534 lines
23 KiB
Python
534 lines
23 KiB
Python
from .observation import Observation
|
||
import asyncio
|
||
from src.plugins.moods.moods import MoodManager
|
||
from src.plugins.models.utils_model import LLM_request
|
||
from src.plugins.config.config import global_config
|
||
import re
|
||
import time
|
||
from src.plugins.schedule.schedule_generator import bot_schedule
|
||
from src.plugins.memory_system.Hippocampus import HippocampusManager
|
||
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
|
||
from src.plugins.chat.utils import get_embedding
|
||
from src.common.database import db
|
||
from typing import Union
|
||
from src.individuality.individuality import Individuality
|
||
import random
|
||
from src.plugins.chat.chat_stream import ChatStream
|
||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||
from src.plugins.chat.utils import get_recent_group_speaker
|
||
|
||
subheartflow_config = LogConfig(
|
||
# 使用海马体专用样式
|
||
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
|
||
file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"],
|
||
)
|
||
logger = get_module_logger("subheartflow", config=subheartflow_config)
|
||
|
||
|
||
class CurrentState:
|
||
def __init__(self):
|
||
self.willing = 0
|
||
self.current_state_info = ""
|
||
|
||
self.mood_manager = MoodManager()
|
||
self.mood = self.mood_manager.get_prompt()
|
||
|
||
def update_current_state_info(self):
|
||
self.current_state_info = self.mood_manager.get_current_mood()
|
||
|
||
|
||
class SubHeartflow:
|
||
def __init__(self, subheartflow_id):
|
||
self.subheartflow_id = subheartflow_id
|
||
|
||
self.current_mind = ""
|
||
self.past_mind = []
|
||
self.current_state: CurrentState = CurrentState()
|
||
self.llm_model = LLM_request(
|
||
model=global_config.llm_sub_heartflow, temperature=0.2, max_tokens=600, request_type="sub_heart_flow"
|
||
)
|
||
|
||
self.main_heartflow_info = ""
|
||
|
||
self.last_reply_time = time.time()
|
||
self.last_active_time = time.time() # 添加最后激活时间
|
||
|
||
if not self.current_mind:
|
||
self.current_mind = "你什么也没想"
|
||
|
||
self.is_active = False
|
||
|
||
self.observations: list[Observation] = []
|
||
|
||
self.running_knowledges = []
|
||
|
||
self.bot_name = global_config.BOT_NICKNAME
|
||
|
||
def add_observation(self, observation: Observation):
|
||
"""添加一个新的observation对象到列表中,如果已存在相同id的observation则不添加"""
|
||
# 查找是否存在相同id的observation
|
||
for existing_obs in self.observations:
|
||
if existing_obs.observe_id == observation.observe_id:
|
||
# 如果找到相同id的observation,直接返回
|
||
return
|
||
# 如果没有找到相同id的observation,则添加新的
|
||
self.observations.append(observation)
|
||
|
||
def remove_observation(self, observation: Observation):
|
||
"""从列表中移除一个observation对象"""
|
||
if observation in self.observations:
|
||
self.observations.remove(observation)
|
||
|
||
def get_all_observations(self) -> list[Observation]:
|
||
"""获取所有observation对象"""
|
||
return self.observations
|
||
|
||
def clear_observations(self):
|
||
"""清空所有observation对象"""
|
||
self.observations.clear()
|
||
|
||
async def subheartflow_start_working(self):
|
||
while True:
|
||
current_time = time.time()
|
||
if (
|
||
current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time
|
||
): # 120秒无回复/不在场,冻结
|
||
self.is_active = False
|
||
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 每60秒检查一次
|
||
else:
|
||
self.is_active = True
|
||
self.last_active_time = current_time # 更新最后激活时间
|
||
|
||
self.current_state.update_current_state_info()
|
||
|
||
# await self.do_a_thinking()
|
||
# await self.judge_willing()
|
||
await asyncio.sleep(global_config.sub_heart_flow_update_interval)
|
||
|
||
# 检查是否超过10分钟没有激活
|
||
if (
|
||
current_time - self.last_active_time > global_config.sub_heart_flow_stop_time
|
||
): # 5分钟无回复/不在场,销毁
|
||
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活,正在销毁...")
|
||
break # 退出循环,销毁自己
|
||
async def do_observe(self):
|
||
observation = self.observations[0]
|
||
await observation.observe()
|
||
|
||
async def do_thinking_before_reply(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
|
||
current_thinking_info = self.current_mind
|
||
mood_info = self.current_state.mood
|
||
# mood_info = "你很生气,很愤怒"
|
||
observation = self.observations[0]
|
||
chat_observe_info = observation.observe_info
|
||
# print(f"chat_observe_info:{chat_observe_info}")
|
||
|
||
# 开始构建prompt
|
||
prompt_personality = f"你的名字是{self.bot_name},你"
|
||
# person
|
||
individuality = Individuality.get_instance()
|
||
|
||
personality_core = individuality.personality.personality_core
|
||
prompt_personality += personality_core
|
||
|
||
personality_sides = individuality.personality.personality_sides
|
||
random.shuffle(personality_sides)
|
||
prompt_personality += f",{personality_sides[0]}"
|
||
|
||
identity_detail = individuality.identity.identity_detail
|
||
random.shuffle(identity_detail)
|
||
prompt_personality += f",{identity_detail[0]}"
|
||
|
||
# 关系
|
||
who_chat_in_group = [
|
||
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
|
||
]
|
||
who_chat_in_group += get_recent_group_speaker(
|
||
chat_stream.stream_id,
|
||
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
|
||
limit=global_config.MAX_CONTEXT_SIZE,
|
||
)
|
||
|
||
relation_prompt = ""
|
||
for person in who_chat_in_group:
|
||
relation_prompt += await relationship_manager.build_relationship_info(person)
|
||
|
||
relation_prompt_all = (
|
||
f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
|
||
f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
|
||
)
|
||
|
||
# 调取记忆
|
||
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||
)
|
||
|
||
if related_memory:
|
||
related_memory_info = ""
|
||
for memory in related_memory:
|
||
related_memory_info += memory[1]
|
||
else:
|
||
related_memory_info = ""
|
||
|
||
related_info, grouped_results = await self.get_prompt_info(chat_observe_info + message_txt, 0.4)
|
||
# print(related_info)
|
||
for _topic, results in grouped_results.items():
|
||
for result in results:
|
||
# print(result)
|
||
self.running_knowledges.append(result)
|
||
|
||
# print(f"相关记忆:{related_memory_info}")
|
||
|
||
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||
|
||
prompt = ""
|
||
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
|
||
prompt += f"{relation_prompt_all}\n"
|
||
prompt += f"{prompt_personality}\n"
|
||
# prompt += f"你刚刚在做的事情是:{schedule_info}\n"
|
||
# if related_memory_info:
|
||
# prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||
# if related_info:
|
||
# prompt += f"你想起你知道:{related_info}\n"
|
||
prompt += f"刚刚你的想法是{current_thinking_info}。如果有新的内容,记得转换话题\n"
|
||
prompt += "-----------------------------------\n"
|
||
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||
prompt += f"你现在{mood_info}\n"
|
||
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
|
||
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
|
||
prompt += "思考时可以想想如何对群聊内容进行回复。回复的要求是:平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话 ,注意只输出回复内容。"
|
||
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),"
|
||
prompt += f"记得结合上述的消息,生成符合内心想法的内心独白,文字不要浮夸,注意你就是{self.bot_name},{self.bot_name}指的就是你。"
|
||
|
||
try:
|
||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||
except Exception as e:
|
||
logger.error(f"回复前内心独白获取失败: {e}")
|
||
response = ""
|
||
self.update_current_mind(response)
|
||
|
||
self.current_mind = response
|
||
|
||
logger.info(f"prompt:\n{prompt}\n")
|
||
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
|
||
return self.current_mind ,self.past_mind
|
||
|
||
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
|
||
# print("麦麦回复之后脑袋转起来了")
|
||
|
||
# 开始构建prompt
|
||
prompt_personality = f"你的名字是{self.bot_name},你"
|
||
# person
|
||
individuality = Individuality.get_instance()
|
||
|
||
personality_core = individuality.personality.personality_core
|
||
prompt_personality += personality_core
|
||
|
||
personality_sides = individuality.personality.personality_sides
|
||
random.shuffle(personality_sides)
|
||
prompt_personality += f",{personality_sides[0]}"
|
||
|
||
identity_detail = individuality.identity.identity_detail
|
||
random.shuffle(identity_detail)
|
||
prompt_personality += f",{identity_detail[0]}"
|
||
|
||
current_thinking_info = self.current_mind
|
||
mood_info = self.current_state.mood
|
||
|
||
observation = self.observations[0]
|
||
chat_observe_info = observation.observe_info
|
||
|
||
message_new_info = chat_talking_prompt
|
||
reply_info = reply_content
|
||
# schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||
|
||
prompt = ""
|
||
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
|
||
prompt += f"{prompt_personality}\n"
|
||
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||
prompt += f"刚刚你的想法是{current_thinking_info}。"
|
||
prompt += f"你现在看到了网友们发的新消息:{message_new_info}\n"
|
||
prompt += f"你刚刚回复了群友们:{reply_info}"
|
||
prompt += f"你现在{mood_info}"
|
||
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
|
||
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
|
||
try:
|
||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||
except Exception as e:
|
||
logger.error(f"回复后内心独白获取失败: {e}")
|
||
response = ""
|
||
self.update_current_mind(response)
|
||
|
||
self.current_mind = response
|
||
logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
|
||
|
||
self.last_reply_time = time.time()
|
||
|
||
async def judge_willing(self):
|
||
# 开始构建prompt
|
||
prompt_personality = "你"
|
||
# person
|
||
individuality = Individuality.get_instance()
|
||
|
||
personality_core = individuality.personality.personality_core
|
||
prompt_personality += personality_core
|
||
|
||
personality_sides = individuality.personality.personality_sides
|
||
random.shuffle(personality_sides)
|
||
prompt_personality += f",{personality_sides[0]}"
|
||
|
||
identity_detail = individuality.identity.identity_detail
|
||
random.shuffle(identity_detail)
|
||
prompt_personality += f",{identity_detail[0]}"
|
||
|
||
# print("麦麦闹情绪了1")
|
||
current_thinking_info = self.current_mind
|
||
mood_info = self.current_state.mood
|
||
# print("麦麦闹情绪了2")
|
||
prompt = ""
|
||
prompt += f"{prompt_personality}\n"
|
||
prompt += "现在你正在上网,和qq群里的网友们聊天"
|
||
prompt += f"你现在的想法是{current_thinking_info}。"
|
||
prompt += f"你现在{mood_info}。"
|
||
prompt += "现在请你思考,你想不想发言或者回复,请你输出一个数字,1-10,1表示非常不想,10表示非常想。"
|
||
prompt += "请你用<>包裹你的回复意愿,输出<1>表示不想回复,输出<10>表示非常想回复。请你考虑,你完全可以不回复"
|
||
try:
|
||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||
# 解析willing值
|
||
willing_match = re.search(r"<(\d+)>", response)
|
||
except Exception as e:
|
||
logger.error(f"意愿判断获取失败: {e}")
|
||
willing_match = None
|
||
if willing_match:
|
||
self.current_state.willing = int(willing_match.group(1))
|
||
else:
|
||
self.current_state.willing = 0
|
||
|
||
return self.current_state.willing
|
||
|
||
def update_current_mind(self, response):
|
||
self.past_mind.append(self.current_mind)
|
||
self.current_mind = response
|
||
|
||
async def get_prompt_info(self, message: str, threshold: float):
|
||
start_time = time.time()
|
||
related_info = ""
|
||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||
|
||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||
topics = []
|
||
# try:
|
||
# # 先尝试使用记忆系统的方法获取主题
|
||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||
|
||
# # 提取关键词
|
||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||
# if not topics:
|
||
# topics = []
|
||
# else:
|
||
# topics = [
|
||
# topic.strip()
|
||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||
# if topic.strip()
|
||
# ]
|
||
|
||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||
# except Exception as e:
|
||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||
# words = jieba.cut(message)
|
||
# topics = [word for word in words if len(word) > 1][:5]
|
||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||
|
||
# 如果无法提取到主题,直接使用整个消息
|
||
if not topics:
|
||
logger.debug("未能提取到任何主题,使用整个消息进行查询")
|
||
embedding = await get_embedding(message, request_type="info_retrieval")
|
||
if not embedding:
|
||
logger.error("获取消息嵌入向量失败")
|
||
return ""
|
||
|
||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||
return related_info, {}
|
||
|
||
# 2. 对每个主题进行知识库查询
|
||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||
|
||
# 优化:批量获取嵌入向量,减少API调用
|
||
embeddings = {}
|
||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||
if message: # 确保消息非空
|
||
topics_batch.append(message)
|
||
|
||
# 批量获取嵌入向量
|
||
embed_start_time = time.time()
|
||
for text in topics_batch:
|
||
if not text or len(text.strip()) == 0:
|
||
continue
|
||
|
||
try:
|
||
embedding = await get_embedding(text, request_type="info_retrieval")
|
||
if embedding:
|
||
embeddings[text] = embedding
|
||
else:
|
||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||
except Exception as e:
|
||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||
|
||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||
|
||
if not embeddings:
|
||
logger.error("所有嵌入向量获取失败")
|
||
return ""
|
||
|
||
# 3. 对每个主题进行知识库查询
|
||
all_results = []
|
||
query_start_time = time.time()
|
||
|
||
# 首先添加原始消息的查询结果
|
||
if message in embeddings:
|
||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||
if original_results:
|
||
for result in original_results:
|
||
result["topic"] = "原始消息"
|
||
all_results.extend(original_results)
|
||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||
|
||
# 然后添加每个主题的查询结果
|
||
for topic in topics:
|
||
if not topic or topic not in embeddings:
|
||
continue
|
||
|
||
try:
|
||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||
if topic_results:
|
||
# 添加主题标记
|
||
for result in topic_results:
|
||
result["topic"] = topic
|
||
all_results.extend(topic_results)
|
||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||
except Exception as e:
|
||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||
|
||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||
|
||
# 4. 去重和过滤
|
||
process_start_time = time.time()
|
||
unique_contents = set()
|
||
filtered_results = []
|
||
for result in all_results:
|
||
content = result["content"]
|
||
if content not in unique_contents:
|
||
unique_contents.add(content)
|
||
filtered_results.append(result)
|
||
|
||
# 5. 按相似度排序
|
||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||
|
||
# 6. 限制总数量(最多10条)
|
||
filtered_results = filtered_results[:10]
|
||
logger.info(
|
||
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
|
||
)
|
||
|
||
# 7. 格式化输出
|
||
if filtered_results:
|
||
format_start_time = time.time()
|
||
grouped_results = {}
|
||
for result in filtered_results:
|
||
topic = result["topic"]
|
||
if topic not in grouped_results:
|
||
grouped_results[topic] = []
|
||
grouped_results[topic].append(result)
|
||
|
||
# 按主题组织输出
|
||
for topic, results in grouped_results.items():
|
||
related_info += f"【主题: {topic}】\n"
|
||
for _i, result in enumerate(results, 1):
|
||
_similarity = result["similarity"]
|
||
content = result["content"].strip()
|
||
# 调试:为内容添加序号和相似度信息
|
||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||
related_info += f"{content}\n"
|
||
related_info += "\n"
|
||
|
||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||
|
||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||
return related_info, grouped_results
|
||
|
||
def get_info_from_db(
|
||
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||
) -> Union[str, list]:
|
||
if not query_embedding:
|
||
return "" if not return_raw else []
|
||
# 使用余弦相似度计算
|
||
pipeline = [
|
||
{
|
||
"$addFields": {
|
||
"dotProduct": {
|
||
"$reduce": {
|
||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||
"initialValue": 0,
|
||
"in": {
|
||
"$add": [
|
||
"$$value",
|
||
{
|
||
"$multiply": [
|
||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||
]
|
||
},
|
||
]
|
||
},
|
||
}
|
||
},
|
||
"magnitude1": {
|
||
"$sqrt": {
|
||
"$reduce": {
|
||
"input": "$embedding",
|
||
"initialValue": 0,
|
||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||
}
|
||
}
|
||
},
|
||
"magnitude2": {
|
||
"$sqrt": {
|
||
"$reduce": {
|
||
"input": query_embedding,
|
||
"initialValue": 0,
|
||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||
}
|
||
}
|
||
},
|
||
}
|
||
},
|
||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||
{
|
||
"$match": {
|
||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||
}
|
||
},
|
||
{"$sort": {"similarity": -1}},
|
||
{"$limit": limit},
|
||
{"$project": {"content": 1, "similarity": 1}},
|
||
]
|
||
|
||
results = list(db.knowledges.aggregate(pipeline))
|
||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||
|
||
if not results:
|
||
return "" if not return_raw else []
|
||
|
||
if return_raw:
|
||
return results
|
||
else:
|
||
# 返回所有找到的内容,用换行分隔
|
||
return "\n".join(str(result["content"]) for result in results)
|
||
|
||
|
||
# subheartflow = SubHeartflow()
|