Files
Mofox-Core/src/chat/chat_loop/response_handler.py
Windpicker-owo 255e3627b4 feat(chat): refactor logging and integrate no_reply system action
将日志前缀管理集中到context,新增willing_manager依赖,并把no_reply提升为系统级可用动作

- CycleProcessor 统一改从 context 获取 log_prefix
- HeartFChatting 引入 willing_manager
- ResponseHandler _send_response -> send_response 去下划线统一对外接口
- ActionPlanner 将 no_reply 添加至 current_available_actions
2025-09-01 22:41:42 +08:00

282 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import random
import traceback
from typing import Optional, Dict, Any, Tuple
from src.common.logger import get_logger
from src.config.config import global_config
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.person_info.person_info import get_person_info_manager
from .hfc_context import HfcContext
# 导入反注入系统
from src.chat.antipromptinjector import get_anti_injector
from src.chat.antipromptinjector.types import ProcessResult
from src.chat.utils.prompt_builder import Prompt
logger = get_logger("hfc")
anti_injector_logger = get_logger("anti_injector")
class ResponseHandler:
def __init__(self, context: HfcContext):
"""
初始化响应处理器
Args:
context: HFC聊天上下文对象
功能说明:
- 负责生成和发送机器人的回复
- 处理回复的格式化和发送逻辑
- 管理回复状态和日志记录
"""
self.context = context
async def generate_and_send_reply(
self,
response_set,
reply_to_str,
loop_start_time,
action_message,
cycle_timers: Dict[str, float],
thinking_id,
plan_result,
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
"""
生成并发送回复的主方法
Args:
response_set: 生成的回复内容集合
reply_to_str: 回复目标字符串
loop_start_time: 循环开始时间
action_message: 动作消息数据
cycle_timers: 循环计时器
thinking_id: 思考ID
plan_result: 规划结果
Returns:
tuple: (循环信息, 回复文本, 计时器信息)
功能说明:
- 发送生成的回复内容
- 存储动作信息到数据库
- 构建并返回完整的循环信息
- 用于上级方法的状态跟踪
"""
reply_text = await self.send_response(response_set, reply_to_str, loop_start_time, action_message)
person_info_manager = get_person_info_manager()
platform = "default"
if self.context.chat_stream:
platform = (
action_message.get("chat_info_platform")
or action_message.get("user_platform")
or self.context.chat_stream.platform
)
user_id = action_message.get("user_id", "")
person_id = person_info_manager.get_person_id(platform, user_id)
person_name = await person_info_manager.get_value(person_id, "person_name")
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
await database_api.store_action_info(
chat_stream=self.context.chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
action_name="reply",
)
loop_info: Dict[str, Any] = {
"loop_plan_info": {
"action_result": plan_result.get("action_result", {}),
},
"loop_action_info": {
"action_taken": True,
"reply_text": reply_text,
"command": "",
"taken_time": time.time(),
},
}
return loop_info, reply_text, cycle_timers
async def send_response(self, reply_set, reply_to, thinking_start_time, message_data) -> str:
"""
发送回复内容的具体实现
Args:
reply_set: 回复内容集合,包含多个回复段
reply_to: 回复目标
thinking_start_time: 思考开始时间
message_data: 消息数据
Returns:
str: 完整的回复文本
功能说明:
- 检查是否有新消息需要回复
- 处理主动思考的"沉默"决定
- 根据消息数量决定是否添加回复引用
- 逐段发送回复内容,支持打字效果
- 正确处理元组格式的回复段
"""
current_time = time.time()
new_message_count = message_api.count_new_messages(
chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time
)
platform = message_data.get("user_platform", "")
user_id = message_data.get("user_id", "")
reply_to_platform_id = f"{platform}:{user_id}"
need_reply = new_message_count >= random.randint(2, 4)
reply_text = ""
is_proactive_thinking = message_data.get("message_type") == "proactive_thinking"
first_replied = False
for reply_seg in reply_set:
# 调试日志验证reply_seg的格式
logger.debug(f"Processing reply_seg type: {type(reply_seg)}, content: {reply_seg}")
# 修正:正确处理元组格式 (格式为: (type, content))
if isinstance(reply_seg, tuple) and len(reply_seg) >= 2:
_, data = reply_seg
else:
# 向下兼容:如果已经是字符串,则直接使用
data = str(reply_seg)
reply_text += data
if is_proactive_thinking and data.strip() == "沉默":
logger.info(f"{self.context.log_prefix} 主动思考决定保持沉默,不发送消息")
continue
if not first_replied:
if need_reply:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to=reply_to,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
first_replied = True
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
typing=True,
)
return reply_text
async def generate_response(
self,
message_data: dict,
available_actions: Optional[Dict[str, Any]],
reply_to: str,
request_type: str = "chat.replyer.normal",
) -> Optional[list]:
"""
生成回复内容
Args:
message_data: 消息数据
available_actions: 可用动作列表
reply_to: 回复目标
request_type: 请求类型,默认为普通回复
Returns:
list: 生成的回复内容列表失败时返回None
功能说明:
- 在生成回复前进行反注入检测(提高效率)
- 调用生成器API生成回复
- 根据配置启用或禁用工具功能
- 处理生成失败的情况
- 记录生成过程中的错误和异常
"""
try:
# === 反注入检测(仅在需要生成回复时) ===
# 执行反注入检测(直接使用字典格式)
anti_injector = get_anti_injector()
result, modified_content, reason = await anti_injector.process_message(
message_data, self.context.chat_stream
)
# 根据反注入结果处理消息数据
await anti_injector.handle_message_storage(result, modified_content, reason, message_data)
if result == ProcessResult.BLOCKED_BAN:
# 用户被封禁 - 直接阻止回复生成
anti_injector_logger.warning(f"用户被反注入系统封禁,阻止回复生成: {reason}")
return None
elif result == ProcessResult.BLOCKED_INJECTION:
# 消息被阻止(危险内容等) - 直接阻止回复生成
anti_injector_logger.warning(f"消息被反注入系统阻止,阻止回复生成: {reason}")
return None
elif result == ProcessResult.COUNTER_ATTACK:
# 反击模式:生成反击消息作为回复
anti_injector_logger.info(f"反击模式启动,生成反击回复: {reason}")
if modified_content:
# 返回反击消息作为回复内容
return [("text", modified_content)]
else:
# 没有反击内容时阻止回复生成
return None
# 检查是否需要加盾处理
safety_prompt = None
if result == ProcessResult.SHIELDED:
# 获取安全系统提示词并注入
shield = anti_injector.shield
safety_prompt = shield.get_safety_system_prompt()
await Prompt.create_async(safety_prompt, "anti_injection_safety_prompt")
anti_injector_logger.info(f"消息已被反注入系统加盾处理,已注入安全提示词: {reason}")
# 处理被修改的消息内容(用于生成回复)
modified_reply_to = reply_to
if modified_content:
# 更新消息内容用于生成回复
anti_injector_logger.info(f"消息内容已被反注入系统修改,使用修改后内容生成回复: {reason}")
# 解析原始reply_to格式"发送者:消息内容"
if ":" in reply_to:
sender_part, _ = reply_to.split(":", 1)
modified_reply_to = f"{sender_part}:{modified_content}"
else:
# 如果格式不标准,直接使用修改后的内容
modified_reply_to = modified_content
# === 正常的回复生成流程 ===
success, reply_set, _ = await generator_api.generate_reply(
chat_stream=self.context.chat_stream,
reply_to=modified_reply_to, # 使用可能被修改的内容
available_actions=available_actions,
enable_tool=global_config.tool.enable_tool,
request_type=request_type,
from_plugin=False,
)
if not success or not reply_set:
logger.info(f"{message_data.get('processed_plain_text')} 的回复生成失败")
return None
return reply_set
except Exception as e:
logger.error(f"{self.context.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}")
return None