Files
Mofox-Core/scripts/test_bedrock_client.py
雅诺狐 3edcc9d169 ruff
2025-12-08 15:48:40 +08:00

205 lines
5.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
"""
AWS Bedrock 客户端测试脚本
测试 BedrockClient 的基本功能
"""
import asyncio
import sys
from pathlib import Path
# 添加项目根目录到 Python 路径
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from src.config.api_ada_configs import APIProvider, ModelInfo
from src.llm_models.model_client.bedrock_client import BedrockClient
from src.llm_models.payload_content.message import MessageBuilder
async def test_basic_conversation():
"""测试基本对话功能"""
print("=" * 60)
print("测试 1: 基本对话功能")
print("=" * 60)
# 配置 API Provider请替换为你的真实凭证
provider = APIProvider(
name="bedrock_test",
base_url="", # Bedrock 不需要
api_key="YOUR_AWS_ACCESS_KEY_ID", # 替换为你的 AWS Access Key
client_type="bedrock",
max_retry=2,
timeout=60,
retry_interval=10,
extra_params={
"aws_secret_key": "YOUR_AWS_SECRET_ACCESS_KEY", # 替换为你的 AWS Secret Key
"region": "us-east-1",
},
)
# 配置模型信息
model = ModelInfo(
model_identifier="us.anthropic.claude-3-5-sonnet-20240620-v1:0",
name="claude-3.5-sonnet-bedrock",
api_provider="bedrock_test",
price_in=3.0,
price_out=15.0,
force_stream_mode=False,
)
# 创建客户端
client = BedrockClient(provider)
# 构建消息
builder = MessageBuilder()
builder.add_user_message("你好!请用一句话介绍 AWS Bedrock。")
try:
# 发送请求
response = await client.get_response(
model_info=model, message_list=[builder.build()], max_tokens=200, temperature=0.7
)
print(f"✅ 响应内容: {response.content}")
if response.usage:
print(
f"📊 Token 使用: 输入={response.usage.prompt_tokens}, "
f"输出={response.usage.completion_tokens}, "
f"总计={response.usage.total_tokens}"
)
print("\n测试通过!✅\n")
except Exception as e:
print(f"❌ 测试失败: {e!s}")
import traceback
traceback.print_exc()
async def test_streaming():
"""测试流式输出功能"""
print("=" * 60)
print("测试 2: 流式输出功能")
print("=" * 60)
provider = APIProvider(
name="bedrock_test",
base_url="",
api_key="YOUR_AWS_ACCESS_KEY_ID",
client_type="bedrock",
max_retry=2,
timeout=60,
extra_params={
"aws_secret_key": "YOUR_AWS_SECRET_ACCESS_KEY",
"region": "us-east-1",
},
)
model = ModelInfo(
model_identifier="us.anthropic.claude-3-5-sonnet-20240620-v1:0",
name="claude-3.5-sonnet-bedrock",
api_provider="bedrock_test",
price_in=3.0,
price_out=15.0,
force_stream_mode=True, # 启用流式模式
)
client = BedrockClient(provider)
builder = MessageBuilder()
builder.add_user_message("写一个关于人工智能的三行诗。")
try:
print("🔄 流式响应中...")
response = await client.get_response(
model_info=model, message_list=[builder.build()], max_tokens=100, temperature=0.7
)
print(f"✅ 完整响应: {response.content}")
print("\n测试通过!✅\n")
except Exception as e:
print(f"❌ 测试失败: {e!s}")
async def test_multimodal():
"""测试多模态(图片输入)功能"""
print("=" * 60)
print("测试 3: 多模态功能(需要准备图片)")
print("=" * 60)
print("⏭️ 跳过(需要实际图片文件)\n")
async def test_tool_calling():
"""测试工具调用功能"""
print("=" * 60)
print("测试 4: 工具调用功能")
print("=" * 60)
from src.llm_models.payload_content.tool_option import ToolOptionBuilder, ToolParamType
provider = APIProvider(
name="bedrock_test",
base_url="",
api_key="YOUR_AWS_ACCESS_KEY_ID",
client_type="bedrock",
extra_params={
"aws_secret_key": "YOUR_AWS_SECRET_ACCESS_KEY",
"region": "us-east-1",
},
)
model = ModelInfo(
model_identifier="us.anthropic.claude-3-5-sonnet-20240620-v1:0",
name="claude-3.5-sonnet-bedrock",
api_provider="bedrock_test",
)
# 定义工具
tool_builder = ToolOptionBuilder()
tool_builder.set_name("get_weather").set_description("获取指定城市的天气信息").add_param(
name="city", param_type=ToolParamType.STRING, description="城市名称", required=True
)
tool = tool_builder.build()
client = BedrockClient(provider)
builder = MessageBuilder()
builder.add_user_message("北京今天天气怎么样?")
try:
response = await client.get_response(
model_info=model, message_list=[builder.build()], tool_options=[tool], max_tokens=200
)
if response.tool_calls:
print("✅ 模型调用了工具:")
for call in response.tool_calls:
print(f" - 工具名: {call.func_name}")
print(f" - 参数: {call.args}")
else:
print(f"⚠️ 模型没有调用工具,而是直接回复: {response.content}")
print("\n测试通过!✅\n")
except Exception as e:
print(f"❌ 测试失败: {e!s}")
async def main():
"""主测试函数"""
print("\n🚀 AWS Bedrock 客户端测试开始\n")
print("⚠️ 请确保已配置 AWS 凭证!")
print("⚠️ 修改脚本中的 'YOUR_AWS_ACCESS_KEY_ID''YOUR_AWS_SECRET_ACCESS_KEY'\n")
# 运行测试
await test_basic_conversation()
# await test_streaming()
# await test_multimodal()
# await test_tool_calling()
print("=" * 60)
print("🎉 所有测试完成!")
print("=" * 60)
if __name__ == "__main__":
asyncio.run(main())