Files
Mofox-Core/src/memory_graph/config.py
Windpicker-owo a3cc074098 feat(memory): 添加配置系统支持,移除旧memory配置
重大改进:
- 在 bot_config_template.toml 添加 [memory_graph] 配置段
- 移除旧的 [memory] 配置段(~85行)
- 更新 MemoryGraphConfig 支持从 bot_config 加载
- 更新 MemoryManager 使用配置参数
- 更新 manager_singleton 支持配置初始化

配置系统:
- enable: 启用/禁用记忆图系统
- data_dir: 数据存储目录
- 向量存储: collection_name, db_path
- 检索: top_k, min_importance, similarity_threshold
- 智能查询优化: enable_query_optimization
- 整合: enabled, interval_hours, similarity_threshold, time_window
- 遗忘: enabled, activation_threshold, min_importance
- 激活: decay_rate, propagation_strength, propagation_depth
- 性能: max_nodes_per_memory, max_related_memories

配置加载流程:
1. MemoryGraphConfig.from_bot_config(global_config)
2. 使用 getattr 安全获取配置值
3. 提供默认值作为后备

使用配置:
- MemoryManager 从 config 读取所有参数
- maintenance 使用 consolidation_* 参数
- auto_forget_memories 使用 forgetting_* 参数
- activate_memory 使用 activation_* 参数

向后兼容:
- [memory_legacy] 保留旧配置供参考
- [vector_db] 保留给其他系统使用
- 新系统使用独立 chromadb 实例

完成 Step 4: 添加配置支持
2025-11-05 20:22:08 +08:00

245 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
记忆图系统配置管理
"""
from __future__ import annotations
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, Optional
@dataclass
class ConsolidationConfig:
"""记忆整理配置"""
interval_hours: int = 6 # 整理间隔(小时)
batch_size: int = 100 # 每次处理记忆数量
enable_auto_discovery: bool = True # 是否启用自动关联发现
enable_conflict_detection: bool = True # 是否启用冲突检测
@dataclass
class RetrievalConfig:
"""记忆检索配置"""
default_mode: str = "auto" # auto/fast/deep
max_expand_depth: int = 2 # 最大图扩展深度
vector_weight: float = 0.4 # 向量相似度权重
graph_distance_weight: float = 0.2 # 图距离权重
importance_weight: float = 0.2 # 重要性权重
recency_weight: float = 0.2 # 时效性权重
def __post_init__(self):
"""验证权重总和"""
total = self.vector_weight + self.graph_distance_weight + self.importance_weight + self.recency_weight
if abs(total - 1.0) > 0.01:
raise ValueError(f"权重总和必须为1.0,当前为 {total}")
@dataclass
class NodeMergerConfig:
"""节点去重配置"""
similarity_threshold: float = 0.85 # 相似度阈值
context_match_required: bool = True # 是否要求上下文匹配
merge_batch_size: int = 50 # 批量处理大小
def __post_init__(self):
"""验证阈值范围"""
if not 0.0 <= self.similarity_threshold <= 1.0:
raise ValueError(f"相似度阈值必须在 [0, 1] 范围内,当前为 {self.similarity_threshold}")
@dataclass
class StorageConfig:
"""存储配置"""
data_dir: Path = field(default_factory=lambda: Path("data/memory_graph"))
vector_collection_name: str = "memory_nodes"
graph_file_name: str = "memory_graph.json"
enable_persistence: bool = True # 是否启用持久化
auto_save_interval: int = 300 # 自动保存间隔(秒)
@dataclass
class MemoryGraphConfig:
"""记忆图系统总配置"""
# 基础配置
enable: bool = True # 是否启用记忆图系统
data_dir: Path = field(default_factory=lambda: Path("data/memory_graph"))
# 向量存储配置
vector_collection_name: str = "memory_nodes"
vector_db_path: Path = field(default_factory=lambda: Path("data/memory_graph/chroma_db"))
# 检索配置
search_top_k: int = 10
search_min_importance: float = 0.3
search_similarity_threshold: float = 0.5
enable_query_optimization: bool = True
# 整合配置
consolidation_enabled: bool = True
consolidation_interval_hours: float = 1.0
consolidation_similarity_threshold: float = 0.85
consolidation_time_window_hours: int = 24
# 遗忘配置
forgetting_enabled: bool = True
forgetting_activation_threshold: float = 0.1
forgetting_min_importance: float = 0.8
# 激活配置
activation_decay_rate: float = 0.9
activation_propagation_strength: float = 0.5
activation_propagation_depth: int = 1
# 性能配置
max_memory_nodes_per_memory: int = 10
max_related_memories: int = 5
# 旧配置(向后兼容)
consolidation: ConsolidationConfig = field(default_factory=ConsolidationConfig)
retrieval: RetrievalConfig = field(default_factory=RetrievalConfig)
node_merger: NodeMergerConfig = field(default_factory=NodeMergerConfig)
storage: StorageConfig = field(default_factory=StorageConfig)
# 时间衰减配置
decay_rates: Dict[str, float] = field(
default_factory=lambda: {
"EVENT": 0.05, # 事件衰减较快
"FACT": 0.01, # 事实衰减慢
"RELATION": 0.005, # 关系衰减很慢
"OPINION": 0.03, # 观点中等衰减
}
)
# 嵌入模型配置
embedding_model: Optional[str] = None # 如果为None则使用系统默认
embedding_dimension: int = 384 # 默认使用 sentence-transformers 的维度
# 调试和日志
enable_debug_logging: bool = False
enable_visualization: bool = False # 是否启用记忆可视化
@classmethod
def from_bot_config(cls, bot_config) -> MemoryGraphConfig:
"""从bot_config加载配置"""
try:
# 尝试获取新配置
if hasattr(bot_config, 'memory_graph'):
mg_config = bot_config.memory_graph
config = cls(
enable=getattr(mg_config, 'enable', True),
data_dir=Path(getattr(mg_config, 'data_dir', 'data/memory_graph')),
vector_collection_name=getattr(mg_config, 'vector_collection_name', 'memory_nodes'),
vector_db_path=Path(getattr(mg_config, 'vector_db_path', 'data/memory_graph/chroma_db')),
search_top_k=getattr(mg_config, 'search_top_k', 10),
search_min_importance=getattr(mg_config, 'search_min_importance', 0.3),
search_similarity_threshold=getattr(mg_config, 'search_similarity_threshold', 0.5),
enable_query_optimization=getattr(mg_config, 'enable_query_optimization', True),
consolidation_enabled=getattr(mg_config, 'consolidation_enabled', True),
consolidation_interval_hours=getattr(mg_config, 'consolidation_interval_hours', 1.0),
consolidation_similarity_threshold=getattr(mg_config, 'consolidation_similarity_threshold', 0.85),
consolidation_time_window_hours=getattr(mg_config, 'consolidation_time_window_hours', 24),
forgetting_enabled=getattr(mg_config, 'forgetting_enabled', True),
forgetting_activation_threshold=getattr(mg_config, 'forgetting_activation_threshold', 0.1),
forgetting_min_importance=getattr(mg_config, 'forgetting_min_importance', 0.8),
activation_decay_rate=getattr(mg_config, 'activation_decay_rate', 0.9),
activation_propagation_strength=getattr(mg_config, 'activation_propagation_strength', 0.5),
activation_propagation_depth=getattr(mg_config, 'activation_propagation_depth', 1),
max_memory_nodes_per_memory=getattr(mg_config, 'max_memory_nodes_per_memory', 10),
max_related_memories=getattr(mg_config, 'max_related_memories', 5),
)
return config
else:
# 没有找到memory_graph配置使用默认值
return cls()
except Exception as e:
import logging
logger = logging.getLogger(__name__)
logger.warning(f"从bot_config加载memory_graph配置失败使用默认配置: {e}")
return cls()
@classmethod
def from_dict(cls, config_dict: Dict) -> MemoryGraphConfig:
"""从字典创建配置"""
return cls(
# 新配置字段
enable=config_dict.get("enable", True),
data_dir=Path(config_dict.get("data_dir", "data/memory_graph")),
vector_collection_name=config_dict.get("vector_collection_name", "memory_nodes"),
vector_db_path=Path(config_dict.get("vector_db_path", "data/memory_graph/chroma_db")),
search_top_k=config_dict.get("search_top_k", 10),
search_min_importance=config_dict.get("search_min_importance", 0.3),
search_similarity_threshold=config_dict.get("search_similarity_threshold", 0.5),
enable_query_optimization=config_dict.get("enable_query_optimization", True),
consolidation_enabled=config_dict.get("consolidation_enabled", True),
consolidation_interval_hours=config_dict.get("consolidation_interval_hours", 1.0),
consolidation_similarity_threshold=config_dict.get("consolidation_similarity_threshold", 0.85),
consolidation_time_window_hours=config_dict.get("consolidation_time_window_hours", 24),
forgetting_enabled=config_dict.get("forgetting_enabled", True),
forgetting_activation_threshold=config_dict.get("forgetting_activation_threshold", 0.1),
forgetting_min_importance=config_dict.get("forgetting_min_importance", 0.8),
activation_decay_rate=config_dict.get("activation_decay_rate", 0.9),
activation_propagation_strength=config_dict.get("activation_propagation_strength", 0.5),
activation_propagation_depth=config_dict.get("activation_propagation_depth", 1),
max_memory_nodes_per_memory=config_dict.get("max_memory_nodes_per_memory", 10),
max_related_memories=config_dict.get("max_related_memories", 5),
# 旧配置字段(向后兼容)
consolidation=ConsolidationConfig(**config_dict.get("consolidation", {})),
retrieval=RetrievalConfig(**config_dict.get("retrieval", {})),
node_merger=NodeMergerConfig(**config_dict.get("node_merger", {})),
storage=StorageConfig(**config_dict.get("storage", {})),
decay_rates=config_dict.get("decay_rates", cls().decay_rates),
embedding_model=config_dict.get("embedding_model"),
embedding_dimension=config_dict.get("embedding_dimension", 384),
enable_debug_logging=config_dict.get("enable_debug_logging", False),
enable_visualization=config_dict.get("enable_visualization", False),
)
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"consolidation": {
"interval_hours": self.consolidation.interval_hours,
"batch_size": self.consolidation.batch_size,
"enable_auto_discovery": self.consolidation.enable_auto_discovery,
"enable_conflict_detection": self.consolidation.enable_conflict_detection,
},
"retrieval": {
"default_mode": self.retrieval.default_mode,
"max_expand_depth": self.retrieval.max_expand_depth,
"vector_weight": self.retrieval.vector_weight,
"graph_distance_weight": self.retrieval.graph_distance_weight,
"importance_weight": self.retrieval.importance_weight,
"recency_weight": self.retrieval.recency_weight,
},
"node_merger": {
"similarity_threshold": self.node_merger.similarity_threshold,
"context_match_required": self.node_merger.context_match_required,
"merge_batch_size": self.node_merger.merge_batch_size,
},
"storage": {
"data_dir": str(self.storage.data_dir),
"vector_collection_name": self.storage.vector_collection_name,
"graph_file_name": self.storage.graph_file_name,
"enable_persistence": self.storage.enable_persistence,
"auto_save_interval": self.storage.auto_save_interval,
},
"decay_rates": self.decay_rates,
"embedding_model": self.embedding_model,
"embedding_dimension": self.embedding_dimension,
"enable_debug_logging": self.enable_debug_logging,
"enable_visualization": self.enable_visualization,
}
# 默认配置实例
DEFAULT_CONFIG = MemoryGraphConfig()