468 lines
19 KiB
Python
468 lines
19 KiB
Python
import time
|
||
import traceback
|
||
import json
|
||
import random
|
||
|
||
from typing import List, Dict, Any
|
||
from json_repair import repair_json
|
||
|
||
from src.common.logger import get_logger
|
||
from src.config.config import global_config, model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||
from src.person_info.person_info import get_person_info_manager
|
||
|
||
|
||
logger = get_logger("relationship_fetcher")
|
||
|
||
|
||
def init_real_time_info_prompts():
|
||
"""初始化实时信息提取相关的提示词"""
|
||
relationship_prompt = """
|
||
<聊天记录>
|
||
{chat_observe_info}
|
||
</聊天记录>
|
||
|
||
{name_block}
|
||
现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息:
|
||
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,你们之间的交流方式,最近发生的事等等。
|
||
2.请注意,请不要重复调取相同的信息,已经调取的信息如下:
|
||
{info_cache_block}
|
||
3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}}
|
||
|
||
请以json格式输出,例如:
|
||
|
||
{{
|
||
"info_type": "信息类型",
|
||
}}
|
||
|
||
请严格按照json输出格式,不要输出多余内容:
|
||
"""
|
||
Prompt(relationship_prompt, "real_time_info_identify_prompt")
|
||
|
||
fetch_info_prompt = """
|
||
|
||
{name_block}
|
||
以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解:
|
||
{person_impression_block}
|
||
{points_text_block}
|
||
|
||
请从中提取用户"{person_name}"的有关"{info_type}"信息
|
||
请以json格式输出,例如:
|
||
|
||
{{
|
||
{info_json_str}
|
||
}}
|
||
|
||
请严格按照json输出格式,不要输出多余内容:
|
||
"""
|
||
Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt")
|
||
|
||
|
||
class RelationshipFetcher:
|
||
def __init__(self, chat_id):
|
||
self.chat_id = chat_id
|
||
|
||
# 信息获取缓存:记录正在获取的信息请求
|
||
self.info_fetching_cache: List[Dict[str, Any]] = []
|
||
|
||
# 信息结果缓存:存储已获取的信息结果,带TTL
|
||
self.info_fetched_cache: Dict[str, Dict[str, Any]] = {}
|
||
# 结构:{person_id: {info_type: {"info": str, "ttl": int, "start_time": float, "person_name": str, "unknown": bool}}}
|
||
|
||
# LLM模型配置
|
||
self.llm_model = LLMRequest(
|
||
model_set=model_config.model_task_config.utils_small, request_type="relation.fetcher"
|
||
)
|
||
|
||
# 小模型用于即时信息提取
|
||
self.instant_llm_model = LLMRequest(
|
||
model_set=model_config.model_task_config.utils_small, request_type="relation.fetch"
|
||
)
|
||
|
||
name = get_chat_manager().get_stream_name(self.chat_id)
|
||
self.log_prefix = f"[{name}] 实时信息"
|
||
|
||
def _cleanup_expired_cache(self):
|
||
"""清理过期的信息缓存"""
|
||
for person_id in list(self.info_fetched_cache.keys()):
|
||
for info_type in list(self.info_fetched_cache[person_id].keys()):
|
||
self.info_fetched_cache[person_id][info_type]["ttl"] -= 1
|
||
if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0:
|
||
del self.info_fetched_cache[person_id][info_type]
|
||
if not self.info_fetched_cache[person_id]:
|
||
del self.info_fetched_cache[person_id]
|
||
|
||
async def build_relation_info(self, person_id, points_num=3):
|
||
# 清理过期的信息缓存
|
||
self._cleanup_expired_cache()
|
||
|
||
person_info_manager = get_person_info_manager()
|
||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||
attitude_to_me = await person_info_manager.get_value(person_id, "attitude_to_me")
|
||
neuroticism = await person_info_manager.get_value(person_id, "neuroticism")
|
||
conscientiousness = await person_info_manager.get_value(person_id, "conscientiousness")
|
||
likeness = await person_info_manager.get_value(person_id, "likeness")
|
||
|
||
nickname_str = await person_info_manager.get_value(person_id, "nickname")
|
||
platform = await person_info_manager.get_value(person_id, "platform")
|
||
|
||
current_points = await person_info_manager.get_value(person_id, "points") or []
|
||
|
||
# 按时间排序forgotten_points
|
||
current_points.sort(key=lambda x: x[2])
|
||
# 按权重加权随机抽取最多3个不重复的points,point[1]的值在1-10之间,权重越高被抽到概率越大
|
||
if len(current_points) > points_num:
|
||
# point[1] 取值范围1-10,直接作为权重
|
||
weights = [max(1, min(10, int(point[1]))) for point in current_points]
|
||
# 使用加权采样不放回,保证不重复
|
||
indices = list(range(len(current_points)))
|
||
points = []
|
||
for _ in range(points_num):
|
||
if not indices:
|
||
break
|
||
sub_weights = [weights[i] for i in indices]
|
||
chosen_idx = random.choices(indices, weights=sub_weights, k=1)[0]
|
||
points.append(current_points[chosen_idx])
|
||
indices.remove(chosen_idx)
|
||
else:
|
||
points = current_points
|
||
|
||
# 构建points文本
|
||
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
|
||
|
||
nickname_str = ""
|
||
if person_name != nickname_str:
|
||
nickname_str = f"(ta在{platform}上的昵称是{nickname_str})"
|
||
|
||
relation_info = ""
|
||
|
||
attitude_info = ""
|
||
attitude_parts = attitude_to_me.split(',')
|
||
current_attitude_score = float(attitude_parts[0]) if len(attitude_parts) > 0 else 0.0
|
||
total_confidence = float(attitude_parts[1]) if len(attitude_parts) > 1 else 1.0
|
||
if attitude_to_me:
|
||
if current_attitude_score > 8:
|
||
attitude_info = f"{person_name}对你的态度十分好,"
|
||
elif current_attitude_score > 5:
|
||
attitude_info = f"{person_name}对你的态度较好,"
|
||
|
||
|
||
if current_attitude_score < -8:
|
||
attitude_info = f"{person_name}对你的态度十分恶劣,"
|
||
elif current_attitude_score < -4:
|
||
attitude_info = f"{person_name}对你的态度不好,"
|
||
elif current_attitude_score < 0:
|
||
attitude_info = f"{person_name}对你的态度一般,"
|
||
|
||
neuroticism_info = ""
|
||
neuroticism_parts = neuroticism.split(',')
|
||
current_neuroticism_score = float(neuroticism_parts[0]) if len(neuroticism_parts) > 0 else 0.0
|
||
total_confidence = float(neuroticism_parts[1]) if len(neuroticism_parts) > 1 else 1.0
|
||
if neuroticism:
|
||
if current_neuroticism_score > 8:
|
||
neuroticism_info = f"{person_name}的情绪十分活跃,容易情绪化,"
|
||
elif current_neuroticism_score > 6:
|
||
neuroticism_info = f"{person_name}的情绪比较活跃,"
|
||
elif current_neuroticism_score > 4:
|
||
neuroticism_info = ""
|
||
elif current_neuroticism_score > 2:
|
||
neuroticism_info = f"{person_name}的情绪比较稳定,"
|
||
else:
|
||
neuroticism_info = f"{person_name}的情绪非常稳定,毫无波动"
|
||
|
||
if points_text:
|
||
points_info = f"你还记得ta最近做的事:{points_text}"
|
||
|
||
|
||
|
||
relation_info = f"{person_name}:{nickname_str}{attitude_info}{neuroticism_info}{points_info}"
|
||
|
||
|
||
return relation_info
|
||
|
||
async def _build_fetch_query(self, person_id, target_message, chat_history):
|
||
nickname_str = ",".join(global_config.bot.alias_names)
|
||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||
person_info_manager = get_person_info_manager()
|
||
person_name: str = await person_info_manager.get_value(person_id, "person_name") # type: ignore
|
||
|
||
info_cache_block = self._build_info_cache_block()
|
||
|
||
prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format(
|
||
chat_observe_info=chat_history,
|
||
name_block=name_block,
|
||
info_cache_block=info_cache_block,
|
||
person_name=person_name,
|
||
target_message=target_message,
|
||
)
|
||
|
||
try:
|
||
logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n")
|
||
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
|
||
|
||
if content:
|
||
content_json = json.loads(repair_json(content))
|
||
|
||
# 检查是否返回了不需要查询的标志
|
||
if "none" in content_json:
|
||
logger.debug(f"{self.log_prefix} LLM判断当前不需要查询任何信息:{content_json.get('none', '')}")
|
||
return None
|
||
|
||
if info_type := content_json.get("info_type"):
|
||
# 记录信息获取请求
|
||
self.info_fetching_cache.append(
|
||
{
|
||
"person_id": get_person_info_manager().get_person_id_by_person_name(person_name),
|
||
"person_name": person_name,
|
||
"info_type": info_type,
|
||
"start_time": time.time(),
|
||
"forget": False,
|
||
}
|
||
)
|
||
|
||
# 限制缓存大小
|
||
if len(self.info_fetching_cache) > 10:
|
||
self.info_fetching_cache.pop(0)
|
||
|
||
logger.info(f"{self.log_prefix} 识别到需要调取用户 {person_name} 的[{info_type}]信息")
|
||
return info_type
|
||
else:
|
||
logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 执行信息识别LLM请求时出错: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
return None
|
||
|
||
def _build_info_cache_block(self) -> str:
|
||
"""构建已获取信息的缓存块"""
|
||
info_cache_block = ""
|
||
if self.info_fetching_cache:
|
||
# 对于每个(person_id, info_type)组合,只保留最新的记录
|
||
latest_records = {}
|
||
for info_fetching in self.info_fetching_cache:
|
||
key = (info_fetching["person_id"], info_fetching["info_type"])
|
||
if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]:
|
||
latest_records[key] = info_fetching
|
||
|
||
# 按时间排序并生成显示文本
|
||
sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"])
|
||
for info_fetching in sorted_records:
|
||
info_cache_block += (
|
||
f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n"
|
||
)
|
||
return info_cache_block
|
||
|
||
async def _extract_single_info(self, person_id: str, info_type: str, person_name: str):
|
||
"""提取单个信息类型
|
||
|
||
Args:
|
||
person_id: 用户ID
|
||
info_type: 信息类型
|
||
person_name: 用户名
|
||
"""
|
||
start_time = time.time()
|
||
person_info_manager = get_person_info_manager()
|
||
|
||
# 首先检查 info_list 缓存
|
||
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
||
cached_info = None
|
||
|
||
# 查找对应的 info_type
|
||
for info_item in info_list:
|
||
if info_item.get("info_type") == info_type:
|
||
cached_info = info_item.get("info_content")
|
||
logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name} 的 {info_type} 信息: {cached_info}")
|
||
break
|
||
|
||
# 如果缓存中有信息,直接使用
|
||
if cached_info:
|
||
if person_id not in self.info_fetched_cache:
|
||
self.info_fetched_cache[person_id] = {}
|
||
|
||
self.info_fetched_cache[person_id][info_type] = {
|
||
"info": cached_info,
|
||
"ttl": 2,
|
||
"start_time": start_time,
|
||
"person_name": person_name,
|
||
"unknown": cached_info == "none",
|
||
}
|
||
logger.info(f"{self.log_prefix} 记得 {person_name} 的 {info_type}: {cached_info}")
|
||
return
|
||
|
||
# 如果缓存中没有,尝试从用户档案中提取
|
||
try:
|
||
person_impression = await person_info_manager.get_value(person_id, "impression")
|
||
points = await person_info_manager.get_value(person_id, "points")
|
||
|
||
# 构建印象信息块
|
||
if person_impression:
|
||
person_impression_block = (
|
||
f"<对{person_name}的总体了解>\n{person_impression}\n</对{person_name}的总体了解>"
|
||
)
|
||
else:
|
||
person_impression_block = ""
|
||
|
||
# 构建要点信息块
|
||
if points:
|
||
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
|
||
points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n</对{person_name}的近期了解>"
|
||
else:
|
||
points_text_block = ""
|
||
|
||
# 如果完全没有用户信息
|
||
if not points_text_block and not person_impression_block:
|
||
if person_id not in self.info_fetched_cache:
|
||
self.info_fetched_cache[person_id] = {}
|
||
self.info_fetched_cache[person_id][info_type] = {
|
||
"info": "none",
|
||
"ttl": 2,
|
||
"start_time": start_time,
|
||
"person_name": person_name,
|
||
"unknown": True,
|
||
}
|
||
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
|
||
await self._save_info_to_cache(person_id, info_type, "none")
|
||
return
|
||
|
||
# 使用LLM提取信息
|
||
nickname_str = ",".join(global_config.bot.alias_names)
|
||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||
|
||
prompt = (await global_prompt_manager.get_prompt_async("real_time_fetch_person_info_prompt")).format(
|
||
name_block=name_block,
|
||
info_type=info_type,
|
||
person_impression_block=person_impression_block,
|
||
person_name=person_name,
|
||
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
|
||
points_text_block=points_text_block,
|
||
)
|
||
|
||
# 使用小模型进行即时提取
|
||
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
|
||
|
||
if content:
|
||
content_json = json.loads(repair_json(content))
|
||
if info_type in content_json:
|
||
info_content = content_json[info_type]
|
||
is_unknown = info_content == "none" or not info_content
|
||
|
||
# 保存到运行时缓存
|
||
if person_id not in self.info_fetched_cache:
|
||
self.info_fetched_cache[person_id] = {}
|
||
self.info_fetched_cache[person_id][info_type] = {
|
||
"info": "unknown" if is_unknown else info_content,
|
||
"ttl": 3,
|
||
"start_time": start_time,
|
||
"person_name": person_name,
|
||
"unknown": is_unknown,
|
||
}
|
||
|
||
# 保存到持久化缓存 (info_list)
|
||
await self._save_info_to_cache(person_id, info_type, "none" if is_unknown else info_content)
|
||
|
||
if not is_unknown:
|
||
logger.info(f"{self.log_prefix} 思考得到,{person_name} 的 {info_type}: {info_content}")
|
||
else:
|
||
logger.info(f"{self.log_prefix} 思考了也不知道{person_name} 的 {info_type} 信息")
|
||
else:
|
||
logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name} 的 {info_type} 信息失败。")
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
|
||
# sourcery skip: use-next
|
||
"""将提取到的信息保存到 person_info 的 info_list 字段中
|
||
|
||
Args:
|
||
person_id: 用户ID
|
||
info_type: 信息类型
|
||
info_content: 信息内容
|
||
"""
|
||
try:
|
||
person_info_manager = get_person_info_manager()
|
||
|
||
# 获取现有的 info_list
|
||
info_list = await person_info_manager.get_value(person_id, "info_list") or []
|
||
|
||
# 查找是否已存在相同 info_type 的记录
|
||
found_index = -1
|
||
for i, info_item in enumerate(info_list):
|
||
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
|
||
found_index = i
|
||
break
|
||
|
||
# 创建新的信息记录
|
||
new_info_item = {
|
||
"info_type": info_type,
|
||
"info_content": info_content,
|
||
}
|
||
|
||
if found_index >= 0:
|
||
# 更新现有记录
|
||
info_list[found_index] = new_info_item
|
||
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id} 的 {info_type} 信息缓存")
|
||
else:
|
||
# 添加新记录
|
||
info_list.append(new_info_item)
|
||
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id} 的 {info_type} 信息缓存")
|
||
|
||
# 保存更新后的 info_list
|
||
await person_info_manager.update_one_field(person_id, "info_list", info_list)
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
|
||
class RelationshipFetcherManager:
|
||
"""关系提取器管理器
|
||
|
||
管理不同 chat_id 的 RelationshipFetcher 实例
|
||
"""
|
||
|
||
def __init__(self):
|
||
self._fetchers: Dict[str, RelationshipFetcher] = {}
|
||
|
||
def get_fetcher(self, chat_id: str) -> RelationshipFetcher:
|
||
"""获取或创建指定 chat_id 的 RelationshipFetcher
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
|
||
Returns:
|
||
RelationshipFetcher: 关系提取器实例
|
||
"""
|
||
if chat_id not in self._fetchers:
|
||
self._fetchers[chat_id] = RelationshipFetcher(chat_id)
|
||
return self._fetchers[chat_id]
|
||
|
||
def remove_fetcher(self, chat_id: str):
|
||
"""移除指定 chat_id 的 RelationshipFetcher
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
"""
|
||
if chat_id in self._fetchers:
|
||
del self._fetchers[chat_id]
|
||
|
||
def clear_all(self):
|
||
"""清空所有 RelationshipFetcher"""
|
||
self._fetchers.clear()
|
||
|
||
def get_active_chat_ids(self) -> List[str]:
|
||
"""获取所有活跃的 chat_id 列表"""
|
||
return list(self._fetchers.keys())
|
||
|
||
|
||
# 全局管理器实例
|
||
relationship_fetcher_manager = RelationshipFetcherManager()
|
||
|
||
|
||
init_real_time_info_prompts()
|