Files
Mofox-Core/src/mood/mood_manager.py
minecraft1024a 0ffcae4d44 refactor(mood): 移除与唤醒愤怒和失眠相关的状态管理
删除了 `ChatMood` 类中的 `is_angry_from_wakeup` 属性,并移除了 `MoodManager` 中所有与之相关的方法,包括:
- `reset_mood_by_chat_id`
- `set_angry_from_wakeup`
- `clear_angry_from_wakeup`
- `start_insomnia`
- `stop_insomnia`
- `get_angry_prompt_addition`

这些逻辑现在由更通用的状态机和动作系统处理,简化了情绪模块的职责,使其更专注于核心情绪值的管理。
2025-10-31 21:13:54 +08:00

287 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import random
import time
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.chat.utils.prompt import Prompt, global_prompt_manager
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.manager.async_task_manager import AsyncTask, async_task_manager
logger = get_logger("mood")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是群里正在进行的聊天记录
{identity_block}
你刚刚的情绪状态是:{mood_state}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考,请你输出一句话描述你新的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"change_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是群里最近的聊天记录
{identity_block}
你之前的情绪状态是:{mood_state}
距离你上次关注群里消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"regress_mood_prompt",
)
class ChatMood:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
# 这些将在异步初始化中设置
self.chat_stream = None # type: ignore
self.log_prefix = f"[{chat_id}]"
self._initialized = False
self.mood_state: str = "感觉很平静"
async def _initialize(self):
"""异步初始化方法"""
if not self._initialized:
try:
from src.chat.message_receive.chat_stream import get_chat_manager
chat_manager = get_chat_manager()
self.chat_stream = await chat_manager.get_stream(self.chat_id)
if not self.chat_stream:
# 如果找不到聊天流,使用基础日志前缀但不抛出异常
self.log_prefix = f"[{self.chat_id}]"
logger.warning(f"Chat stream for chat_id {self.chat_id} not found during mood initialization")
else:
self.log_prefix = f"[{self.chat_stream.group_info.group_name if self.chat_stream.group_info else self.chat_stream.user_info.user_nickname}]"
# 初始化回归计数
if not hasattr(self, "regression_count"):
self.regression_count = 0
# 初始化情绪模型
if not hasattr(self, "mood_model"):
self.mood_model = LLMRequest(model_set=model_config.model_task_config.emotion, request_type="mood")
# 初始化最后变化时间
if not hasattr(self, "last_change_time"):
self.last_change_time = 0
self._initialized = True
logger.debug(f"{self.log_prefix} 情绪系统初始化完成")
except Exception as e:
logger.error(f"情绪系统初始化失败: {e}")
# 设置基础初始化状态,避免重复尝试
self.log_prefix = f"[{self.chat_id}]"
self._initialized = True
if not hasattr(self, "regression_count"):
self.regression_count = 0
if not hasattr(self, "mood_model"):
self.mood_model = LLMRequest(model_set=model_config.model_task_config.emotion, request_type="mood")
if not hasattr(self, "last_change_time"):
self.last_change_time = 0
async def update_mood_by_message(self, message: DatabaseMessages, interested_rate: float):
# 确保异步初始化已完成
await self._initialize()
# 如果当前聊天处于失眠状态,则锁定情绪,不允许更新
if self.chat_id in mood_manager.insomnia_chats:
logger.debug(f"{self.log_prefix} 处于失眠状态,情绪已锁定,跳过更新。")
return
self.regression_count = 0
# 使用 DatabaseMessages 的时间字段
message_time = message.time
# 防止负时间差
during_last_time = max(0, message_time - self.last_change_time)
base_probability = 0.05
time_multiplier = 4 * (1 - math.exp(-0.01 * during_last_time))
if interested_rate <= 0:
interest_multiplier = 0
else:
interest_multiplier = 2 * math.pow(interested_rate, 0.25)
logger.debug(
f"base_probability: {base_probability}, time_multiplier: {time_multiplier}, interest_multiplier: {interest_multiplier}"
)
update_probability = global_config.mood.mood_update_threshold * min(
1.0, base_probability * time_multiplier * interest_multiplier
)
if random.random() > update_probability:
logger.debug(f"{self.log_prefix} 情绪更新概率未达到阈值,跳过更新。概率: {update_probability:.3f}")
return
logger.debug(
f"{self.log_prefix} 更新情绪状态,感兴趣度: {interested_rate:.2f}, 更新概率: {update_probability:.2f}"
)
message_list_before_now = await get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=int(global_config.chat.max_context_size / 3),
limit_mode="last",
)
chat_talking_prompt = await build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"change_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
identity_block=identity_block,
mood_state=self.mood_state,
)
response, (reasoning_content, _, _) = await self.mood_model.generate_response_async(
prompt=prompt, temperature=0.7
)
if global_config.debug.show_prompt:
logger.debug(f"{self.log_prefix} prompt: {prompt}")
logger.debug(f"{self.log_prefix} response: {response}")
logger.debug(f"{self.log_prefix} reasoning_content: {reasoning_content}")
logger.info(f"{self.log_prefix} 情绪状态更新为: {response}")
self.mood_state = response
self.last_change_time = message_time
async def regress_mood(self):
message_time = time.time()
message_list_before_now = await get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = await build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"regress_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
identity_block=identity_block,
mood_state=self.mood_state,
)
response, (reasoning_content, _, _) = await self.mood_model.generate_response_async(
prompt=prompt, temperature=0.7
)
if global_config.debug.show_prompt:
logger.debug(f"{self.log_prefix} prompt: {prompt}")
logger.debug(f"{self.log_prefix} response: {response}")
logger.debug(f"{self.log_prefix} reasoning_content: {reasoning_content}")
logger.info(f"{self.log_prefix} 情绪状态转变为: {response}")
self.mood_state = response
self.regression_count += 1
class MoodRegressionTask(AsyncTask):
def __init__(self, mood_manager: "MoodManager"):
super().__init__(task_name="MoodRegressionTask", run_interval=30)
self.mood_manager = mood_manager
async def run(self):
logger.debug("开始情绪回归任务...")
now = time.time()
for mood in self.mood_manager.mood_list:
if mood.last_change_time == 0:
continue
if now - mood.last_change_time > 180:
if mood.regression_count >= 3:
continue
logger.debug(f"{mood.log_prefix} 开始情绪回归, 第 {mood.regression_count + 1}")
await mood.regress_mood()
class MoodManager:
def __init__(self):
self.mood_list: list[ChatMood] = []
"""当前情绪状态"""
self.task_started: bool = False
self.insomnia_chats: set[str] = set() # 正在失眠的聊天ID列表
async def start(self):
"""启动情绪回归后台任务"""
if self.task_started:
return
logger.info("启动情绪回归任务...")
task = MoodRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("情绪回归任务已启动")
def get_mood_by_chat_id(self, chat_id: str) -> ChatMood:
for mood in self.mood_list:
if mood.chat_id == chat_id:
return mood
new_mood = ChatMood(chat_id)
self.mood_list.append(new_mood)
return new_mood
init_prompt()
mood_manager = MoodManager()
"""全局情绪管理器"""