>
<td>{cycles}</td>
<td>{decision_time:.2f}s</td>
<td>{action_time:.2f}s</td>
<td>{total_time:.2f}s</td>
</tr>"""
# 按版本统计表格
version_rows = ""
for version in sorted(cycles_by_version.keys()):
cycles = cycles_by_version[version]
time_data = avg_time_by_version.get(version, {"decision": 0, "action": 0, "total": 0})
decision_time = time_data.get("decision", 0)
action_time = time_data.get("action", 0)
total_time = time_data.get("total", 0)
version_rows += f"""
<tr>
<td>{version}</td>
<td>{cycles}</td>
<td>{decision_time:.2f}s</td>
<td>{action_time:.2f}s</td>
<td>{total_time:.2f}s</td>
</tr>"""
return f"""
<h3>{title} (总循环数: {total_cycles})</h3>
<h4>按群聊统计</h4>
<table>
<thead>
<tr><th>群聊名称</th><th>循环次数</th><th>决策时间</th><th>动作时间</th><th>总时间</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
<h4>按动作类型统计</h4>
<table>
<thead>
<tr><th>动作类型</th><th>循环次数</th><th>决策时间</th><th>动作时间</th><th>总时间</th></tr>
</thead>
<tbody>
{action_rows}
</tbody>
</table>
<p class="info-item"><strong>时间说明:</strong>决策时间包括观察、处理、规划等步骤;动作时间是执行具体动作的时间。</p>
<h4>按版本统计</h4>
<table>
<thead>
<tr><th>版本</th><th>循环次数</th><th>决策时间</th><th>动作时间</th><th>总时间</th></tr>
</thead>
<tbody>
{version_rows}
</tbody>
</table>
{_generate_chat_action_table(actions_by_chat)}
"""
# 生成指定时间段的统计
sections = []
# 定义要显示的时间段及其描述(所有时间在最上方)
time_periods = [
("all_time", "全部时间"),
("last_24_hours", "最近24小时"),
("last_7_days", "最近7天")
]
for period_key, period_desc in time_periods:
period_data = stat.get(period_key, {})
if period_data.get(HFC_TOTAL_CYCLES, 0) > 0: # 只显示有数据的时间段
sections.append(_generate_overview_section(period_data, period_desc))
if not sections:
sections.append("<h3>暂无HFC数据</h3><p>系统中还没有HFC循环记录</p>")
sections_html = "<br/>".join(sections)
return f"""
<div id="hfc_stats" class="tab-content">
<h2>HFC (Heart Flow Chat) 统计</h2>
<p class="info-item"><strong>说明:</strong>此页面显示HFC模块的性能统计信息包括各群聊、动作类型和版本的详细数据。</p>
{sections_html}
</div>
"""
def _generate_chart_tab(self, chart_data: dict) -> str:
"""生成图表选项卡HTML内容"""
# 生成不同颜色的调色板
colors = [
"#3498db",
"#e74c3c",
"#2ecc71",
"#f39c12",
"#9b59b6",
"#1abc9c",
"#34495e",
"#e67e22",
"#95a5a6",
"#f1c40f",
]
# 默认使用24小时数据生成数据集
default_data = chart_data["24h"]
# 为每个模型生成数据集
model_datasets = []
for i, (model_name, cost_data) in enumerate(default_data["cost_by_model"].items()):
color = colors[i % len(colors)]
model_datasets.append(f"""{{
label: '{model_name}',
data: {cost_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(model_datasets)
# 为每个模块生成数据集
module_datasets = []
for i, (module_name, cost_data) in enumerate(default_data["cost_by_module"].items()):
color = colors[i % len(colors)]
module_datasets.append(f"""{{
label: '{module_name}',
data: {cost_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(module_datasets)
# 为每个聊天流生成消息数据集
message_datasets = []
for i, (chat_name, message_data) in enumerate(default_data["message_by_chat"].items()):
color = colors[i % len(colors)]
message_datasets.append(f"""{{
label: '{chat_name}',
data: {message_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(message_datasets)
return f"""
<div id="charts" class="tab-content">
<h2>数据图表</h2>
<!-- 时间范围选择按钮 -->
<div style="margin: 20px 0; text-align: center;">
<label style="margin-right: 10px; font-weight: bold;">时间范围:</label>
<button class="time-range-btn" onclick="switchTimeRange('6h')">6小时</button>
<button class="time-range-btn" onclick="switchTimeRange('12h')">12小时</button>
<button class="time-range-btn active" onclick="switchTimeRange('24h')">24小时</button>
<button class="time-range-btn" onclick="switchTimeRange('48h')">48小时</button>
</div>
<div style="margin-top: 20px;">
<div style="margin-bottom: 40px;">
<canvas id="totalCostChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costByModuleChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costByModelChart" width="800" height="400"></canvas>
</div>
<div>
<canvas id="messageByChatChart" width="800" height="400"></canvas>
</div>
</div>
<style>
.time-range-btn {{
background-color: #ecf0f1;
border: 1px solid #bdc3c7;
color: #2c3e50;
padding: 8px 16px;
margin: 0 5px;
border-radius: 4px;
cursor: pointer;
font-size: 14px;
transition: all 0.3s ease;
}}
.time-range-btn:hover {{
background-color: #d5dbdb;
}}
.time-range-btn.active {{
background-color: #3498db;
color: white;
border-color: #2980b9;
}}
</style>
<script>
const allChartData = {chart_data};
let currentCharts = {{}};
// 图表配置模板
const chartConfigs = {{
totalCost: {{
id: 'totalCostChart',
title: '总花费',
yAxisLabel: '花费 (¥)',
dataKey: 'total_cost_data',
fill: true
}},
costByModule: {{
id: 'costByModuleChart',
title: '各模块花费',
yAxisLabel: '花费 (¥)',
dataKey: 'cost_by_module',
fill: false
}},
costByModel: {{
id: 'costByModelChart',
title: '各模型花费',
yAxisLabel: '花费 (¥)',
dataKey: 'cost_by_model',
fill: false
}},
messageByChat: {{
id: 'messageByChatChart',
title: '各聊天流消息数',
yAxisLabel: '消息数',
dataKey: 'message_by_chat',
fill: false
}}
}};
function switchTimeRange(timeRange) {{
// 更新按钮状态
document.querySelectorAll('.time-range-btn').forEach(btn => {{
btn.classList.remove('active');
}});
event.target.classList.add('active');
// 更新图表数据
const data = allChartData[timeRange];
updateAllCharts(data, timeRange);
}}
function updateAllCharts(data, timeRange) {{
// 销毁现有图表
Object.values(currentCharts).forEach(chart => {{
if (chart) chart.destroy();
}});
currentCharts = {{}};
// 重新创建图表
createChart('totalCost', data, timeRange);
createChart('costByModule', data, timeRange);
createChart('costByModel', data, timeRange);
createChart('messageByChat', data, timeRange);
}}
function createChart(chartType, data, timeRange) {{
const config = chartConfigs[chartType];
const colors = ['#3498db', '#e74c3c', '#2ecc71', '#f39c12', '#9b59b6', '#1abc9c', '#34495e', '#e67e22', '#95a5a6', '#f1c40f'];
let datasets = [];
if (chartType === 'totalCost') {{
datasets = [{{
label: config.title,
data: data[config.dataKey],
borderColor: colors[0],
backgroundColor: 'rgba(52, 152, 219, 0.1)',
tension: 0.4,
fill: config.fill
}}];
}} else {{
let i = 0;
Object.entries(data[config.dataKey]).forEach(([name, chartData]) => {{
datasets.push({{
label: name,
data: chartData,
borderColor: colors[i % colors.length],
backgroundColor: colors[i % colors.length] + '20',
tension: 0.4,
fill: config.fill
}});
i++;
}});
}}
currentCharts[chartType] = new Chart(document.getElementById(config.id), {{
type: 'line',
data: {{
labels: data.time_labels,
datasets: datasets
}},
options: {{
responsive: true,
plugins: {{
title: {{
display: true,
text: timeRange + '' + config.title + '趋势',
font: {{ size: 16 }}
}},
legend: {{
display: chartType !== 'totalCost',
position: 'top'
}}
}},
scales: {{
x: {{
title: {{
display: true,
text: '时间'
}},
ticks: {{
maxTicksLimit: 12
}}
}},
y: {{
title: {{
display: true,
text: config.yAxisLabel
}},
beginAtZero: true
}}
}},
interaction: {{
intersect: false,
mode: 'index'
}}
}}
}});
}}
// 初始化图表默认24小时
document.addEventListener('DOMContentLoaded', function() {{
updateAllCharts(allChartData['24h'], '24h');
}});
</script>
</div>
"""
class AsyncStatisticOutputTask(AsyncTask):
"""完全异步的统计输出任务 - 更高性能版本"""
def __init__(self, record_file_path: str = "maibot_statistics.html"):
# 延迟0秒启动运行间隔300秒
super().__init__(task_name="Async Statistics Data Output Task", wait_before_start=0, run_interval=300)
# 直接复用 StatisticOutputTask 的初始化逻辑
temp_stat_task = StatisticOutputTask(record_file_path)
self.name_mapping = temp_stat_task.name_mapping
self.record_file_path = temp_stat_task.record_file_path
self.stat_period = temp_stat_task.stat_period
async def run(self):
"""完全异步执行统计任务"""
async def _async_collect_and_output():
try:
now = datetime.now()
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在后台收集统计数据...")
# 数据收集任务
collect_task = asyncio.create_task(
loop.run_in_executor(executor, self._collect_all_statistics, now)
)
stats = await collect_task
logger.info("统计数据收集完成")
# 创建并发的输出任务
output_tasks = [
asyncio.create_task(loop.run_in_executor(executor, self._statistic_console_output, stats, now)),
asyncio.create_task(loop.run_in_executor(executor, self._generate_html_report, stats, now)),
]
# 等待所有输出任务完成
await asyncio.gather(*output_tasks)
logger.info("统计数据后台输出完成")
except Exception as e:
logger.exception(f"后台统计数据输出过程中发生异常:{e}")
# 创建后台任务,立即返回
asyncio.create_task(_async_collect_and_output())
# 复用 StatisticOutputTask 的所有方法
def _collect_all_statistics(self, now: datetime):
return StatisticOutputTask._collect_all_statistics(self, now)
def _statistic_console_output(self, stats: Dict[str, Any], now: datetime):
return StatisticOutputTask._statistic_console_output(self, stats, now)
def _generate_html_report(self, stats: dict[str, Any], now: datetime):
return StatisticOutputTask._generate_html_report(self, stats, now)
# 其他需要的方法也可以类似复用...
@staticmethod
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_model_request_for_period(collect_period)
@staticmethod
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]:
return StatisticOutputTask._collect_online_time_for_period(collect_period, now)
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_message_count_for_period(self, collect_period)
def _collect_hfc_data_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_hfc_data_for_period(self, collect_period)
@staticmethod
def _format_total_stat(stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_total_stat(stats)
@staticmethod
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_model_classified_stat(stats)
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_chat_stat(self, stats)
def _generate_chart_data(self, stat: dict[str, Any]) -> dict:
return StatisticOutputTask._generate_chart_data(self, stat)
def _collect_interval_data(self, now: datetime, hours: int, interval_minutes: int) -> dict:
return StatisticOutputTask._collect_interval_data(self, now, hours, interval_minutes)
def _generate_chart_tab(self, chart_data: dict) -> str:
return StatisticOutputTask._generate_chart_tab(self, chart_data)
def _generate_hfc_stats_tab(self, stat: dict[str, Any]) -> str:
return StatisticOutputTask._generate_hfc_stats_tab(self, stat)