176 lines
6.1 KiB
Python
176 lines
6.1 KiB
Python
from typing import Dict, List
|
||
import json
|
||
import os
|
||
import random
|
||
from pathlib import Path
|
||
from dotenv import load_dotenv
|
||
import sys
|
||
|
||
current_dir = Path(__file__).resolve().parent
|
||
# 获取项目根目录(上三层目录)
|
||
project_root = current_dir.parent.parent.parent
|
||
# env.dev文件路径
|
||
env_path = project_root / ".env.prod"
|
||
|
||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||
sys.path.append(root_path)
|
||
|
||
from src.plugins.personality.offline_llm import LLMModel
|
||
|
||
# 加载环境变量
|
||
if env_path.exists():
|
||
print(f"从 {env_path} 加载环境变量")
|
||
load_dotenv(env_path)
|
||
else:
|
||
print(f"未找到环境变量文件: {env_path}")
|
||
print("将使用默认配置")
|
||
|
||
|
||
class PersonalityEvaluator:
|
||
def __init__(self):
|
||
self.personality_traits = {
|
||
"开放性": 0,
|
||
"尽责性": 0,
|
||
"外向性": 0,
|
||
"宜人性": 0,
|
||
"神经质": 0
|
||
}
|
||
self.scenarios = [
|
||
{
|
||
"场景": "在团队项目中,你发现一个同事的工作质量明显低于预期,这可能会影响整个项目的进度。",
|
||
"评估维度": ["尽责性", "宜人性"]
|
||
},
|
||
{
|
||
"场景": "你被邀请参加一个完全陌生的社交活动,现场都是不认识的人。",
|
||
"评估维度": ["外向性", "神经质"]
|
||
},
|
||
{
|
||
"场景": "你的朋友向你推荐了一个新的艺术展览,但风格与你平时接触的完全不同。",
|
||
"评估维度": ["开放性", "外向性"]
|
||
},
|
||
{
|
||
"场景": "在工作中,你遇到了一个技术难题,需要学习全新的技术栈。",
|
||
"评估维度": ["开放性", "尽责性"]
|
||
},
|
||
{
|
||
"场景": "你的朋友因为个人原因情绪低落,向你寻求帮助。",
|
||
"评估维度": ["宜人性", "神经质"]
|
||
}
|
||
]
|
||
self.llm = LLMModel()
|
||
|
||
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
|
||
"""
|
||
使用 DeepSeek AI 评估用户对特定场景的反应
|
||
"""
|
||
prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(0-10分)。
|
||
场景:{scenario}
|
||
用户描述:{response}
|
||
|
||
需要评估的维度:{', '.join(dimensions)}
|
||
|
||
请按照以下格式输出评估结果(仅输出JSON格式):
|
||
{{
|
||
"维度1": 分数,
|
||
"维度2": 分数
|
||
}}
|
||
|
||
评估标准:
|
||
- 开放性:对新事物的接受程度和创造性思维
|
||
- 尽责性:计划性、组织性和责任感
|
||
- 外向性:社交倾向和能量水平
|
||
- 宜人性:同理心、合作性和友善程度
|
||
- 神经质:情绪稳定性和压力应对能力
|
||
|
||
请确保分数在0-10之间,并给出合理的评估理由。"""
|
||
|
||
try:
|
||
ai_response, _ = self.llm.generate_response(prompt)
|
||
# 尝试从AI响应中提取JSON部分
|
||
start_idx = ai_response.find('{')
|
||
end_idx = ai_response.rfind('}') + 1
|
||
if start_idx != -1 and end_idx != 0:
|
||
json_str = ai_response[start_idx:end_idx]
|
||
scores = json.loads(json_str)
|
||
# 确保所有分数在0-10之间
|
||
return {k: max(0, min(10, float(v))) for k, v in scores.items()}
|
||
else:
|
||
print("AI响应格式不正确,使用默认评分")
|
||
return {dim: 5.0 for dim in dimensions}
|
||
except Exception as e:
|
||
print(f"评估过程出错:{str(e)}")
|
||
return {dim: 5.0 for dim in dimensions}
|
||
|
||
def main():
|
||
print("欢迎使用人格形象创建程序!")
|
||
print("接下来,您将面对一系列场景。请根据您想要创建的角色形象,描述在该场景下可能的反应。")
|
||
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
|
||
print("\n准备好了吗?按回车键开始...")
|
||
input()
|
||
|
||
evaluator = PersonalityEvaluator()
|
||
final_scores = {
|
||
"开放性": 0,
|
||
"尽责性": 0,
|
||
"外向性": 0,
|
||
"宜人性": 0,
|
||
"神经质": 0
|
||
}
|
||
dimension_counts = {trait: 0 for trait in final_scores.keys()}
|
||
|
||
for i, scenario_data in enumerate(evaluator.scenarios, 1):
|
||
print(f"\n场景 {i}/{len(evaluator.scenarios)}:")
|
||
print("-" * 50)
|
||
print(scenario_data["场景"])
|
||
print("\n请描述您的角色在这种情况下会如何反应:")
|
||
response = input().strip()
|
||
|
||
if not response:
|
||
print("反应描述不能为空!")
|
||
continue
|
||
|
||
print("\n正在评估您的描述...")
|
||
scores = evaluator.evaluate_response(scenario_data["场景"], response, scenario_data["评估维度"])
|
||
|
||
# 更新最终分数
|
||
for dimension, score in scores.items():
|
||
final_scores[dimension] += score
|
||
dimension_counts[dimension] += 1
|
||
|
||
print("\n当前评估结果:")
|
||
print("-" * 30)
|
||
for dimension, score in scores.items():
|
||
print(f"{dimension}: {score}/10")
|
||
|
||
if i < len(evaluator.scenarios):
|
||
print("\n按回车键继续下一个场景...")
|
||
input()
|
||
|
||
# 计算平均分
|
||
for dimension in final_scores:
|
||
if dimension_counts[dimension] > 0:
|
||
final_scores[dimension] = round(final_scores[dimension] / dimension_counts[dimension], 2)
|
||
|
||
print("\n最终人格特征评估结果:")
|
||
print("-" * 30)
|
||
for trait, score in final_scores.items():
|
||
print(f"{trait}: {score}/10")
|
||
|
||
# 保存结果
|
||
result = {
|
||
"final_scores": final_scores,
|
||
"scenarios": evaluator.scenarios
|
||
}
|
||
|
||
# 确保目录存在
|
||
os.makedirs("results", exist_ok=True)
|
||
|
||
# 保存到文件
|
||
with open("results/personality_result.json", "w", encoding="utf-8") as f:
|
||
json.dump(result, f, ensure_ascii=False, indent=2)
|
||
|
||
print("\n结果已保存到 results/personality_result.json")
|
||
|
||
if __name__ == "__main__":
|
||
main()
|