Files
Mofox-Core/src/chat/chat_loop/response_handler.py
minecraft1024a 89fad16e0e feat(chat): 实现发送错别字后自动撤回修正的功能
引入了一个新的聊天交互机制:当机器人发送了包含“错别字”的消息后,会在短暂延迟后自动撤回该消息,并发送正确的版本。此功能旨在模拟更真实的人类打字行为,增加交互的趣味性和拟人化程度。

主要变更:
- **错别字处理流程**:
  - `ResponseHandler`现在会识别出带有错别字的消息,并在发送后创建一个异步任务来处理后续的修正。
  - 新增`handle_typo_correction`方法,该方法会随机延迟2-4秒,然后调用新的`recall_message` API撤回原消息,并重新发送修正后的内容。
- **API扩展**:
  - `send_api`中增加了`recall_message`函数,用于调用适配器执行消息撤回操作。
  - `send_response`的返回值从单个字符串`reply_text`变更为元组`(reply_text, sent_messages)`,以便将已发送的消息信息(包括ID和类型)传递给上层调用者。
- **数据结构调整**:
  - `process_llm_response`的返回类型从`list[str]`调整为`list[dict[str, str]]`,以支持更复杂的响应类型,如包含原文、错别字和修正建议的`typo`类型。
- **代码优化与重构**:
  - 对`ChineseTypoGenerator`进行了大量的代码清理、注释补充和逻辑优化,使其代码更清晰、更易于维护。
  - 修复了多处代码中的类型注解和潜在的空指针问题,提高了代码的健壮性。
2025-11-19 22:58:42 +08:00

190 lines
6.6 KiB
Python

import time
import random
import asyncio
from typing import Dict, Any, Tuple
from src.common.logger import get_logger
from src.plugin_system.apis import send_api, message_api, database_api
from src.person_info.person_info import get_person_info_manager
from .hfc_context import HfcContext
# 导入反注入系统
logger = get_logger("hfc")
anti_injector_logger = get_logger("anti_injector")
class ResponseHandler:
def __init__(self, context: HfcContext):
"""
初始化响应处理器
Args:
context: HFC聊天上下文对象
功能说明:
- 负责生成和发送机器人的回复
- 处理回复的格式化和发送逻辑
- 管理回复状态和日志记录
"""
self.context = context
async def generate_and_send_reply(
self,
response_set,
reply_to_str,
loop_start_time,
action_message,
cycle_timers: Dict[str, float],
thinking_id,
plan_result,
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
"""
生成并发送回复的主方法
Args:
response_set: 生成的回复内容集合
reply_to_str: 回复目标字符串
loop_start_time: 循环开始时间
action_message: 动作消息数据
cycle_timers: 循环计时器
thinking_id: 思考ID
plan_result: 规划结果
Returns:
tuple: (循环信息, 回复文本, 计时器信息)
功能说明:
- 发送生成的回复内容
- 存储动作信息到数据库
- 构建并返回完整的循环信息
- 用于上级方法的状态跟踪
"""
reply_text, sent_messages = await self.send_response(response_set, loop_start_time, action_message)
if sent_messages:
asyncio.create_task(self.handle_typo_correction(sent_messages))
person_info_manager = get_person_info_manager()
platform = "default"
if self.context.chat_stream:
platform = (
action_message.get("chat_info_platform")
or action_message.get("user_platform")
or self.context.chat_stream.platform
)
user_id = action_message.get("user_id", "")
person_id = person_info_manager.get_person_id(platform, user_id)
person_name = await person_info_manager.get_value(person_id, "person_name")
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
await database_api.store_action_info(
chat_stream=self.context.chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
action_name="reply",
)
loop_info: Dict[str, Any] = {
"loop_plan_info": {
"action_result": plan_result.get("action_result", {}),
},
"loop_action_info": {
"action_taken": True,
"reply_text": reply_text,
"command": "",
"taken_time": time.time(),
},
}
return loop_info, reply_text, cycle_timers
async def send_response(self, reply_set, thinking_start_time, message_data) -> tuple[str, list[dict[str, str]]]:
"""
发送回复内容的具体实现
Args:
reply_set: 回复内容集合,包含多个回复段
thinking_start_time: 思考开始时间
message_data: 消息数据
Returns:
tuple[str, list[dict[str, str]]]: (完整的回复文本, 已发送消息列表)
功能说明:
- 检查是否有新消息需要回复
- 处理主动思考的"沉默"决定
- 根据消息数量决定是否添加回复引用
- 逐段发送回复内容,支持打字效果
- 正确处理元组格式的回复段
"""
current_time = time.time()
new_message_count = message_api.count_new_messages(
chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time
)
need_reply = new_message_count >= random.randint(2, 4)
reply_text = ""
sent_messages = []
is_proactive_thinking = message_data.get("message_type") == "proactive_thinking"
first_replied = False
for reply_seg in reply_set:
logger.debug(f"Processing reply_seg type: {type(reply_seg)}, content: {reply_seg}")
if reply_seg["type"] == "typo":
data = reply_seg["typo"]
else:
data = reply_seg["content"]
reply_text += data
if is_proactive_thinking and data.strip() == "沉默":
logger.info(f"{self.context.log_prefix} 主动思考决定保持沉默,不发送消息")
continue
if not first_replied:
sent_message = await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_message=message_data,
set_reply=need_reply,
typing=False,
)
first_replied = True
else:
sent_message = await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_message=None,
set_reply=False,
typing=True,
)
if sent_message and reply_seg["type"] == "typo":
sent_messages.append(
{
"type": "typo",
"message_id": sent_message,
"original_message": message_data,
"correction": reply_seg["correction"],
}
)
return reply_text, sent_messages
async def handle_typo_correction(self, sent_messages: list[dict[str, Any]]):
"""处理错别字修正"""
for msg in sent_messages:
if msg["type"] == "typo":
await asyncio.sleep(random.uniform(2, 4))
recalled = await send_api.recall_message(str(msg["message_id"]), self.context.stream_id)
if recalled:
await send_api.text_to_stream(
str(msg["correction"]), self.context.stream_id, reply_to_message=msg["original_message"]
)