212 lines
7.4 KiB
Python
212 lines
7.4 KiB
Python
import time
|
|
import random
|
|
import asyncio
|
|
from typing import Dict, Any, Tuple
|
|
|
|
from src.common.logger import get_logger
|
|
from src.plugin_system.apis import send_api, message_api, database_api
|
|
from src.person_info.person_info import get_person_info_manager
|
|
from .hfc_context import HfcContext
|
|
|
|
# 导入反注入系统
|
|
|
|
# 日志记录器
|
|
logger = get_logger("hfc")
|
|
anti_injector_logger = get_logger("anti_injector")
|
|
|
|
|
|
class ResponseHandler:
|
|
"""
|
|
响应处理器类,负责生成和发送机器人的回复。
|
|
"""
|
|
def __init__(self, context: HfcContext):
|
|
"""
|
|
初始化响应处理器
|
|
|
|
Args:
|
|
context: HFC聊天上下文对象
|
|
|
|
功能说明:
|
|
- 负责生成和发送机器人的回复
|
|
- 处理回复的格式化和发送逻辑
|
|
- 管理回复状态和日志记录
|
|
"""
|
|
self.context = context
|
|
|
|
async def generate_and_send_reply(
|
|
self,
|
|
response_set,
|
|
reply_to_str,
|
|
loop_start_time,
|
|
action_message,
|
|
cycle_timers: Dict[str, float],
|
|
thinking_id,
|
|
plan_result,
|
|
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
|
|
"""
|
|
生成并发送回复的主方法
|
|
|
|
Args:
|
|
response_set: 生成的回复内容集合
|
|
reply_to_str: 回复目标字符串
|
|
loop_start_time: 循环开始时间
|
|
action_message: 动作消息数据
|
|
cycle_timers: 循环计时器
|
|
thinking_id: 思考ID
|
|
plan_result: 规划结果
|
|
|
|
Returns:
|
|
tuple: (循环信息, 回复文本, 计时器信息)
|
|
|
|
功能说明:
|
|
- 发送生成的回复内容
|
|
- 存储动作信息到数据库
|
|
- 构建并返回完整的循环信息
|
|
- 用于上级方法的状态跟踪
|
|
"""
|
|
# 发送回复
|
|
reply_text, sent_messages = await self.send_response(response_set, loop_start_time, action_message)
|
|
if sent_messages:
|
|
# 异步处理错别字修正
|
|
asyncio.create_task(self.handle_typo_correction(sent_messages))
|
|
|
|
person_info_manager = get_person_info_manager()
|
|
|
|
# 获取平台信息
|
|
platform = "default"
|
|
if self.context.chat_stream:
|
|
platform = (
|
|
action_message.get("chat_info_platform")
|
|
or action_message.get("user_platform")
|
|
or self.context.chat_stream.platform
|
|
)
|
|
|
|
# 获取用户信息并生成回复提示
|
|
user_id = action_message.get("user_id", "")
|
|
person_id = person_info_manager.get_person_id(platform, user_id)
|
|
person_name = await person_info_manager.get_value(person_id, "person_name")
|
|
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
|
|
|
|
# 存储动作信息到数据库
|
|
await database_api.store_action_info(
|
|
chat_stream=self.context.chat_stream,
|
|
action_build_into_prompt=False,
|
|
action_prompt_display=action_prompt_display,
|
|
action_done=True,
|
|
thinking_id=thinking_id,
|
|
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
|
|
action_name="reply",
|
|
)
|
|
|
|
# 构建循环信息
|
|
loop_info: Dict[str, Any] = {
|
|
"loop_plan_info": {
|
|
"action_result": plan_result.get("action_result", {}),
|
|
},
|
|
"loop_action_info": {
|
|
"action_taken": True,
|
|
"reply_text": reply_text,
|
|
"command": "",
|
|
"taken_time": time.time(),
|
|
},
|
|
}
|
|
|
|
return loop_info, reply_text, cycle_timers
|
|
|
|
async def send_response(self, reply_set, thinking_start_time, message_data) -> tuple[str, list[dict[str, str]]]:
|
|
"""
|
|
发送回复内容的具体实现
|
|
|
|
Args:
|
|
reply_set: 回复内容集合,包含多个回复段
|
|
thinking_start_time: 思考开始时间
|
|
message_data: 消息数据
|
|
|
|
Returns:
|
|
tuple[str, list[dict[str, str]]]: (完整的回复文本, 已发送消息列表)
|
|
|
|
功能说明:
|
|
- 检查是否有新消息需要回复
|
|
- 处理主动思考的"沉默"决定
|
|
- 根据消息数量决定是否添加回复引用
|
|
- 逐段发送回复内容,支持打字效果
|
|
- 正确处理元组格式的回复段
|
|
"""
|
|
current_time = time.time()
|
|
# 计算新消息数量
|
|
new_message_count = message_api.count_new_messages(
|
|
chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time
|
|
)
|
|
|
|
# 根据新消息数量决定是否需要引用回复
|
|
need_reply = new_message_count >= random.randint(2, 4)
|
|
|
|
reply_text = ""
|
|
sent_messages = []
|
|
is_proactive_thinking = message_data.get("message_type") == "proactive_thinking"
|
|
|
|
first_replied = False
|
|
for reply_seg in reply_set:
|
|
logger.debug(f"Processing reply_seg type: {type(reply_seg)}, content: {reply_seg}")
|
|
|
|
# 提取回复内容
|
|
if reply_seg["type"] == "typo":
|
|
data = reply_seg["typo"]
|
|
else:
|
|
data = reply_seg["content"]
|
|
|
|
if isinstance(data, list):
|
|
data = "".join(map(str, data))
|
|
reply_text += data
|
|
|
|
# 如果是主动思考且内容为“沉默”,则不发送
|
|
if is_proactive_thinking and data.strip() == "沉默":
|
|
logger.info(f"{self.context.log_prefix} 主动思考决定保持沉默,不发送消息")
|
|
continue
|
|
|
|
# 发送第一段回复
|
|
if not first_replied:
|
|
sent_message = await send_api.text_to_stream(
|
|
text=data,
|
|
stream_id=self.context.stream_id,
|
|
reply_to_message=message_data,
|
|
set_reply=need_reply,
|
|
typing=False,
|
|
)
|
|
first_replied = True
|
|
else:
|
|
# 发送后续回复
|
|
sent_message = await send_api.text_to_stream(
|
|
text=data,
|
|
stream_id=self.context.stream_id,
|
|
reply_to_message=None,
|
|
set_reply=False,
|
|
typing=True,
|
|
)
|
|
# 记录已发送的错别字消息
|
|
if sent_message and reply_seg["type"] == "typo":
|
|
sent_messages.append(
|
|
{
|
|
"type": "typo",
|
|
"message_id": sent_message,
|
|
"original_message": message_data,
|
|
"correction": reply_seg["correction"],
|
|
}
|
|
)
|
|
|
|
return reply_text, sent_messages
|
|
|
|
async def handle_typo_correction(self, sent_messages: list[dict[str, Any]]):
|
|
"""处理错别字修正"""
|
|
for msg in sent_messages:
|
|
if msg["type"] == "typo":
|
|
# 随机等待一段时间
|
|
await asyncio.sleep(random.uniform(2, 4))
|
|
# 撤回消息
|
|
recalled = await send_api.recall_message(str(msg["message_id"]), self.context.stream_id)
|
|
if recalled:
|
|
# 发送修正后的消息
|
|
await send_api.text_to_stream(
|
|
str(msg["correction"]), self.context.stream_id, reply_to_message=msg["original_message"]
|
|
)
|