Files
Mofox-Core/src/chat/planner_actions/action_modifier.py
tt-P607 98a6cba33e feat(actions): 支持同时进行回复与其他动作
重构了动作执行流程,以支持更丰富的多动作组合,例如在发送文本回复的同时发送一个表情。

主要变更:
- **执行流程**: 在 `CycleProcessor` 中,将动作分为“回复”和“其他”两类。系统会先串行执行回复动作,再并行执行所有其他动作,确保了核心回复的优先性。
- **规划逻辑**: 在 `Planner` 中优化了提示词,并增加后处理步骤,以鼓励并确保在回复时触发补充性动作(如100%概率的emoji)。
- **emoji动作**: 重构了表情选择逻辑,现在会评估所有可用的表情,而不仅仅是随机抽样,提高了选择的准确性。
- **修复**: 修复了 `ActionModifier` 中随机激活概率为100%的动作可能不触发的bug。
2025-09-09 15:37:49 +08:00

474 lines
19 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import random
import asyncio
import hashlib
import time
from typing import List, Any, Dict, TYPE_CHECKING, Tuple
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.chat.message_receive.chat_stream import get_chat_manager, ChatMessageContext
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, build_readable_messages
from src.plugin_system.base.component_types import ActionInfo, ActionActivationType
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
if TYPE_CHECKING:
from src.chat.message_receive.chat_stream import ChatStream
logger = get_logger("action_manager")
class ActionModifier:
"""动作处理器
用于处理Observation对象和根据激活类型处理actions。
集成了原有的modify_actions功能和新的激活类型处理功能。
支持并行判定和智能缓存优化。
"""
def __init__(self, action_manager: ActionManager, chat_id: str):
"""初始化动作处理器"""
self.chat_id = chat_id
self.chat_stream: ChatStream = get_chat_manager().get_stream(self.chat_id) # type: ignore
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]"
self.action_manager = action_manager
# 用于LLM判定的小模型
self.llm_judge = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="action.judge")
# 缓存相关属性
self._llm_judge_cache = {} # 缓存LLM判定结果
self._cache_expiry_time = 30 # 缓存过期时间(秒)
self._last_context_hash = None # 上次上下文的哈希值
async def modify_actions(
self,
message_content: str = "",
): # sourcery skip: use-named-expression
"""
动作修改流程,整合传统观察处理和新的激活类型判定
这个方法处理完整的动作管理流程:
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
2. 基于激活类型的智能动作判定,最终确定可用动作集
处理后ActionManager 将包含最终的可用动作集,供规划器直接使用
"""
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
removals_s1: List[Tuple[str, str]] = []
removals_s2: List[Tuple[str, str]] = []
removals_s3: List[Tuple[str, str]] = []
self.action_manager.restore_actions()
all_actions = self.action_manager.get_using_actions()
# === 第0阶段根据聊天类型过滤动作 ===
from src.plugin_system.base.component_types import ChatType
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
from src.chat.utils.utils import get_chat_type_and_target_info
# 获取聊天类型
is_group_chat, _ = get_chat_type_and_target_info(self.chat_id)
all_registered_actions = component_registry.get_components_by_type(ComponentType.ACTION)
chat_type_removals = []
for action_name in list(all_actions.keys()):
if action_name in all_registered_actions:
action_info = all_registered_actions[action_name]
chat_type_allow = getattr(action_info, "chat_type_allow", ChatType.ALL)
# 检查是否符合聊天类型限制
should_keep = (
chat_type_allow == ChatType.ALL
or (chat_type_allow == ChatType.GROUP and is_group_chat)
or (chat_type_allow == ChatType.PRIVATE and not is_group_chat)
)
if not should_keep:
chat_type_removals.append((action_name, f"不支持{'群聊' if is_group_chat else '私聊'}"))
self.action_manager.remove_action_from_using(action_name)
if chat_type_removals:
logger.info(f"{self.log_prefix} 第0阶段根据聊天类型过滤 - 移除了 {len(chat_type_removals)} 个动作")
for action_name, reason in chat_type_removals:
logger.debug(f"{self.log_prefix} - 移除 {action_name}: {reason}")
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_stream.stream_id,
timestamp=time.time(),
limit=min(int(global_config.chat.max_context_size * 0.33), 10),
)
chat_content = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
if message_content:
chat_content = chat_content + "\n" + f"现在,最新的消息是:{message_content}"
# === 第一阶段:去除用户自行禁用的 ===
disabled_actions = global_announcement_manager.get_disabled_chat_actions(self.chat_id)
if disabled_actions:
for disabled_action_name in disabled_actions:
if disabled_action_name in all_actions:
removals_s1.append((disabled_action_name, "用户自行禁用"))
self.action_manager.remove_action_from_using(disabled_action_name)
logger.debug(f"{self.log_prefix}阶段一移除动作: {disabled_action_name},原因: 用户自行禁用")
# === 第二阶段:检查动作的关联类型 ===
chat_context = self.chat_stream.context
type_mismatched_actions = self._check_action_associated_types(all_actions, chat_context)
if type_mismatched_actions:
removals_s2.extend(type_mismatched_actions)
# 应用第二阶段的移除
for action_name, reason in removals_s2:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段二移除动作: {action_name},原因: {reason}")
# === 第三阶段:激活类型判定 ===
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集(经过第一阶段处理)
current_using_actions = self.action_manager.get_using_actions()
# 获取因激活类型判定而需要移除的动作
removals_s3 = await self._get_deactivated_actions_by_type(
current_using_actions,
chat_content,
)
# 应用第三阶段的移除
for action_name, reason in removals_s3:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段三移除动作: {action_name},原因: {reason}")
# === 统一日志记录 ===
all_removals = chat_type_removals + removals_s1 + removals_s2 + removals_s3
removals_summary: str = ""
if all_removals:
removals_summary = " | ".join([f"{name}({reason})" for name, reason in all_removals])
available_actions = list(self.action_manager.get_using_actions().keys())
available_actions_text = "".join(available_actions) if available_actions else ""
logger.info(f"{self.log_prefix} 当前可用动作: {available_actions_text}||移除: {removals_summary}")
def _check_action_associated_types(self, all_actions: Dict[str, ActionInfo], chat_context: ChatMessageContext):
type_mismatched_actions: List[Tuple[str, str]] = []
for action_name, action_info in all_actions.items():
if action_info.associated_types and not chat_context.check_types(action_info.associated_types):
associated_types_str = ", ".join(action_info.associated_types)
reason = f"适配器不支持(需要: {associated_types_str}"
type_mismatched_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}决定移除动作: {action_name},原因: {reason}")
return type_mismatched_actions
async def _get_deactivated_actions_by_type(
self,
actions_with_info: Dict[str, ActionInfo],
chat_content: str = "",
) -> List[tuple[str, str]]:
"""
根据激活类型过滤,返回需要停用的动作列表及原因
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
List[Tuple[str, str]]: 需要停用的 (action_name, reason) 元组列表
"""
deactivated_actions = []
# 分类处理不同激活类型的actions
llm_judge_actions = {}
actions_to_check = list(actions_with_info.items())
random.shuffle(actions_to_check)
for action_name, action_info in actions_to_check:
activation_type = action_info.activation_type or action_info.focus_activation_type
if activation_type == ActionActivationType.ALWAYS:
continue # 总是激活,无需处理
elif activation_type == ActionActivationType.RANDOM:
probability = action_info.random_activation_probability
if probability >= 1.0:
continue # 概率为100%或更高,直接激活
if random.random() > probability:
reason = f"RANDOM类型未触发概率{probability}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == ActionActivationType.KEYWORD:
if not self._check_keyword_activation(action_name, action_info, chat_content):
keywords = action_info.activation_keywords
reason = f"关键词未匹配(关键词: {keywords}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == ActionActivationType.LLM_JUDGE:
llm_judge_actions[action_name] = action_info
elif activation_type == ActionActivationType.NEVER:
reason = "激活类型为never"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: 激活类型为never")
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 并行处理LLM_JUDGE类型
if llm_judge_actions:
llm_results = await self._process_llm_judge_actions_parallel(
llm_judge_actions,
chat_content,
)
for action_name, should_activate in llm_results.items():
if not should_activate:
reason = "LLM判定未激活"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
return deactivated_actions
def _generate_context_hash(self, chat_content: str) -> str:
"""生成上下文的哈希值用于缓存"""
context_content = f"{chat_content}"
return hashlib.md5(context_content.encode("utf-8")).hexdigest()
async def _process_llm_judge_actions_parallel(
self,
llm_judge_actions: Dict[str, Any],
chat_content: str = "",
) -> Dict[str, bool]:
"""
并行处理LLM判定actions支持智能缓存
Args:
llm_judge_actions: 需要LLM判定的actions
chat_content: 聊天内容
Returns:
Dict[str, bool]: action名称到激活结果的映射
"""
# 生成当前上下文的哈希值
current_context_hash = self._generate_context_hash(chat_content)
current_time = time.time()
results = {}
tasks_to_run = {}
# 检查缓存
for action_name, action_info in llm_judge_actions.items():
cache_key = f"{action_name}_{current_context_hash}"
# 检查是否有有效的缓存
if (
cache_key in self._llm_judge_cache
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
):
results[action_name] = self._llm_judge_cache[cache_key]["result"]
logger.debug(
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
)
else:
# 需要进行LLM判定
tasks_to_run[action_name] = action_info
# 如果有需要运行的任务,并行执行
if tasks_to_run:
logger.debug(f"{self.log_prefix}并行执行LLM判定任务数: {len(tasks_to_run)}")
# 创建并行任务
tasks = []
task_names = []
for action_name, action_info in tasks_to_run.items():
task = self._llm_judge_action(
action_name,
action_info,
chat_content,
)
tasks.append(task)
task_names.append(action_name)
# 并行执行所有任务
try:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for action_name, result in zip(task_names, task_results, strict=False):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False
else:
results[action_name] = result
# 更新缓存
cache_key = f"{action_name}_{current_context_hash}"
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
logger.debug(f"{self.log_prefix}并行LLM判定完成耗时: {time.time() - current_time:.2f}s")
except Exception as e:
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
# 如果并行执行失败为所有任务返回False
for action_name in tasks_to_run:
results[action_name] = False
# 清理过期缓存
self._cleanup_expired_cache(current_time)
return results
def _cleanup_expired_cache(self, current_time: float):
"""清理过期的缓存条目"""
expired_keys = []
expired_keys.extend(
cache_key
for cache_key, cache_data in self._llm_judge_cache.items()
if current_time - cache_data["timestamp"] > self._cache_expiry_time
)
for key in expired_keys:
del self._llm_judge_cache[key]
if expired_keys:
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
async def _llm_judge_action(
self,
action_name: str,
action_info: ActionInfo,
chat_content: str = "",
) -> bool: # sourcery skip: move-assign-in-block, use-named-expression
"""
使用LLM判定是否应该激活某个action
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
try:
# 构建判定提示词
action_description = action_info.description
action_require = action_info.action_require
custom_prompt = action_info.llm_judge_prompt
# 构建基础判定提示词
base_prompt = f"""
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
动作描述:{action_description}
动作使用场景:
"""
for req in action_require:
base_prompt += f"- {req}\n"
if custom_prompt:
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
if chat_content:
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
base_prompt += """
请根据以上信息判断是否应该激活这个动作。
只需要回答"""",不要有其他内容。
"""
# 调用LLM进行判定
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
# 解析响应
response = response.strip().lower()
# print(base_prompt)
# print(f"LLM判定动作 {action_name}:响应='{response}'")
should_activate = "" in response or "yes" in response or "true" in response
logger.debug(
f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}"
)
return should_activate
except Exception as e:
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
# 出错时默认不激活
return False
def _check_keyword_activation(
self,
action_name: str,
action_info: ActionInfo,
chat_content: str = "",
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.activation_keywords
case_sensitive = action_info.keyword_case_sensitive
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 构建检索文本
search_text = ""
if chat_content:
search_text += chat_content
# if chat_context:
# search_text += f" {chat_context}"
# if extra_context:
# search_text += f" {extra_context}"
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
if matched_keywords:
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False