Files
Mofox-Core/src/chat/affinity_flow/chatter.py
Windpicker-owo a2225cad3a feat(affinity-flow): 重构消息处理以使用StreamContext对象
重构AFC消息处理系统,将基于字典的消息数据传递改为直接使用StreamContext对象。主要变更包括:

- 修改AFCManager的process_message方法为process_stream_context,直接接收StreamContext对象
- 在chatter中重构消息处理逻辑,直接从StreamContext获取未读和历史消息
- 移除批量消息处理功能,改为单次StreamContext处理
- 在message_manager中简化消息处理流程,直接传递StreamContext对象
- 添加未读消息清理机制,防止异常情况下消息一直未读

同时优化兴趣度评分系统的参数:
- 调整回复阈值从0.55到0.56
- 增加最大不回复次数从15到20
- 提升每次不回复的概率增加从0.01到0.02
- 优化提及奖励从3.0降到1.0
- 调整回复后的不回复计数减少从1到3

BREAKING CHANGE: AFCManager的process_message方法已重命名为process_stream_context,参数从message_data改为context对象
2025-09-18 22:27:29 +08:00

211 lines
6.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
亲和力聊天处理器
单个聊天流的处理器,负责处理特定聊天流的完整交互流程
"""
import time
import traceback
from datetime import datetime
from typing import Dict
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.planner_actions.planner import ActionPlanner
from src.plugin_system.base.component_types import ChatMode
from src.common.logger import get_logger
logger = get_logger("affinity_chatter")
class AffinityFlowChatter:
"""单个亲和力聊天处理器"""
def __init__(self, stream_id: str, planner: ActionPlanner, action_manager: ActionManager):
"""
初始化亲和力聊天处理器
Args:
stream_id: 聊天流ID
planner: 动作规划器
action_manager: 动作管理器
"""
self.stream_id = stream_id
self.planner = planner
self.action_manager = action_manager
# 处理器统计
self.stats = {
"messages_processed": 0,
"plans_created": 0,
"actions_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
}
self.last_activity_time = time.time()
async def process_stream_context(self, context) -> Dict[str, any]:
"""
处理StreamContext对象
Args:
context: StreamContext对象包含聊天流的所有消息信息
Returns:
处理结果字典
"""
try:
# 获取未读消息和历史消息
unread_messages = context.get_unread_messages()
history_messages = context.get_history_messages()
# 准备消息数据
message_data = {
"unread_messages": unread_messages,
"history_messages": history_messages
}
# 使用增强版规划器处理消息
actions, target_message = await self.planner.plan(
mode=ChatMode.FOCUS,
message_data=message_data
)
self.stats["plans_created"] += 1
# 执行动作(如果规划器返回了动作)
execution_result = {"executed_count": len(actions) if actions else 0}
if actions:
# 这里可以添加额外的动作执行逻辑
logger.debug(f"聊天流 {self.stream_id} 生成了 {len(actions)} 个动作")
# 更新统计
self.stats["messages_processed"] += 1
self.stats["actions_executed"] += execution_result.get("executed_count", 0)
self.stats["successful_executions"] += 1
self.last_activity_time = time.time()
result = {
"success": True,
"stream_id": self.stream_id,
"plan_created": True,
"actions_count": len(actions) if actions else 0,
"has_target_message": target_message is not None,
"unread_messages_processed": len(unread_messages),
**execution_result,
}
logger.info(f"聊天流 {self.stream_id} StreamContext处理成功: 动作数={result['actions_count']}, 未读消息={result['unread_messages_processed']}")
return result
except Exception as e:
logger.error(f"亲和力聊天处理器 {self.stream_id} 处理StreamContext时出错: {e}\n{traceback.format_exc()}")
self.stats["failed_executions"] += 1
self.last_activity_time = time.time()
return {
"success": False,
"stream_id": self.stream_id,
"error_message": str(e),
"executed_count": 0,
}
def get_stats(self) -> Dict[str, any]:
"""
获取处理器统计信息
Returns:
统计信息字典
"""
return self.stats.copy()
def get_planner_stats(self) -> Dict[str, any]:
"""
获取规划器统计信息
Returns:
规划器统计信息字典
"""
return self.planner.get_planner_stats()
def get_interest_scoring_stats(self) -> Dict[str, any]:
"""
获取兴趣度评分统计信息
Returns:
兴趣度评分统计信息字典
"""
return self.planner.get_interest_scoring_stats()
def get_relationship_stats(self) -> Dict[str, any]:
"""
获取用户关系统计信息
Returns:
用户关系统计信息字典
"""
return self.planner.get_relationship_stats()
def get_user_relationship(self, user_id: str) -> float:
"""
获取用户关系分
Args:
user_id: 用户ID
Returns:
用户关系分 (0.0-1.0)
"""
return self.planner.get_user_relationship(user_id)
def update_interest_keywords(self, new_keywords: dict):
"""
更新兴趣关键词
Args:
new_keywords: 新的兴趣关键词字典
"""
self.planner.update_interest_keywords(new_keywords)
logger.info(f"聊天流 {self.stream_id} 已更新兴趣关键词: {list(new_keywords.keys())}")
def reset_stats(self):
"""重置统计信息"""
self.stats = {
"messages_processed": 0,
"plans_created": 0,
"actions_executed": 0,
"successful_executions": 0,
"failed_executions": 0,
}
def is_active(self, max_inactive_minutes: int = 60) -> bool:
"""
检查处理器是否活跃
Args:
max_inactive_minutes: 最大不活跃分钟数
Returns:
是否活跃
"""
current_time = time.time()
max_inactive_seconds = max_inactive_minutes * 60
return (current_time - self.last_activity_time) < max_inactive_seconds
def get_activity_time(self) -> float:
"""
获取最后活动时间
Returns:
最后活动时间戳
"""
return self.last_activity_time
def __str__(self) -> str:
"""字符串表示"""
return f"AffinityFlowChatter(stream_id={self.stream_id}, messages={self.stats['messages_processed']})"
def __repr__(self) -> str:
"""详细字符串表示"""
return (f"AffinityFlowChatter(stream_id={self.stream_id}, "
f"messages_processed={self.stats['messages_processed']}, "
f"plans_created={self.stats['plans_created']}, "
f"last_activity={datetime.fromtimestamp(self.last_activity_time)})")