591 lines
24 KiB
Python
591 lines
24 KiB
Python
#!/usr/bin/env python3
|
||
"""
|
||
视频分析器模块 - 旧版本兼容模块
|
||
支持多种分析模式:批处理、逐帧、自动选择
|
||
包含Python原生的抽帧功能,作为Rust模块的降级方案
|
||
"""
|
||
|
||
import asyncio
|
||
import base64
|
||
import io
|
||
import os
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from pathlib import Path
|
||
from typing import Any
|
||
|
||
import cv2
|
||
import numpy as np
|
||
from PIL import Image
|
||
|
||
from src.common.logger import get_logger
|
||
from src.config.config import global_config, model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
|
||
logger = get_logger("utils_video_legacy")
|
||
|
||
|
||
def _extract_frames_worker(
|
||
video_path: str,
|
||
max_frames: int,
|
||
frame_quality: int,
|
||
max_image_size: int,
|
||
frame_extraction_mode: str,
|
||
frame_interval_seconds: float | None,
|
||
) -> list[tuple[str, float]] | list[tuple[str, str]]:
|
||
"""线程池中提取视频帧的工作函数"""
|
||
frames: list[tuple[str, float]] = []
|
||
try:
|
||
cap = cv2.VideoCapture(video_path)
|
||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||
duration = total_frames / fps if fps > 0 else 0
|
||
|
||
if frame_extraction_mode == "time_interval":
|
||
# 新模式:按时间间隔抽帧
|
||
time_interval = frame_interval_seconds or 2.0
|
||
next_frame_time = 0.0
|
||
extracted_count = 0 # 初始化提取帧计数器
|
||
|
||
while cap.isOpened():
|
||
ret, frame = cap.read()
|
||
if not ret:
|
||
break
|
||
|
||
current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0
|
||
|
||
if current_time >= next_frame_time:
|
||
# 转换为PIL图像并压缩
|
||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||
pil_image = Image.fromarray(frame_rgb)
|
||
|
||
# 调整图像大小
|
||
if max(pil_image.size) > max_image_size:
|
||
ratio = max_image_size / max(pil_image.size)
|
||
new_size = (int(pil_image.size[0] * ratio), int(pil_image.size[1] * ratio))
|
||
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
||
|
||
# 转换为base64
|
||
buffer = io.BytesIO()
|
||
pil_image.save(buffer, format="JPEG", quality=frame_quality)
|
||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||
|
||
frames.append((frame_base64, current_time))
|
||
extracted_count += 1
|
||
|
||
# 注意:这里不能使用logger,因为在线程池中
|
||
# logger.debug(f"提取第{extracted_count}帧 (时间: {current_time:.2f}s)")
|
||
|
||
next_frame_time += time_interval
|
||
else:
|
||
# 使用numpy优化帧间隔计算
|
||
if duration > 0:
|
||
frame_interval = max(1, int(duration / max_frames * fps))
|
||
else:
|
||
frame_interval = 30 # 默认间隔
|
||
|
||
# 使用numpy计算目标帧位置
|
||
target_frames = np.arange(0, min(max_frames, total_frames // frame_interval + 1)) * frame_interval
|
||
target_frames = target_frames[target_frames < total_frames].astype(int)
|
||
|
||
for target_frame in target_frames:
|
||
# 跳转到目标帧
|
||
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
|
||
ret, frame = cap.read()
|
||
if not ret:
|
||
continue
|
||
|
||
# 使用numpy优化图像处理
|
||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||
|
||
# 转换为PIL图像并使用numpy进行尺寸计算
|
||
height, width = frame_rgb.shape[:2]
|
||
max_dim = max(height, width)
|
||
|
||
if max_dim > max_image_size:
|
||
# 使用numpy计算缩放比例
|
||
ratio = max_image_size / max_dim
|
||
new_width = int(width * ratio)
|
||
new_height = int(height * ratio)
|
||
|
||
# 使用opencv进行高效缩放
|
||
frame_resized = cv2.resize(frame_rgb, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
|
||
pil_image = Image.fromarray(frame_resized)
|
||
else:
|
||
pil_image = Image.fromarray(frame_rgb)
|
||
|
||
# 转换为base64
|
||
buffer = io.BytesIO()
|
||
pil_image.save(buffer, format="JPEG", quality=frame_quality)
|
||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||
|
||
# 计算时间戳
|
||
timestamp = target_frame / fps if fps > 0 else 0
|
||
frames.append((frame_base64, timestamp))
|
||
|
||
cap.release()
|
||
return frames
|
||
|
||
except Exception as e:
|
||
# 返回错误信息
|
||
return [("ERROR", str(e))]
|
||
|
||
|
||
class LegacyVideoAnalyzer:
|
||
"""旧版本兼容的视频分析器类"""
|
||
|
||
def __init__(self):
|
||
"""初始化视频分析器"""
|
||
assert global_config is not None
|
||
assert model_config is not None
|
||
# 使用专用的视频分析配置
|
||
try:
|
||
self.video_llm = LLMRequest(
|
||
model_set=model_config.model_task_config.video_analysis, request_type="video_analysis"
|
||
)
|
||
logger.info("✅ 使用video_analysis模型配置")
|
||
except (AttributeError, KeyError) as e:
|
||
# 如果video_analysis不存在,使用vlm配置
|
||
self.video_llm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="vlm")
|
||
logger.warning(f"video_analysis配置不可用({e}),回退使用vlm配置")
|
||
|
||
# 从配置文件读取参数,如果配置不存在则使用默认值
|
||
config = global_config.video_analysis
|
||
|
||
# 使用 getattr 统一获取配置参数,如果配置不存在则使用默认值
|
||
self.max_frames = getattr(config, "max_frames", 6)
|
||
self.frame_quality = getattr(config, "frame_quality", 85)
|
||
self.max_image_size = getattr(config, "max_image_size", 600)
|
||
self.enable_frame_timing = getattr(config, "enable_frame_timing", True)
|
||
|
||
# 从personality配置中获取人格信息
|
||
try:
|
||
personality_config = global_config.personality
|
||
self.personality_core = getattr(personality_config, "personality_core", "是一个积极向上的女大学生")
|
||
self.personality_side = getattr(
|
||
personality_config, "personality_side", "用一句话或几句话描述人格的侧面特点"
|
||
)
|
||
except AttributeError:
|
||
# 如果没有personality配置,使用默认值
|
||
self.personality_core = "是一个积极向上的女大学生"
|
||
self.personality_side = "用一句话或几句话描述人格的侧面特点"
|
||
|
||
self.batch_analysis_prompt = getattr(
|
||
config,
|
||
"batch_analysis_prompt",
|
||
"""请以第一人称的视角来观看这一个视频,你看到的这些是从视频中按时间顺序提取的关键帧。
|
||
|
||
你的核心人设是:{personality_core}。
|
||
你的人格细节是:{personality_side}。
|
||
|
||
请提供详细的视频内容描述,涵盖以下方面:
|
||
1. 视频的整体内容和主题
|
||
2. 主要人物、对象和场景描述
|
||
3. 动作、情节和时间线发展
|
||
4. 视觉风格和艺术特点
|
||
5. 整体氛围和情感表达
|
||
6. 任何特殊的视觉效果或文字内容
|
||
|
||
请用中文回答,结果要详细准确。""",
|
||
)
|
||
|
||
# 新增的线程池配置
|
||
self.use_multiprocessing = getattr(config, "use_multiprocessing", True)
|
||
self.max_workers = getattr(config, "max_workers", 2)
|
||
self.frame_extraction_mode = getattr(config, "frame_extraction_mode", "fixed_number")
|
||
self.frame_interval_seconds = getattr(config, "frame_interval_seconds", 2.0)
|
||
|
||
# 将配置文件中的模式映射到内部使用的模式名称
|
||
config_mode = getattr(config, "analysis_mode", "auto")
|
||
if config_mode == "batch_frames":
|
||
self.analysis_mode = "batch"
|
||
elif config_mode == "frame_by_frame":
|
||
self.analysis_mode = "sequential"
|
||
elif config_mode == "auto":
|
||
self.analysis_mode = "auto"
|
||
else:
|
||
logger.warning(f"无效的分析模式: {config_mode},使用默认的auto模式")
|
||
self.analysis_mode = "auto"
|
||
|
||
self.frame_analysis_delay = 0.3 # API调用间隔(秒)
|
||
self.frame_interval = 1.0 # 抽帧时间间隔(秒)
|
||
self.batch_size = 3 # 批处理时每批处理的帧数
|
||
self.timeout = 60.0 # 分析超时时间(秒)
|
||
|
||
if config:
|
||
logger.info("✅ 从配置文件读取视频分析参数")
|
||
else:
|
||
logger.warning("配置文件中缺少video_analysis配置,使用默认值")
|
||
|
||
# 系统提示词
|
||
self.system_prompt = "你是一个专业的视频内容分析助手。请仔细观察用户提供的视频关键帧,详细描述视频内容。"
|
||
|
||
logger.info(
|
||
f"✅ 旧版本视频分析器初始化完成,分析模式: {self.analysis_mode}, 线程池: {self.use_multiprocessing}"
|
||
)
|
||
|
||
async def extract_frames(self, video_path: str) -> list[tuple[str, float]]:
|
||
"""提取视频帧 - 支持多进程和单线程模式"""
|
||
# 先获取视频信息
|
||
cap = cv2.VideoCapture(video_path)
|
||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||
duration = total_frames / fps if fps > 0 else 0
|
||
cap.release()
|
||
|
||
logger.info(f"视频信息: {total_frames}帧, {fps:.2f}FPS, {duration:.2f}秒")
|
||
|
||
# 估算提取帧数
|
||
if duration > 0:
|
||
frame_interval = max(1, int(duration / self.max_frames * fps))
|
||
estimated_frames = min(self.max_frames, total_frames // frame_interval + 1)
|
||
else:
|
||
estimated_frames = self.max_frames
|
||
frame_interval = 1
|
||
|
||
logger.info(f"计算得出帧间隔: {frame_interval} (将提取约{estimated_frames}帧)")
|
||
|
||
# 根据配置选择处理方式
|
||
if self.use_multiprocessing:
|
||
return await self._extract_frames_multiprocess(video_path)
|
||
else:
|
||
return await self._extract_frames_fallback(video_path)
|
||
|
||
async def _extract_frames_multiprocess(self, video_path: str) -> list[tuple[str, float]]:
|
||
"""线程池版本的帧提取"""
|
||
loop = asyncio.get_event_loop()
|
||
|
||
try:
|
||
logger.info("🔄 启动线程池帧提取...")
|
||
# 使用线程池,避免进程间的导入问题
|
||
with ThreadPoolExecutor(max_workers=1) as executor:
|
||
frames = await loop.run_in_executor(
|
||
executor,
|
||
_extract_frames_worker,
|
||
video_path,
|
||
self.max_frames,
|
||
self.frame_quality,
|
||
self.max_image_size,
|
||
self.frame_extraction_mode,
|
||
self.frame_interval_seconds,
|
||
)
|
||
|
||
# 检查是否有错误
|
||
if frames and frames[0][0] == "ERROR":
|
||
logger.error(f"线程池帧提取失败: {frames[0][1]}")
|
||
# 降级到单线程模式
|
||
logger.info("🔄 降级到单线程模式...")
|
||
return await self._extract_frames_fallback(video_path)
|
||
|
||
logger.info(f"✅ 成功提取{len(frames)}帧 (线程池模式)")
|
||
return frames # type: ignore
|
||
|
||
except Exception as e:
|
||
logger.error(f"线程池帧提取失败: {e}")
|
||
# 降级到原始方法
|
||
logger.info("🔄 降级到单线程模式...")
|
||
return await self._extract_frames_fallback(video_path)
|
||
|
||
async def _extract_frames_fallback(self, video_path: str) -> list[tuple[str, float]]:
|
||
"""帧提取的降级方法 - 原始异步版本"""
|
||
frames = []
|
||
extracted_count = 0
|
||
cap = cv2.VideoCapture(video_path)
|
||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||
duration = total_frames / fps if fps > 0 else 0
|
||
|
||
logger.info(f"视频信息: {total_frames}帧, {fps:.2f}FPS, {duration:.2f}秒")
|
||
|
||
if self.frame_extraction_mode == "time_interval":
|
||
# 新模式:按时间间隔抽帧
|
||
time_interval = self.frame_interval_seconds
|
||
next_frame_time = 0.0
|
||
|
||
while cap.isOpened():
|
||
ret, frame = cap.read()
|
||
if not ret:
|
||
break
|
||
|
||
current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0
|
||
|
||
if current_time >= next_frame_time:
|
||
# 转换为PIL图像并压缩
|
||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||
pil_image = Image.fromarray(frame_rgb)
|
||
|
||
# 调整图像大小
|
||
if max(pil_image.size) > self.max_image_size:
|
||
ratio = self.max_image_size / max(pil_image.size)
|
||
new_size = (int(pil_image.size[0] * ratio), int(pil_image.size[1] * ratio))
|
||
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
||
|
||
# 转换为base64
|
||
buffer = io.BytesIO()
|
||
pil_image.save(buffer, format="JPEG", quality=self.frame_quality)
|
||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||
|
||
frames.append((frame_base64, current_time))
|
||
extracted_count += 1
|
||
|
||
logger.debug(f"提取第{extracted_count}帧 (时间: {current_time:.2f}s)")
|
||
|
||
next_frame_time += time_interval
|
||
else:
|
||
# 使用numpy优化帧间隔计算
|
||
if duration > 0:
|
||
frame_interval = max(1, int(duration / self.max_frames * fps))
|
||
else:
|
||
frame_interval = 30 # 默认间隔
|
||
|
||
logger.info(
|
||
f"计算得出帧间隔: {frame_interval} (将提取约{min(self.max_frames, total_frames // frame_interval + 1)}帧)"
|
||
)
|
||
|
||
# 使用numpy计算目标帧位置
|
||
target_frames = np.arange(0, min(self.max_frames, total_frames // frame_interval + 1)) * frame_interval
|
||
target_frames = target_frames[target_frames < total_frames].astype(int)
|
||
|
||
extracted_count = 0
|
||
|
||
for target_frame in target_frames:
|
||
# 跳转到目标帧
|
||
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
|
||
ret, frame = cap.read()
|
||
if not ret:
|
||
continue
|
||
|
||
# 使用numpy优化图像处理
|
||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||
|
||
# 转换为PIL图像并使用numpy进行尺寸计算
|
||
height, width = frame_rgb.shape[:2]
|
||
max_dim = max(height, width)
|
||
|
||
if max_dim > self.max_image_size:
|
||
# 使用numpy计算缩放比例
|
||
ratio = self.max_image_size / max_dim
|
||
new_width = int(width * ratio)
|
||
new_height = int(height * ratio)
|
||
|
||
# 使用opencv进行高效缩放
|
||
frame_resized = cv2.resize(frame_rgb, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
|
||
pil_image = Image.fromarray(frame_resized)
|
||
else:
|
||
pil_image = Image.fromarray(frame_rgb)
|
||
|
||
# 转换为base64
|
||
buffer = io.BytesIO()
|
||
pil_image.save(buffer, format="JPEG", quality=self.frame_quality)
|
||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||
|
||
# 计算时间戳
|
||
timestamp = target_frame / fps if fps > 0 else 0
|
||
frames.append((frame_base64, timestamp))
|
||
extracted_count += 1
|
||
|
||
logger.debug(f"提取第{extracted_count}帧 (时间: {timestamp:.2f}s, 帧号: {target_frame})")
|
||
|
||
# 每提取一帧让步一次
|
||
await asyncio.sleep(0.001)
|
||
|
||
cap.release()
|
||
logger.info(f"✅ 成功提取{len(frames)}帧")
|
||
return frames
|
||
|
||
async def analyze_frames_batch(self, frames: list[tuple[str, float]], user_question: str | None = None) -> str:
|
||
"""批量分析所有帧"""
|
||
logger.info(f"开始批量分析{len(frames)}帧")
|
||
|
||
if not frames:
|
||
return "❌ 没有可分析的帧"
|
||
|
||
# 构建提示词并格式化人格信息,要不然占位符的那个会爆炸
|
||
prompt = self.batch_analysis_prompt.format(
|
||
personality_core=self.personality_core, personality_side=self.personality_side
|
||
)
|
||
|
||
if user_question:
|
||
prompt += f"\n\n用户问题: {user_question}"
|
||
|
||
# 添加帧信息到提示词
|
||
frame_info = []
|
||
for i, (_frame_base64, timestamp) in enumerate(frames):
|
||
if self.enable_frame_timing:
|
||
frame_info.append(f"第{i + 1}帧 (时间: {timestamp:.2f}s)")
|
||
else:
|
||
frame_info.append(f"第{i + 1}帧")
|
||
|
||
prompt += f"\n\n视频包含{len(frames)}帧图像:{', '.join(frame_info)}"
|
||
prompt += "\n\n请基于所有提供的帧图像进行综合分析,关注并描述视频的完整内容和故事发展。"
|
||
|
||
try:
|
||
# 尝试使用多图片分析
|
||
response = await self._analyze_multiple_frames(frames, prompt)
|
||
logger.info("✅ 视频识别完成")
|
||
return response
|
||
|
||
except Exception as e:
|
||
logger.error(f"❌ 视频识别失败: {e}")
|
||
# 降级到单帧分析
|
||
logger.warning("降级到单帧分析模式")
|
||
try:
|
||
frame_base64, timestamp = frames[0]
|
||
fallback_prompt = (
|
||
prompt
|
||
+ f"\n\n注意:由于技术限制,当前仅显示第1帧 (时间: {timestamp:.2f}s),视频共有{len(frames)}帧。请基于这一帧进行分析。"
|
||
)
|
||
|
||
response, _ = await self.video_llm.generate_response_for_image(
|
||
prompt=fallback_prompt, image_base64=frame_base64, image_format="jpeg"
|
||
)
|
||
logger.info("✅ 降级的单帧分析完成")
|
||
return response
|
||
except Exception as fallback_e:
|
||
logger.error(f"❌ 降级分析也失败: {fallback_e}")
|
||
raise
|
||
|
||
async def _analyze_multiple_frames(self, frames: list[tuple[str, float]], prompt: str) -> str:
|
||
"""使用多图片分析方法"""
|
||
logger.info(f"开始构建包含{len(frames)}帧的分析请求")
|
||
|
||
# 导入MessageBuilder用于构建多图片消息
|
||
from src.llm_models.payload_content.message import MessageBuilder, RoleType
|
||
from src.llm_models.utils_model import RequestType
|
||
|
||
# 构建包含多张图片的消息
|
||
message_builder = MessageBuilder().set_role(RoleType.User).add_text_content(prompt)
|
||
|
||
# 添加所有帧图像
|
||
for _i, (frame_base64, _timestamp) in enumerate(frames):
|
||
message_builder.add_image_content("jpeg", frame_base64)
|
||
# logger.info(f"已添加第{i+1}帧到分析请求 (时间: {timestamp:.2f}s, 图片大小: {len(frame_base64)} chars)")
|
||
|
||
message = message_builder.build()
|
||
# logger.info(f"✅ 多帧消息构建完成,包含{len(frames)}张图片")
|
||
|
||
# 获取模型信息和客户端
|
||
model_info, api_provider, client = self.video_llm._select_model() # type: ignore
|
||
# logger.info(f"使用模型: {model_info.name} 进行多帧分析")
|
||
|
||
# 直接执行多图片请求
|
||
api_response = await self.video_llm._execute_request( # type: ignore
|
||
api_provider=api_provider,
|
||
client=client,
|
||
request_type=RequestType.RESPONSE,
|
||
model_info=model_info,
|
||
message_list=[message],
|
||
temperature=None,
|
||
max_tokens=None,
|
||
)
|
||
|
||
logger.info(f"视频识别完成,响应长度: {len(api_response.content or '')} ")
|
||
return api_response.content or "❌ 未获得响应内容"
|
||
|
||
async def analyze_frames_sequential(self, frames: list[tuple[str, float]], user_question: str | None = None) -> str:
|
||
"""逐帧分析并汇总"""
|
||
logger.info(f"开始逐帧分析{len(frames)}帧")
|
||
|
||
frame_analyses = []
|
||
|
||
for i, (frame_base64, timestamp) in enumerate(frames):
|
||
try:
|
||
prompt = f"请分析这个视频的第{i + 1}帧"
|
||
if self.enable_frame_timing:
|
||
prompt += f" (时间: {timestamp:.2f}s)"
|
||
prompt += "。描述你看到的内容,包括人物、动作、场景、文字等。"
|
||
|
||
if user_question:
|
||
prompt += f"\n特别关注: {user_question}"
|
||
|
||
response, _ = await self.video_llm.generate_response_for_image(
|
||
prompt=prompt, image_base64=frame_base64, image_format="jpeg"
|
||
)
|
||
|
||
frame_analyses.append(f"第{i + 1}帧 ({timestamp:.2f}s): {response}")
|
||
logger.debug(f"✅ 第{i + 1}帧分析完成")
|
||
|
||
# API调用间隔
|
||
if i < len(frames) - 1:
|
||
await asyncio.sleep(self.frame_analysis_delay)
|
||
|
||
except Exception as e:
|
||
logger.error(f"❌ 第{i + 1}帧分析失败: {e}")
|
||
frame_analyses.append(f"第{i + 1}帧: 分析失败 - {e}")
|
||
|
||
# 生成汇总
|
||
logger.info("开始生成汇总分析")
|
||
summary_prompt = f"""基于以下各帧的分析结果,请提供一个完整的视频内容总结:
|
||
|
||
{chr(10).join(frame_analyses)}
|
||
|
||
请综合所有帧的信息,描述视频的整体内容、故事线、主要元素和特点。"""
|
||
|
||
if user_question:
|
||
summary_prompt += f"\n特别回答用户的问题: {user_question}"
|
||
|
||
try:
|
||
# 使用最后一帧进行汇总分析
|
||
if frames:
|
||
last_frame_base64, _ = frames[-1]
|
||
summary, _ = await self.video_llm.generate_response_for_image(
|
||
prompt=summary_prompt, image_base64=last_frame_base64, image_format="jpeg"
|
||
)
|
||
logger.info("✅ 逐帧分析和汇总完成")
|
||
return summary
|
||
else:
|
||
return "❌ 没有可用于汇总的帧"
|
||
except Exception as e:
|
||
logger.error(f"❌ 汇总分析失败: {e}")
|
||
# 如果汇总失败,返回各帧分析结果
|
||
return f"视频逐帧分析结果:\n\n{chr(10).join(frame_analyses)}"
|
||
|
||
async def analyze_video(self, video_path: str, user_question: str | None = None) -> str:
|
||
"""分析视频的主要方法"""
|
||
try:
|
||
logger.info(f"开始分析视频: {os.path.basename(video_path)}")
|
||
|
||
# 提取帧
|
||
frames = await self.extract_frames(video_path)
|
||
if not frames:
|
||
return "❌ 无法从视频中提取有效帧"
|
||
|
||
# 根据模式选择分析方法
|
||
if self.analysis_mode == "auto":
|
||
# 智能选择:少于等于3帧用批量,否则用逐帧
|
||
mode = "batch" if len(frames) <= 3 else "sequential"
|
||
logger.info(f"自动选择分析模式: {mode} (基于{len(frames)}帧)")
|
||
else:
|
||
mode = self.analysis_mode
|
||
|
||
# 执行分析
|
||
if mode == "batch":
|
||
result = await self.analyze_frames_batch(frames, user_question)
|
||
else: # sequential
|
||
result = await self.analyze_frames_sequential(frames, user_question)
|
||
|
||
logger.info("✅ 视频分析完成")
|
||
return result
|
||
|
||
except Exception as e:
|
||
error_msg = f"❌ 视频分析失败: {e!s}"
|
||
logger.error(error_msg)
|
||
return error_msg
|
||
|
||
@staticmethod
|
||
def is_supported_video(file_path: str) -> bool:
|
||
"""检查是否为支持的视频格式"""
|
||
supported_formats = {".mp4", ".avi", ".mov", ".mkv", ".flv", ".wmv", ".m4v", ".3gp", ".webm"}
|
||
return Path(file_path).suffix.lower() in supported_formats
|
||
|
||
|
||
# 全局实例
|
||
_legacy_video_analyzer = None
|
||
|
||
|
||
def get_legacy_video_analyzer() -> LegacyVideoAnalyzer:
|
||
"""获取旧版本视频分析器实例(单例模式)"""
|
||
global _legacy_video_analyzer
|
||
if _legacy_video_analyzer is None:
|
||
_legacy_video_analyzer = LegacyVideoAnalyzer()
|
||
return _legacy_video_analyzer
|