This commit refactors the tool caching system to be more robust, configurable, and easier to use. The caching logic is centralized within the `wrap_tool_executor`, removing the need for boilerplate code within individual tool implementations. Key changes: - Adds `enable_cache`, `cache_ttl`, and `semantic_cache_query_key` attributes to `BaseTool` for declarative cache configuration. - Moves caching logic from a simple history-based lookup and individual tools into a unified handling process in `wrap_tool_executor`. - The new system leverages the central `tool_cache` manager for both exact and semantic caching based on tool configuration. - Refactors `WebSurfingTool` and `URLParserTool` to utilize the new declarative caching mechanism, simplifying their code.
129 lines
4.7 KiB
Python
129 lines
4.7 KiB
Python
from abc import ABC, abstractmethod
|
||
from typing import Any, List, Optional, Tuple
|
||
from rich.traceback import install
|
||
|
||
from src.common.logger import get_logger
|
||
from src.plugin_system.base.component_types import ComponentType, ToolInfo, ToolParamType
|
||
|
||
install(extra_lines=3)
|
||
|
||
logger = get_logger("base_tool")
|
||
|
||
|
||
class BaseTool(ABC):
|
||
"""所有工具的基类"""
|
||
|
||
name: str = ""
|
||
"""工具的名称"""
|
||
description: str = ""
|
||
"""工具的描述"""
|
||
parameters: List[Tuple[str, ToolParamType, str, bool, List[str] | None]] = []
|
||
"""工具的参数定义,为[("param_name", param_type, "description", required, enum_values)]格式
|
||
param_name: 参数名称
|
||
param_type: 参数类型
|
||
description: 参数描述
|
||
required: 是否必填
|
||
enum_values: 枚举值列表
|
||
例如: [("arg1", ToolParamType.STRING, "参数1描述", True, None), ("arg2", ToolParamType.INTEGER, "参数2描述", False, ["1", "2", "3"])]
|
||
"""
|
||
available_for_llm: bool = False
|
||
"""是否可供LLM使用"""
|
||
history_ttl: int = 5
|
||
"""工具调用历史记录的TTL值,默认为5。设为0表示不记录历史"""
|
||
|
||
enable_cache: bool = False
|
||
"""是否为该工具启用缓存"""
|
||
cache_ttl: int = 3600
|
||
"""缓存的TTL值(秒),默认为3600秒(1小时)"""
|
||
semantic_cache_query_key: Optional[str] = None
|
||
"""用于语义缓存的查询参数键名。如果设置,将使用此参数的值进行语义相似度搜索"""
|
||
|
||
def __init__(self, plugin_config: Optional[dict] = None):
|
||
self.plugin_config = plugin_config or {} # 直接存储插件配置字典
|
||
|
||
@classmethod
|
||
def get_tool_definition(cls) -> dict[str, Any]:
|
||
"""获取工具定义,用于LLM工具调用
|
||
|
||
Returns:
|
||
dict: 工具定义字典
|
||
"""
|
||
if not cls.name or not cls.description or not cls.parameters:
|
||
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
|
||
|
||
return {"name": cls.name, "description": cls.description, "parameters": cls.parameters}
|
||
|
||
@classmethod
|
||
def get_tool_info(cls) -> ToolInfo:
|
||
"""获取工具信息"""
|
||
if not cls.name or not cls.description or not cls.parameters:
|
||
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
|
||
|
||
return ToolInfo(
|
||
name=cls.name,
|
||
tool_description=cls.description,
|
||
enabled=cls.available_for_llm,
|
||
tool_parameters=cls.parameters,
|
||
component_type=ComponentType.TOOL,
|
||
)
|
||
|
||
@abstractmethod
|
||
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
||
"""执行工具函数(供llm调用)
|
||
通过该方法,maicore会通过llm的tool call来调用工具
|
||
传入的是json格式的参数,符合parameters定义的格式
|
||
|
||
Args:
|
||
function_args: 工具调用参数
|
||
|
||
Returns:
|
||
dict: 工具执行结果
|
||
"""
|
||
raise NotImplementedError("子类必须实现execute方法")
|
||
|
||
async def direct_execute(self, **kwargs: dict[str, Any]) -> dict[str, Any]:
|
||
"""直接执行工具函数(供插件调用)
|
||
通过该方法,插件可以直接调用工具,而不需要传入字典格式的参数
|
||
插件可以直接调用此方法,用更加明了的方式传入参数
|
||
示例: result = await tool.direct_execute(arg1="参数",arg2="参数2")
|
||
|
||
工具开发者可以重写此方法以实现与llm调用差异化的执行逻辑
|
||
|
||
Args:
|
||
**function_args: 工具调用参数
|
||
|
||
Returns:
|
||
dict: 工具执行结果
|
||
"""
|
||
parameter_required = [param[0] for param in self.parameters if param[3]] # 获取所有必填参数名
|
||
for param_name in parameter_required:
|
||
if param_name not in kwargs:
|
||
raise ValueError(f"工具类 {self.__class__.__name__} 缺少必要参数: {param_name}")
|
||
|
||
return await self.execute(kwargs)
|
||
|
||
def get_config(self, key: str, default=None):
|
||
"""获取插件配置值,使用嵌套键访问
|
||
|
||
Args:
|
||
key: 配置键名,使用嵌套访问如 "section.subsection.key"
|
||
default: 默认值
|
||
|
||
Returns:
|
||
Any: 配置值或默认值
|
||
"""
|
||
if not self.plugin_config:
|
||
return default
|
||
|
||
# 支持嵌套键访问
|
||
keys = key.split(".")
|
||
current = self.plugin_config
|
||
|
||
for k in keys:
|
||
if isinstance(current, dict) and k in current:
|
||
current = current[k]
|
||
else:
|
||
return default
|
||
|
||
return current
|