252 lines
9.6 KiB
Python
252 lines
9.6 KiB
Python
from typing import Dict, Any, List, Optional, Union, Tuple
|
|
from openai import OpenAI
|
|
import asyncio
|
|
import requests
|
|
from functools import partial
|
|
from .message import Message
|
|
from .config import BotConfig, global_config
|
|
from ...common.database import Database
|
|
import random
|
|
import time
|
|
import os
|
|
import numpy as np
|
|
from .relationship_manager import relationship_manager
|
|
from ..schedule.schedule_generator import bot_schedule
|
|
from .prompt_builder import prompt_builder
|
|
from .config import llm_config, global_config
|
|
from .utils import process_llm_response
|
|
|
|
|
|
class LLMResponseGenerator:
|
|
def __init__(self, config: BotConfig):
|
|
self.config = config
|
|
if self.config.API_USING == "siliconflow":
|
|
self.client = OpenAI(
|
|
api_key=llm_config.SILICONFLOW_API_KEY,
|
|
base_url=llm_config.SILICONFLOW_BASE_URL
|
|
)
|
|
elif self.config.API_USING == "deepseek":
|
|
self.client = OpenAI(
|
|
api_key=llm_config.DEEP_SEEK_API_KEY,
|
|
base_url=llm_config.DEEP_SEEK_BASE_URL
|
|
)
|
|
|
|
self.db = Database.get_instance()
|
|
|
|
# 当前使用的模型类型
|
|
self.current_model_type = 'r1' # 默认使用 R1
|
|
|
|
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
|
|
"""根据当前模型类型选择对应的生成函数"""
|
|
# 从global_config中获取模型概率值
|
|
model_r1_probability = global_config.MODEL_R1_PROBABILITY
|
|
model_v3_probability = global_config.MODEL_V3_PROBABILITY
|
|
model_r1_distill_probability = global_config.MODEL_R1_DISTILL_PROBABILITY
|
|
|
|
# 生成随机数并根据概率选择模型
|
|
rand = random.random()
|
|
if rand < model_r1_probability:
|
|
self.current_model_type = 'r1'
|
|
elif rand < model_r1_probability + model_v3_probability:
|
|
self.current_model_type = 'v3'
|
|
else:
|
|
self.current_model_type = 'r1_distill' # 默认使用 R1-Distill
|
|
|
|
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
|
if self.current_model_type == 'r1':
|
|
model_response = await self._generate_r1_response(message)
|
|
elif self.current_model_type == 'v3':
|
|
model_response = await self._generate_v3_response(message)
|
|
else:
|
|
model_response = await self._generate_r1_distill_response(message)
|
|
|
|
# 打印情感标签
|
|
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
|
model_response, emotion = await self._process_response(model_response)
|
|
|
|
if model_response:
|
|
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
|
|
|
return model_response, emotion
|
|
|
|
async def _generate_base_response(
|
|
self,
|
|
message: Message,
|
|
model_name: str,
|
|
model_params: Optional[Dict[str, Any]] = None
|
|
) -> Optional[str]:
|
|
sender_name = message.user_nickname or f"用户{message.user_id}"
|
|
|
|
# 获取关系值
|
|
if relationship_manager.get_relationship(message.user_id):
|
|
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value
|
|
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
|
else:
|
|
relationship_value = 0.0
|
|
|
|
# 构建prompt
|
|
prompt = prompt_builder._build_prompt(
|
|
message_txt=message.processed_plain_text,
|
|
sender_name=sender_name,
|
|
relationship_value=relationship_value,
|
|
group_id=message.group_id
|
|
)
|
|
|
|
# 设置默认参数
|
|
default_params = {
|
|
"model": model_name,
|
|
"messages": [{"role": "user", "content": prompt}],
|
|
"stream": False,
|
|
"max_tokens": 1024,
|
|
"temperature": 0.7
|
|
}
|
|
|
|
# 更新参数
|
|
if model_params:
|
|
default_params.update(model_params)
|
|
|
|
def create_completion():
|
|
return self.client.chat.completions.create(**default_params)
|
|
|
|
loop = asyncio.get_event_loop()
|
|
response = await loop.run_in_executor(None, create_completion)
|
|
|
|
# 检查响应内容
|
|
if not response:
|
|
print("请求未返回任何内容")
|
|
return None
|
|
|
|
if not response.choices or not response.choices[0].message.content:
|
|
print("请求返回的内容无效:", response)
|
|
return None
|
|
|
|
content = response.choices[0].message.content
|
|
|
|
# 获取推理内容
|
|
reasoning_content = ""
|
|
if hasattr(response.choices[0].message, "reasoning"):
|
|
reasoning_content = response.choices[0].message.reasoning or reasoning_content
|
|
elif hasattr(response.choices[0].message, "reasoning_content"):
|
|
reasoning_content = response.choices[0].message.reasoning_content or reasoning_content
|
|
|
|
# 保存到数据库
|
|
self.db.db.reasoning_logs.insert_one({
|
|
'time': time.time(),
|
|
'group_id': message.group_id,
|
|
'user': sender_name,
|
|
'message': message.processed_plain_text,
|
|
'model': model_name,
|
|
'reasoning': reasoning_content,
|
|
'response': content,
|
|
'prompt': prompt,
|
|
'model_params': default_params
|
|
})
|
|
|
|
return content
|
|
|
|
async def _generate_r1_response(self, message: Message) -> Optional[str]:
|
|
"""使用 DeepSeek-R1 模型生成回复"""
|
|
if self.config.API_USING == "deepseek":
|
|
return await self._generate_base_response(
|
|
message,
|
|
"deepseek-reasoner",
|
|
{"temperature": 0.7, "max_tokens": 1024}
|
|
)
|
|
else:
|
|
return await self._generate_base_response(
|
|
message,
|
|
"Pro/deepseek-ai/DeepSeek-R1",
|
|
{"temperature": 0.7, "max_tokens": 1024}
|
|
)
|
|
|
|
async def _generate_v3_response(self, message: Message) -> Optional[str]:
|
|
"""使用 DeepSeek-V3 模型生成回复"""
|
|
if self.config.API_USING == "deepseek":
|
|
return await self._generate_base_response(
|
|
message,
|
|
"deepseek-chat",
|
|
{"temperature": 0.8, "max_tokens": 1024}
|
|
)
|
|
else:
|
|
return await self._generate_base_response(
|
|
message,
|
|
"Pro/deepseek-ai/DeepSeek-V3",
|
|
{"temperature": 0.8, "max_tokens": 1024}
|
|
)
|
|
|
|
async def _generate_r1_distill_response(self, message: Message) -> Optional[str]:
|
|
"""使用 DeepSeek-R1-Distill-Qwen-32B 模型生成回复"""
|
|
return await self._generate_base_response(
|
|
message,
|
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
|
{"temperature": 0.7, "max_tokens": 1024}
|
|
)
|
|
|
|
async def _get_group_chat_context(self, message: Message) -> str:
|
|
"""获取群聊上下文"""
|
|
recent_messages = self.db.db.messages.find(
|
|
{"group_id": message.group_id}
|
|
).sort("time", -1).limit(15)
|
|
|
|
messages_list = list(recent_messages)[::-1]
|
|
group_chat = ""
|
|
|
|
for msg_dict in messages_list:
|
|
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(msg_dict['time']))
|
|
display_name = msg_dict.get('user_nickname', f"用户{msg_dict['user_id']}")
|
|
content = msg_dict.get('processed_plain_text', msg_dict['plain_text'])
|
|
|
|
group_chat += f"[{time_str}] {display_name}: {content}\n"
|
|
|
|
return group_chat
|
|
|
|
async def _get_emotion_tags(self, content: str) -> List[str]:
|
|
"""提取情感标签"""
|
|
try:
|
|
prompt = f'''请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
|
|
只输出标签就好,不要输出其他内容:
|
|
内容:{content}
|
|
输出:
|
|
'''
|
|
|
|
messages = [{"role": "user", "content": prompt}]
|
|
|
|
loop = asyncio.get_event_loop()
|
|
if self.config.API_USING == "deepseek":
|
|
model = "deepseek-chat"
|
|
else:
|
|
model = "Pro/deepseek-ai/DeepSeek-V3"
|
|
create_completion = partial(
|
|
self.client.chat.completions.create,
|
|
model=model,
|
|
messages=messages,
|
|
stream=False,
|
|
max_tokens=30,
|
|
temperature=0.6
|
|
)
|
|
response = await loop.run_in_executor(None, create_completion)
|
|
|
|
if response.choices[0].message.content:
|
|
# 确保返回的是列表格式
|
|
emotion_tag = response.choices[0].message.content.strip()
|
|
return [emotion_tag] # 将单个标签包装成列表返回
|
|
|
|
return ["neutral"] # 如果无法获取情感标签,返回默认值
|
|
|
|
except Exception as e:
|
|
print(f"获取情感标签时出错: {e}")
|
|
return ["neutral"] # 发生错误时返回默认值
|
|
|
|
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
|
"""处理响应内容,返回处理后的内容和情感标签"""
|
|
if not content:
|
|
return None, []
|
|
|
|
emotion_tags = await self._get_emotion_tags(content)
|
|
|
|
processed_response = process_llm_response(content)
|
|
|
|
return processed_response, emotion_tags
|
|
|
|
# 创建全局实例
|
|
llm_response = LLMResponseGenerator(global_config) |