Files
Mofox-Core/src/heart_flow/sub_heartflow.py
2025-04-17 23:43:41 +08:00

492 lines
23 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from .observation import Observation, ChattingObservation
import asyncio
from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
from typing import Optional
from datetime import datetime
import traceback
from src.plugins.chat.message import UserInfo
from src.plugins.chat.utils import parse_text_timestamps
# from src.plugins.schedule.schedule_generator import bot_schedule
# from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
# from src.plugins.chat.utils import get_embedding
# from src.common.database import db
# from typing import Union
from src.individuality.individuality import Individuality
import random
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import get_recent_group_speaker
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
subheartflow_config = LogConfig(
# 使用海马体专用样式
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("subheartflow", config=subheartflow_config)
def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += "{extra_info}\n"
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是{current_thinking_info}。可以适当转换话题\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "你现在{mood_info}\n"
# prompt += "你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白"
prompt += "思考时可以想想如何对群聊内容进行回复。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_before")
prompt = ""
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
Prompt(prompt, "sub_heartflow_prompt_after")
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
# prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要思考太多,不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_after_observe")
class CurrentState:
def __init__(self):
self.willing = 0
self.current_state_info = ""
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
def update_current_state_info(self):
self.current_state_info = self.mood_manager.get_current_mood()
class SubHeartflow:
def __init__(self, subheartflow_id):
self.subheartflow_id = subheartflow_id
self.current_mind = ""
self.past_mind = []
self.current_state: CurrentState = CurrentState()
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=600,
request_type="sub_heart_flow",
)
self.main_heartflow_info = ""
self.last_reply_time = time.time()
self.last_active_time = time.time() # 添加最后激活时间
if not self.current_mind:
self.current_mind = "你什么也没想"
self.is_active = False
self.observations: list[ChattingObservation] = []
self.running_knowledges = []
self._thinking_lock = asyncio.Lock() # 添加思考锁,防止并发思考
self.bot_name = global_config.BOT_NICKNAME
def add_observation(self, observation: Observation):
"""添加一个新的observation对象到列表中如果已存在相同id的observation则不添加"""
# 查找是否存在相同id的observation
for existing_obs in self.observations:
if existing_obs.observe_id == observation.observe_id:
# 如果找到相同id的observation直接返回
return
# 如果没有找到相同id的observation则添加新的
self.observations.append(observation)
def remove_observation(self, observation: Observation):
"""从列表中移除一个observation对象"""
if observation in self.observations:
self.observations.remove(observation)
def get_all_observations(self) -> list[Observation]:
"""获取所有observation对象"""
return self.observations
def clear_observations(self):
"""清空所有observation对象"""
self.observations.clear()
def _get_primary_observation(self) -> Optional[ChattingObservation]:
"""获取主要的通常是第一个ChattingObservation实例"""
if self.observations and isinstance(self.observations[0], ChattingObservation):
return self.observations[0]
logger.warning(f"SubHeartflow {self.subheartflow_id} 没有找到有效的 ChattingObservation")
return None
async def subheartflow_start_working(self):
while True:
current_time = time.time()
# --- 调整后台任务逻辑 --- #
# 这个后台循环现在主要负责检查是否需要自我销毁
# 不再主动进行思考或状态更新,这些由 HeartFC_Chat 驱动
# 检查是否需要冻结(这个逻辑可能需要重新审视,因为激活状态现在由外部驱动)
# if current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time:
# self.is_active = False
# else:
# self.is_active = True
# self.last_active_time = current_time # 由外部调用(如 thinking更新
# 检查是否超过指定时间没有激活 (例如,没有被调用进行思考)
if current_time - self.last_active_time > global_config.sub_heart_flow_stop_time: # 例如 5 分钟
logger.info(f"子心流 {self.subheartflow_id} 超过 {global_config.sub_heart_flow_stop_time} 秒没有激活,正在销毁..."
f" (Last active: {datetime.fromtimestamp(self.last_active_time).strftime('%Y-%m-%d %H:%M:%S')})")
# 在这里添加实际的销毁逻辑,例如从主 Heartflow 管理器中移除自身
# heartflow.remove_subheartflow(self.subheartflow_id) # 假设有这样的方法
break # 退出循环以停止任务
# 不再需要内部驱动的状态更新和思考
# self.current_state.update_current_state_info()
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 定期检查销毁条件
async def ensure_observed(self):
"""确保在思考前执行了观察"""
observation = self._get_primary_observation()
if observation:
try:
await observation.observe()
logger.trace(f"[{self.subheartflow_id}] Observation updated before thinking.")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] Error during pre-thinking observation: {e}")
logger.error(traceback.format_exc())
async def do_observe(self):
# 现在推荐使用 ensure_observed(),但保留此方法以兼容旧用法(或特定场景)
observation = self._get_primary_observation()
if observation:
await observation.observe()
else:
logger.error(f"[{self.subheartflow_id}] do_observe called but no valid observation found.")
async def do_thinking_before_reply(
self, chat_stream: ChatStream, extra_info: str, obs_id: list[str] = None # 修改 obs_id 类型为 list[str]
):
async with self._thinking_lock: # 获取思考锁
# --- 在思考前确保观察已执行 --- #
await self.ensure_observed()
self.last_active_time = time.time() # 更新最后激活时间戳
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
observation = self._get_primary_observation()
if not observation:
logger.error(f"[{self.subheartflow_id}] Cannot perform thinking without observation.")
return "", [] # 返回空结果
# --- 获取观察信息 --- #
chat_observe_info = ""
if obs_id:
try:
chat_observe_info = observation.get_observe_info(obs_id)
logger.debug(f"[{self.subheartflow_id}] Using specific observation IDs: {obs_id}")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] Error getting observe info with IDs {obs_id}: {e}. Falling back.")
chat_observe_info = observation.get_observe_info() # 出错时回退到默认观察
else:
chat_observe_info = observation.get_observe_info()
logger.debug(f"[{self.subheartflow_id}] Using default observation info.")
# --- 构建 Prompt (基本逻辑不变) --- #
extra_info_prompt = ""
if extra_info:
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
else:
extra_info_prompt = "无工具信息。\n" # 提供默认值
individuality = Individuality.get_instance()
prompt_personality = f"你的名字是{self.bot_name},你"
prompt_personality += individuality.personality.personality_core
personality_sides = individuality.personality.personality_sides
if personality_sides: random.shuffle(personality_sides); prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
if identity_detail: random.shuffle(identity_detail); prompt_personality += f",{identity_detail[0]}"
# who_chat_in_group = [
# (chat_stream.platform, sender_info.user_id, sender_info.user_nickname) # 先添加当前发送者
# ]
# # 获取最近发言者,排除当前发送者,避免重复
# recent_speakers = get_recent_group_speaker(
# chat_stream.stream_id,
# (chat_stream.platform, sender_info.user_id),
# limit=global_config.MAX_CONTEXT_SIZE -1 # 减去当前发送者
# )
# who_chat_in_group.extend(recent_speakers)
# relation_prompt = ""
# unique_speakers = set() # 确保人物信息不重复
# for person_tuple in who_chat_in_group:
# person_key = (person_tuple[0], person_tuple[1]) # 使用 platform+id 作为唯一标识
# if person_key not in unique_speakers:
# relation_prompt += await relationship_manager.build_relationship_info(person_tuple)
# unique_speakers.add(person_key)
# relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
# relation_prompt, sender_info.user_nickname
# )
# sender_name_sign = (
# f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname or 'NoCard'}>"
# )
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info=extra_info_prompt,
# relation_prompt_all=relation_prompt_all,
prompt_personality=prompt_personality,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
# sender_name=sender_name_sign,
# message_txt=message_txt,
bot_name=self.bot_name,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
logger.debug(f"[{self.subheartflow_id}] Thinking Prompt:\n{prompt}")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response: # 如果 LLM 返回空,给一个默认想法
response = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM returned empty response for thinking.")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}")
response = "(思考时发生错误...)" # 错误时的默认想法
self.update_current_mind(response)
# self.current_mind 已经在 update_current_mind 中更新
logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
async def do_thinking_after_observe(
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: int = None
):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
if obs_id:
print(f"11111111111有id,开始获取观察信息{obs_id}")
chat_observe_info = observation.get_observe_info(obs_id)
else:
chat_observe_info = observation.get_observe_info()
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你"
# person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 关系
who_chat_in_group = [
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
]
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_info.user_nickname
)
sender_name_sign = (
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname}>"
)
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after_observe")).format(
extra_info_prompt,
# prompt_schedule,
relation_prompt_all,
prompt_personality,
current_thinking_info,
time_now,
chat_observe_info,
mood_info,
sender_name_sign,
message_txt,
self.bot_name,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"回复前内心独白获取失败: {e}")
response = ""
self.update_current_mind(response)
self.current_mind = response
logger.info(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
# async def do_thinking_after_reply(self, reply_content, chat_talking_prompt, extra_info):
# # print("麦麦回复之后脑袋转起来了")
# # 开始构建prompt
# prompt_personality = f"你的名字是{self.bot_name},你"
# # person
# individuality = Individuality.get_instance()
# personality_core = individuality.personality.personality_core
# prompt_personality += personality_core
# extra_info_prompt = ""
# for tool_name, tool_data in extra_info.items():
# extra_info_prompt += f"{tool_name} 相关信息:\n"
# for item in tool_data:
# extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# personality_sides = individuality.personality.personality_sides
# random.shuffle(personality_sides)
# prompt_personality += f",{personality_sides[0]}"
# identity_detail = individuality.identity.identity_detail
# random.shuffle(identity_detail)
# prompt_personality += f",{identity_detail[0]}"
# current_thinking_info = self.current_mind
# mood_info = self.current_state.mood
# observation = self.observations[0]
# chat_observe_info = observation.observe_info
# message_new_info = chat_talking_prompt
# reply_info = reply_content
# time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after")).format(
# extra_info_prompt,
# prompt_personality,
# time_now,
# chat_observe_info,
# current_thinking_info,
# message_new_info,
# reply_info,
# mood_info,
# )
# prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
# prompt = parse_text_timestamps(prompt, mode="lite")
# try:
# response, reasoning_content = await self.llm_model.generate_response_async(prompt)
# except Exception as e:
# logger.error(f"回复后内心独白获取失败: {e}")
# response = ""
# self.update_current_mind(response)
# self.current_mind = response
# logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
# self.last_reply_time = time.time()
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
async def check_reply_trigger(self) -> bool:
"""根据观察到的信息和内部状态,判断是否应该触发一次回复。
TODO: 实现具体的判断逻辑。
例如:检查 self.observations[0].now_message_info 是否包含提及、问题,
或者 self.current_mind 中是否包含强烈的回复意图等。
"""
# Placeholder: 目前始终返回 False需要后续实现
logger.trace(f"[{self.subheartflow_id}] check_reply_trigger called. (Logic Pending)")
# --- 实现触发逻辑 --- #
# 示例:如果观察到的最新消息包含自己的名字,则有一定概率触发
# observation = self._get_primary_observation()
# if observation and self.bot_name in observation.now_message_info[-100:]: # 检查最后100个字符
# if random.random() < 0.3: # 30% 概率触发
# logger.info(f"[{self.subheartflow_id}] Triggering reply based on mention.")
# return True
# ------------------ #
return False # 默认不触发
init_prompt()
# subheartflow = SubHeartflow()