Files
Mofox-Core/src/individuality/per_bf_gen.py
SengokuCola 61d35063d2 fix:ruff
2025-04-06 15:57:42 +08:00

308 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Dict, List
import json
import os
from dotenv import load_dotenv
import sys
import toml
import random
from tqdm import tqdm
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
sys.path.append(root_path)
# 加载配置文件
config_path = os.path.join(root_path, "config", "bot_config.toml")
with open(config_path, "r", encoding="utf-8") as f:
config = toml.load(f)
# 现在可以导入src模块
from src.individuality.scene import get_scene_by_factor, PERSONALITY_SCENES #noqa E402
from src.individuality.questionnaire import FACTOR_DESCRIPTIONS #noqa E402
from src.individuality.offline_llm import LLM_request_off #noqa E402
# 加载环境变量
env_path = os.path.join(root_path, ".env")
if os.path.exists(env_path):
print(f"{env_path} 加载环境变量")
load_dotenv(env_path)
else:
print(f"未找到环境变量文件: {env_path}")
print("将使用默认配置")
def adapt_scene(scene: str) -> str:
personality_core = config['personality']['personality_core']
personality_sides = config['personality']['personality_sides']
personality_side = random.choice(personality_sides)
identity_details = config['identity']['identity_detail']
identity_detail = random.choice(identity_details)
"""
根据config中的属性改编场景使其更适合当前角色
Args:
scene: 原始场景描述
Returns:
str: 改编后的场景描述
"""
try:
prompt = f"""
这是一个参与人格测评的角色形象:
- 昵称: {config['bot']['nickname']}
- 性别: {config['identity']['gender']}
- 年龄: {config['identity']['age']}
- 外貌: {config['identity']['appearance']}
- 性格核心: {personality_core}
- 性格侧面: {personality_side}
- 身份细节: {identity_detail}
请根据上述形象,改编以下场景,在测评中,用户将根据该场景给出上述角色形象的反应:
{scene}
保持场景的本质不变,但最好贴近生活且具体,并且让它更适合这个角色。
改编后的场景应该自然、连贯,并考虑角色的年龄、身份和性格特点。只返回改编后的场景描述,不要包含其他说明。注意{config['bot']['nickname']}是面对这个场景的人,而不是场景的其他人。场景中不会有其描述,
现在,请你给出改编后的场景描述
"""
llm = LLM_request_off(model_name=config['model']['llm_normal']['name'])
adapted_scene, _ = llm.generate_response(prompt)
# 检查返回的场景是否为空或错误信息
if not adapted_scene or "错误" in adapted_scene or "失败" in adapted_scene:
print("场景改编失败,将使用原始场景")
return scene
return adapted_scene
except Exception as e:
print(f"场景改编过程出错:{str(e)},将使用原始场景")
return scene
class PersonalityEvaluator_direct:
def __init__(self):
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.scenarios = []
self.final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.dimension_counts = {trait: 0 for trait in self.final_scores.keys()}
# 为每个人格特质获取对应的场景
for trait in PERSONALITY_SCENES:
scenes = get_scene_by_factor(trait)
if not scenes:
continue
# 从每个维度选择3个场景
import random
scene_keys = list(scenes.keys())
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
for scene_key in selected_scenes:
scene = scenes[scene_key]
# 为每个场景添加评估维度
# 主维度是当前特质,次维度随机选择一个其他特质
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
secondary_trait = random.choice(other_traits)
self.scenarios.append(
{"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
)
self.llm = LLM_request_off()
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
"""
使用 DeepSeek AI 评估用户对特定场景的反应
"""
# 构建维度描述
dimension_descriptions = []
for dim in dimensions:
desc = FACTOR_DESCRIPTIONS.get(dim, "")
if desc:
dimension_descriptions.append(f"- {dim}{desc}")
dimensions_text = "\n".join(dimension_descriptions)
prompt = f"""请根据以下场景和用户描述评估用户在大五人格模型中的相关维度得分1-6分
场景描述:
{scenario}
用户回应:
{response}
需要评估的维度说明:
{dimensions_text}
请按照以下格式输出评估结果仅输出JSON格式
{{
"{dimensions[0]}": 分数,
"{dimensions[1]}": 分数
}}
评分标准:
1 = 非常不符合该维度特征
2 = 比较不符合该维度特征
3 = 有点不符合该维度特征
4 = 有点符合该维度特征
5 = 比较符合该维度特征
6 = 非常符合该维度特征
请根据用户的回应结合场景和维度说明进行评分。确保分数在1-6之间并给出合理的评估。"""
try:
ai_response, _ = self.llm.generate_response(prompt)
# 尝试从AI响应中提取JSON部分
start_idx = ai_response.find("{")
end_idx = ai_response.rfind("}") + 1
if start_idx != -1 and end_idx != 0:
json_str = ai_response[start_idx:end_idx]
scores = json.loads(json_str)
# 确保所有分数在1-6之间
return {k: max(1, min(6, float(v))) for k, v in scores.items()}
else:
print("AI响应格式不正确使用默认评分")
return {dim: 3.5 for dim in dimensions}
except Exception as e:
print(f"评估过程出错:{str(e)}")
return {dim: 3.5 for dim in dimensions}
def run_evaluation(self):
"""
运行整个评估过程
"""
print(f"欢迎使用{config['bot']['nickname']}形象创建程序!")
print("接下来将给您呈现一系列有关您bot的场景共15个")
print("请想象您的bot在以下场景下会做什么并描述您的bot的反应。")
print("每个场景都会进行不同方面的评估。")
print("\n角色基本信息:")
print(f"- 昵称:{config['bot']['nickname']}")
print(f"- 性格核心:{config['personality']['personality_core']}")
print(f"- 性格侧面:{config['personality']['personality_sides']}")
print(f"- 身份细节:{config['identity']['identity_detail']}")
print("\n准备好了吗?按回车键开始...")
input()
total_scenarios = len(self.scenarios)
progress_bar = tqdm(total=total_scenarios, desc="场景进度", ncols=100, bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]')
for _i, scenario_data in enumerate(self.scenarios, 1):
# print(f"\n{'-' * 20} 场景 {i}/{total_scenarios} - {scenario_data['场景编号']} {'-' * 20}")
# 改编场景,使其更适合当前角色
print(f"{config['bot']['nickname']}祈祷中...")
adapted_scene = adapt_scene(scenario_data["场景"])
scenario_data["改编场景"] = adapted_scene
print(adapted_scene)
print(f"\n请描述{config['bot']['nickname']}在这种情况下会如何反应:")
response = input().strip()
if not response:
print("反应描述不能为空!")
continue
print("\n正在评估您的描述...")
scores = self.evaluate_response(adapted_scene, response, scenario_data["评估维度"])
# 更新最终分数
for dimension, score in scores.items():
self.final_scores[dimension] += score
self.dimension_counts[dimension] += 1
print("\n当前评估结果:")
print("-" * 30)
for dimension, score in scores.items():
print(f"{dimension}: {score}/6")
# 更新进度条
progress_bar.update(1)
# if i < total_scenarios:
# print("\n按回车键继续下一个场景...")
# input()
progress_bar.close()
# 计算平均分
for dimension in self.final_scores:
if self.dimension_counts[dimension] > 0:
self.final_scores[dimension] = round(self.final_scores[dimension] / self.dimension_counts[dimension], 2)
print("\n" + "=" * 50)
print(f" {config['bot']['nickname']}的人格特征评估结果 ".center(50))
print("=" * 50)
for trait, score in self.final_scores.items():
print(f"{trait}: {score}/6".ljust(20) + f"测试场景数:{self.dimension_counts[trait]}".rjust(30))
print("=" * 50)
# 返回评估结果
return self.get_result()
def get_result(self):
"""
获取评估结果
"""
return {
"final_scores": self.final_scores,
"dimension_counts": self.dimension_counts,
"scenarios": self.scenarios,
"bot_info": {
"nickname": config['bot']['nickname'],
"gender": config['identity']['gender'],
"age": config['identity']['age'],
"height": config['identity']['height'],
"weight": config['identity']['weight'],
"appearance": config['identity']['appearance'],
"personality_core": config['personality']['personality_core'],
"personality_sides": config['personality']['personality_sides'],
"identity_detail": config['identity']['identity_detail']
}
}
def main():
evaluator = PersonalityEvaluator_direct()
result = evaluator.run_evaluation()
# 准备简化的结果数据
simplified_result = {
"openness": round(result["final_scores"]["开放性"] / 6, 1), # 转换为0-1范围
"conscientiousness": round(result["final_scores"]["严谨性"] / 6, 1),
"extraversion": round(result["final_scores"]["外向性"] / 6, 1),
"agreeableness": round(result["final_scores"]["宜人性"] / 6, 1),
"neuroticism": round(result["final_scores"]["神经质"] / 6, 1),
"bot_nickname": config['bot']['nickname']
}
# 确保目录存在
save_dir = os.path.join(root_path, "data", "personality")
os.makedirs(save_dir, exist_ok=True)
# 创建文件名,替换可能的非法字符
bot_name = config['bot']['nickname']
# 替换Windows文件名中不允许的字符
for char in ['\\', '/', ':', '*', '?', '"', '<', '>', '|']:
bot_name = bot_name.replace(char, '_')
file_name = f"{bot_name}_personality.per"
save_path = os.path.join(save_dir, file_name)
# 保存简化的结果
with open(save_path, "w", encoding="utf-8") as f:
json.dump(simplified_result, f, ensure_ascii=False, indent=4)
print(f"\n结果已保存到 {save_path}")
# 同时保存完整结果到results目录
os.makedirs("results", exist_ok=True)
with open("results/personality_result.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
if __name__ == "__main__":
main()