Files
Mofox-Core/src/chat/utils/statistic.py
2025-07-13 00:19:54 +08:00

2378 lines
102 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import concurrent.futures
import json
import os
import glob
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, Dict, Tuple, List
from src.common.logger import get_logger
from src.common.database.database import db
from src.common.database.database_model import OnlineTime, LLMUsage, Messages
from src.manager.async_task_manager import AsyncTask
from src.manager.local_store_manager import local_storage
logger = get_logger("maibot_statistic")
# 统计数据的键
TOTAL_REQ_CNT = "total_requests"
TOTAL_COST = "total_cost"
REQ_CNT_BY_TYPE = "requests_by_type"
REQ_CNT_BY_USER = "requests_by_user"
REQ_CNT_BY_MODEL = "requests_by_model"
REQ_CNT_BY_MODULE = "requests_by_module"
IN_TOK_BY_TYPE = "in_tokens_by_type"
IN_TOK_BY_USER = "in_tokens_by_user"
IN_TOK_BY_MODEL = "in_tokens_by_model"
IN_TOK_BY_MODULE = "in_tokens_by_module"
OUT_TOK_BY_TYPE = "out_tokens_by_type"
OUT_TOK_BY_USER = "out_tokens_by_user"
OUT_TOK_BY_MODEL = "out_tokens_by_model"
OUT_TOK_BY_MODULE = "out_tokens_by_module"
TOTAL_TOK_BY_TYPE = "tokens_by_type"
TOTAL_TOK_BY_USER = "tokens_by_user"
TOTAL_TOK_BY_MODEL = "tokens_by_model"
TOTAL_TOK_BY_MODULE = "tokens_by_module"
COST_BY_TYPE = "costs_by_type"
COST_BY_USER = "costs_by_user"
COST_BY_MODEL = "costs_by_model"
COST_BY_MODULE = "costs_by_module"
ONLINE_TIME = "online_time"
TOTAL_MSG_CNT = "total_messages"
MSG_CNT_BY_CHAT = "messages_by_chat"
# Focus统计数据的键
FOCUS_TOTAL_CYCLES = "focus_total_cycles"
FOCUS_AVG_TIMES_BY_STAGE = "focus_avg_times_by_stage"
FOCUS_ACTION_RATIOS = "focus_action_ratios"
FOCUS_CYCLE_CNT_BY_CHAT = "focus_cycle_count_by_chat"
FOCUS_CYCLE_CNT_BY_ACTION = "focus_cycle_count_by_action"
FOCUS_AVG_TIMES_BY_CHAT_ACTION = "focus_avg_times_by_chat_action"
FOCUS_AVG_TIMES_BY_ACTION = "focus_avg_times_by_action"
FOCUS_TOTAL_TIME_BY_CHAT = "focus_total_time_by_chat"
FOCUS_TOTAL_TIME_BY_ACTION = "focus_total_time_by_action"
FOCUS_CYCLE_CNT_BY_VERSION = "focus_cycle_count_by_version"
FOCUS_ACTION_RATIOS_BY_VERSION = "focus_action_ratios_by_version"
FOCUS_AVG_TIMES_BY_VERSION = "focus_avg_times_by_version"
class OnlineTimeRecordTask(AsyncTask):
"""在线时间记录任务"""
def __init__(self):
super().__init__(task_name="Online Time Record Task", run_interval=60)
self.record_id: int | None = None # Changed to int for Peewee's default ID
"""记录ID"""
self._init_database() # 初始化数据库
@staticmethod
def _init_database():
"""初始化数据库"""
with db.atomic(): # Use atomic operations for schema changes
OnlineTime.create_table(safe=True) # Creates table if it doesn't exist, Peewee handles indexes from model
async def run(self): # sourcery skip: use-named-expression
try:
current_time = datetime.now()
extended_end_time = current_time + timedelta(minutes=1)
if self.record_id:
# 如果有记录,则更新结束时间
query = OnlineTime.update(end_timestamp=extended_end_time).where(OnlineTime.id == self.record_id) # type: ignore
updated_rows = query.execute()
if updated_rows == 0:
# Record might have been deleted or ID is stale, try to find/create
self.record_id = None # Reset record_id to trigger find/create logic below
if not self.record_id: # Check again if record_id was reset or initially None
# 如果没有记录,检查一分钟以内是否已有记录
# Look for a record whose end_timestamp is recent enough to be considered ongoing
recent_record = (
OnlineTime.select()
.where(OnlineTime.end_timestamp >= (current_time - timedelta(minutes=1))) # type: ignore
.order_by(OnlineTime.end_timestamp.desc())
.first()
)
if recent_record:
# 如果有记录,则更新结束时间
self.record_id = recent_record.id
recent_record.end_timestamp = extended_end_time
recent_record.save()
else:
# 若没有记录,则插入新的在线时间记录
new_record = OnlineTime.create(
timestamp=current_time.timestamp(), # 添加此行
start_timestamp=current_time,
end_timestamp=extended_end_time,
duration=5, # 初始时长为5分钟
)
self.record_id = new_record.id
except Exception as e:
logger.error(f"在线时间记录失败,错误信息:{e}")
def _format_online_time(online_seconds: int) -> str:
"""
格式化在线时间
:param online_seconds: 在线时间(秒)
:return: 格式化后的在线时间字符串
"""
total_online_time = timedelta(seconds=online_seconds)
days = total_online_time.days
hours = total_online_time.seconds // 3600
minutes = (total_online_time.seconds // 60) % 60
seconds = total_online_time.seconds % 60
if days > 0:
# 如果在线时间超过1天则格式化为"X天X小时X分钟"
return f"{total_online_time.days}{hours}小时{minutes}分钟{seconds}"
elif hours > 0:
# 如果在线时间超过1小时则格式化为"X小时X分钟X秒"
return f"{hours}小时{minutes}分钟{seconds}"
else:
# 其他情况格式化为"X分钟X秒"
return f"{minutes}分钟{seconds}"
class StatisticOutputTask(AsyncTask):
"""统计输出任务"""
SEP_LINE = "-" * 84
def __init__(self, record_file_path: str = "maibot_statistics.html"):
# 延迟300秒启动运行间隔300秒
super().__init__(task_name="Statistics Data Output Task", wait_before_start=0, run_interval=300)
self.name_mapping: Dict[str, Tuple[str, float]] = {}
"""
联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间timestamp)}
注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新
"""
self.record_file_path: str = record_file_path
"""
记录文件路径
"""
now = datetime.now()
if "deploy_time" in local_storage:
# 如果存在部署时间,则使用该时间作为全量统计的起始时间
deploy_time = datetime.fromtimestamp(local_storage["deploy_time"]) # type: ignore
else:
# 否则,使用最大时间范围,并记录部署时间为当前时间
deploy_time = datetime(2000, 1, 1)
local_storage["deploy_time"] = now.timestamp()
self.stat_period: List[Tuple[str, timedelta, str]] = [
("all_time", now - deploy_time, "自部署以来"), # 必须保留"all_time"
("last_7_days", timedelta(days=7), "最近7天"),
("last_24_hours", timedelta(days=1), "最近24小时"),
("last_3_hours", timedelta(hours=3), "最近3小时"),
("last_hour", timedelta(hours=1), "最近1小时"),
]
"""
统计时间段 [(统计名称, 统计时间段, 统计描述), ...]
"""
def _statistic_console_output(self, stats: Dict[str, Any], now: datetime):
"""
输出统计数据到控制台
:param stats: 统计数据
:param now: 基准当前时间
"""
# 输出最近一小时的统计数据
output = [
self.SEP_LINE,
f" 最近1小时的统计数据 (自{now.strftime('%Y-%m-%d %H:%M:%S')}开始,详细信息见文件:{self.record_file_path})",
self.SEP_LINE,
self._format_total_stat(stats["last_hour"]),
"",
self._format_model_classified_stat(stats["last_hour"]),
"",
self._format_chat_stat(stats["last_hour"]),
"",
self._format_focus_stat(stats["last_hour"]),
self.SEP_LINE,
"",
]
logger.info("\n" + "\n".join(output))
async def run(self):
try:
now = datetime.now()
# 使用线程池并行执行耗时操作
loop = asyncio.get_event_loop()
# 在线程池中并行执行数据收集和之前的HTML生成如果存在
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在收集统计数据...")
# 数据收集任务
collect_task = loop.run_in_executor(executor, self._collect_all_statistics, now)
# 等待数据收集完成
stats = await collect_task
logger.info("统计数据收集完成")
# 并行执行控制台输出和HTML报告生成
console_task = loop.run_in_executor(executor, self._statistic_console_output, stats, now)
html_task = loop.run_in_executor(executor, self._generate_html_report, stats, now)
# 等待两个输出任务完成
await asyncio.gather(console_task, html_task)
logger.info("统计数据输出完成")
except Exception as e:
logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}")
async def run_async_background(self):
"""
备选方案:完全异步后台运行统计输出
使用此方法可以让统计任务完全非阻塞
"""
async def _async_collect_and_output():
try:
import concurrent.futures
now = datetime.now()
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在后台收集统计数据...")
# 创建后台任务,不等待完成
collect_task = asyncio.create_task(
loop.run_in_executor(executor, self._collect_all_statistics, now) # type: ignore
)
stats = await collect_task
logger.info("统计数据收集完成")
# 创建并发的输出任务
output_tasks = [
asyncio.create_task(loop.run_in_executor(executor, self._statistic_console_output, stats, now)), # type: ignore
asyncio.create_task(loop.run_in_executor(executor, self._generate_html_report, stats, now)), # type: ignore
]
# 等待所有输出任务完成
await asyncio.gather(*output_tasks)
logger.info("统计数据后台输出完成")
except Exception as e:
logger.exception(f"后台统计数据输出过程中发生异常:{e}")
# 创建后台任务,立即返回
asyncio.create_task(_async_collect_and_output())
# -- 以下为统计数据收集方法 --
@staticmethod
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的LLM请求统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
TOTAL_REQ_CNT: 0,
REQ_CNT_BY_TYPE: defaultdict(int),
REQ_CNT_BY_USER: defaultdict(int),
REQ_CNT_BY_MODEL: defaultdict(int),
REQ_CNT_BY_MODULE: defaultdict(int),
IN_TOK_BY_TYPE: defaultdict(int),
IN_TOK_BY_USER: defaultdict(int),
IN_TOK_BY_MODEL: defaultdict(int),
IN_TOK_BY_MODULE: defaultdict(int),
OUT_TOK_BY_TYPE: defaultdict(int),
OUT_TOK_BY_USER: defaultdict(int),
OUT_TOK_BY_MODEL: defaultdict(int),
OUT_TOK_BY_MODULE: defaultdict(int),
TOTAL_TOK_BY_TYPE: defaultdict(int),
TOTAL_TOK_BY_USER: defaultdict(int),
TOTAL_TOK_BY_MODEL: defaultdict(int),
TOTAL_TOK_BY_MODULE: defaultdict(int),
TOTAL_COST: 0.0,
COST_BY_TYPE: defaultdict(float),
COST_BY_USER: defaultdict(float),
COST_BY_MODEL: defaultdict(float),
COST_BY_MODULE: defaultdict(float),
}
for period_key, _ in collect_period
}
# 以最早的时间戳为起始时间获取记录
# Assuming LLMUsage.timestamp is a DateTimeField
query_start_time = collect_period[-1][1]
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): # type: ignore
record_timestamp = record.timestamp # This is already a datetime object
for idx, (_, period_start) in enumerate(collect_period):
if record_timestamp >= period_start:
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_REQ_CNT] += 1
request_type = record.request_type or "unknown"
user_id = record.user_id or "unknown" # user_id is TextField, already string
model_name = record.model_name or "unknown"
# 提取模块名:如果请求类型包含".",取第一个"."之前的部分
module_name = request_type.split(".")[0] if "." in request_type else request_type
stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1
stats[period_key][REQ_CNT_BY_USER][user_id] += 1
stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1
stats[period_key][REQ_CNT_BY_MODULE][module_name] += 1
prompt_tokens = record.prompt_tokens or 0
completion_tokens = record.completion_tokens or 0
total_tokens = prompt_tokens + completion_tokens
stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens
stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens
stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens
stats[period_key][IN_TOK_BY_MODULE][module_name] += prompt_tokens
stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens
stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens
stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens
stats[period_key][OUT_TOK_BY_MODULE][module_name] += completion_tokens
stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens
stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens
stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens
stats[period_key][TOTAL_TOK_BY_MODULE][module_name] += total_tokens
cost = record.cost or 0.0
stats[period_key][TOTAL_COST] += cost
stats[period_key][COST_BY_TYPE][request_type] += cost
stats[period_key][COST_BY_USER][user_id] += cost
stats[period_key][COST_BY_MODEL][model_name] += cost
stats[period_key][COST_BY_MODULE][module_name] += cost
break
return stats
@staticmethod
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]:
"""
收集指定时间段的在线时间统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
ONLINE_TIME: 0.0,
}
for period_key, _ in collect_period
}
query_start_time = collect_period[-1][1]
# Assuming OnlineTime.end_timestamp is a DateTimeField
for record in OnlineTime.select().where(OnlineTime.end_timestamp >= query_start_time): # type: ignore
# record.end_timestamp and record.start_timestamp are datetime objects
record_end_timestamp = record.end_timestamp
record_start_timestamp = record.start_timestamp
for idx, (_, period_boundary_start) in enumerate(collect_period):
if record_end_timestamp >= period_boundary_start:
# Calculate effective end time for this record in relation to 'now'
effective_end_time = min(record_end_timestamp, now)
for period_key, current_period_start_time in collect_period[idx:]:
# Determine the portion of the record that falls within this specific statistical period
overlap_start = max(record_start_timestamp, current_period_start_time)
overlap_end = effective_end_time # Already capped by 'now' and record's own end
if overlap_end > overlap_start:
stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds()
break
return stats
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的消息统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
TOTAL_MSG_CNT: 0,
MSG_CNT_BY_CHAT: defaultdict(int),
}
for period_key, _ in collect_period
}
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
message_time_ts = message.time # This is a float timestamp
chat_id = None
chat_name = None
# Logic based on Peewee model structure, aiming to replicate original intent
if message.chat_info_group_id:
chat_id = f"g{message.chat_info_group_id}"
chat_name = message.chat_info_group_name or f"{message.chat_info_group_id}"
elif message.user_id: # Fallback to sender's info for chat_id if not a group_info based chat
# This uses the message SENDER's ID as per original logic's fallback
chat_id = f"u{message.user_id}" # SENDER's user_id
chat_name = message.user_nickname # SENDER's nickname
else:
# If neither group_id nor sender_id is available for chat identification
logger.warning(
f"Message (PK: {message.id if hasattr(message, 'id') else 'N/A'}) lacks group_id and user_id for chat stats."
)
continue
if not chat_id: # Should not happen if above logic is correct
continue
# Update name_mapping
if chat_id in self.name_mapping:
if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]:
self.name_mapping[chat_id] = (chat_name, message_time_ts)
else:
self.name_mapping[chat_id] = (chat_name, message_time_ts)
for idx, (_, period_start_dt) in enumerate(collect_period):
if message_time_ts >= period_start_dt.timestamp():
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_MSG_CNT] += 1
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
break
return stats
def _collect_focus_statistics_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
"""
收集指定时间段的Focus统计数据
:param collect_period: 统计时间段
"""
if not collect_period:
return {}
collect_period.sort(key=lambda x: x[1], reverse=True)
stats = {
period_key: {
FOCUS_TOTAL_CYCLES: 0,
FOCUS_AVG_TIMES_BY_STAGE: defaultdict(list),
FOCUS_ACTION_RATIOS: defaultdict(int),
FOCUS_CYCLE_CNT_BY_CHAT: defaultdict(int),
FOCUS_CYCLE_CNT_BY_ACTION: defaultdict(int),
FOCUS_AVG_TIMES_BY_CHAT_ACTION: defaultdict(lambda: defaultdict(list)),
FOCUS_AVG_TIMES_BY_ACTION: defaultdict(lambda: defaultdict(list)),
"focus_exec_times_by_chat_action": defaultdict(lambda: defaultdict(list)),
FOCUS_TOTAL_TIME_BY_CHAT: defaultdict(float),
FOCUS_TOTAL_TIME_BY_ACTION: defaultdict(float),
FOCUS_CYCLE_CNT_BY_VERSION: defaultdict(int),
FOCUS_ACTION_RATIOS_BY_VERSION: defaultdict(lambda: defaultdict(int)),
FOCUS_AVG_TIMES_BY_VERSION: defaultdict(lambda: defaultdict(list)),
"focus_exec_times_by_version_action": defaultdict(lambda: defaultdict(list)),
"focus_action_ratios_by_chat": defaultdict(lambda: defaultdict(int)),
}
for period_key, _ in collect_period
}
# 获取 log/hfc_loop 目录下的所有 json 文件
log_dir = "log/hfc_loop"
if not os.path.exists(log_dir):
logger.warning(f"Focus log directory {log_dir} does not exist")
return stats
json_files = glob.glob(os.path.join(log_dir, "*.json"))
query_start_time = collect_period[-1][1]
for json_file in json_files:
try:
# 从文件名解析时间戳 (格式: hash_version_date_time.json)
filename = os.path.basename(json_file)
name_parts = filename.replace(".json", "").split("_")
if len(name_parts) >= 4:
date_str = name_parts[-2] # YYYYMMDD
time_str = name_parts[-1] # HHMMSS
file_time_str = f"{date_str}_{time_str}"
file_time = datetime.strptime(file_time_str, "%Y%m%d_%H%M%S")
# 如果文件时间在查询范围内,则处理该文件
if file_time >= query_start_time:
with open(json_file, "r", encoding="utf-8") as f:
cycles_data = json.load(f)
self._process_focus_file_data(cycles_data, stats, collect_period, file_time)
except Exception as e:
logger.warning(f"Failed to process focus file {json_file}: {e}")
continue
# 计算平均值
self._calculate_focus_averages(stats)
return stats
def _process_focus_file_data(
self,
cycles_data: List[Dict],
stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]],
file_time: datetime,
):
"""
处理单个focus文件的数据
"""
for cycle_data in cycles_data:
try:
# 解析时间戳
timestamp_str = cycle_data.get("timestamp", "")
if timestamp_str:
cycle_time = datetime.fromisoformat(timestamp_str.replace("Z", "+00:00"))
else:
cycle_time = file_time # 使用文件时间作为后备
chat_id = cycle_data.get("chat_id", "unknown")
action_type = cycle_data.get("action_type", "unknown")
total_time = cycle_data.get("total_time", 0.0)
step_times = cycle_data.get("step_times", {})
version = cycle_data.get("version", "unknown")
# 更新聊天ID名称映射
if chat_id not in self.name_mapping:
# 尝试获取实际的聊天名称
display_name = self._get_chat_display_name_from_id(chat_id)
self.name_mapping[chat_id] = (display_name, cycle_time.timestamp())
# 对每个时间段进行统计
for idx, (_, period_start) in enumerate(collect_period):
if cycle_time >= period_start:
for period_key, _ in collect_period[idx:]:
stat = stats[period_key]
# 基础统计
stat[FOCUS_TOTAL_CYCLES] += 1
stat[FOCUS_ACTION_RATIOS][action_type] += 1
stat[FOCUS_CYCLE_CNT_BY_CHAT][chat_id] += 1
stat[FOCUS_CYCLE_CNT_BY_ACTION][action_type] += 1
stat["focus_action_ratios_by_chat"][chat_id][action_type] += 1
stat[FOCUS_TOTAL_TIME_BY_CHAT][chat_id] += total_time
stat[FOCUS_TOTAL_TIME_BY_ACTION][action_type] += total_time
# 版本统计
stat[FOCUS_CYCLE_CNT_BY_VERSION][version] += 1
stat[FOCUS_ACTION_RATIOS_BY_VERSION][version][action_type] += 1
# 阶段时间统计
for stage, time_val in step_times.items():
stat[FOCUS_AVG_TIMES_BY_STAGE][stage].append(time_val)
stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage].append(time_val)
stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage].append(time_val)
stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage].append(time_val)
# 专门收集执行动作阶段的时间按聊天流和action类型分组
if stage == "执行动作":
stat["focus_exec_times_by_chat_action"][chat_id][action_type].append(time_val)
# 按版本和action类型收集执行时间
stat["focus_exec_times_by_version_action"][version][action_type].append(time_val)
break
except Exception as e:
logger.warning(f"Failed to process cycle data: {e}")
continue
def _calculate_focus_averages(self, stats: Dict[str, Any]):
"""
计算Focus统计的平均值
"""
for _period_key, stat in stats.items():
# 计算全局阶段平均时间
for stage, times in stat[FOCUS_AVG_TIMES_BY_STAGE].items():
if times:
stat[FOCUS_AVG_TIMES_BY_STAGE][stage] = sum(times) / len(times)
else:
stat[FOCUS_AVG_TIMES_BY_STAGE][stage] = 0.0
# 计算按chat_id和action_type的阶段平均时间
for chat_id, stage_times in stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION].items():
for stage, times in stage_times.items():
if times:
stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage] = sum(times) / len(times)
else:
stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage] = 0.0
# 计算按action_type的阶段平均时间
for action_type, stage_times in stat[FOCUS_AVG_TIMES_BY_ACTION].items():
for stage, times in stage_times.items():
if times:
stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage] = sum(times) / len(times)
else:
stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage] = 0.0
# 计算按聊天流和action类型的执行时间平均值
for chat_id, action_times in stat["focus_exec_times_by_chat_action"].items():
for action_type, times in action_times.items():
if times:
stat["focus_exec_times_by_chat_action"][chat_id][action_type] = sum(times) / len(times)
else:
stat["focus_exec_times_by_chat_action"][chat_id][action_type] = 0.0
# 计算按版本的阶段平均时间
for version, stage_times in stat[FOCUS_AVG_TIMES_BY_VERSION].items():
for stage, times in stage_times.items():
if times:
stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage] = sum(times) / len(times)
else:
stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage] = 0.0
# 计算按版本和action类型的执行时间平均值
for version, action_times in stat["focus_exec_times_by_version_action"].items():
for action_type, times in action_times.items():
if times:
stat["focus_exec_times_by_version_action"][version][action_type] = sum(times) / len(times)
else:
stat["focus_exec_times_by_version_action"][version][action_type] = 0.0
def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]:
"""
收集各时间段的统计数据
:param now: 基准当前时间
"""
last_all_time_stat = None
if "last_full_statistics" in local_storage:
# 如果存在上次完整统计数据,则使用该数据进行增量统计
last_stat: Dict[str, Any] = local_storage["last_full_statistics"] # 上次完整统计数据 # type: ignore
self.name_mapping = last_stat["name_mapping"] # 上次完整统计数据的名称映射
last_all_time_stat = last_stat["stat_data"] # 上次完整统计的统计数据
last_stat_timestamp = datetime.fromtimestamp(last_stat["timestamp"]) # 上次完整统计数据的时间戳
self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段
self.stat_period.append(("all_time", now - last_stat_timestamp, "自部署以来的"))
stat_start_timestamp = [(period[0], now - period[1]) for period in self.stat_period]
stat = {item[0]: {} for item in self.stat_period}
model_req_stat = self._collect_model_request_for_period(stat_start_timestamp)
online_time_stat = self._collect_online_time_for_period(stat_start_timestamp, now)
message_count_stat = self._collect_message_count_for_period(stat_start_timestamp)
focus_stat = self._collect_focus_statistics_for_period(stat_start_timestamp)
# 统计数据合并
# 合并四类统计数据
for period_key, _ in stat_start_timestamp:
stat[period_key].update(model_req_stat[period_key])
stat[period_key].update(online_time_stat[period_key])
stat[period_key].update(message_count_stat[period_key])
stat[period_key].update(focus_stat[period_key])
if last_all_time_stat:
# 若存在上次完整统计数据,则将其与当前统计数据合并
for key, val in last_all_time_stat.items():
# 确保当前统计数据中存在该key
if key not in stat["all_time"]:
continue
if isinstance(val, dict):
# 是字典类型,则进行合并
for sub_key, sub_val in val.items():
# 普通的数值或字典合并
if sub_key in stat["all_time"][key]:
# 检查是否为嵌套的字典类型(如版本统计)
if isinstance(sub_val, dict) and isinstance(stat["all_time"][key][sub_key], dict):
# 合并嵌套字典
for nested_key, nested_val in sub_val.items():
if nested_key in stat["all_time"][key][sub_key]:
stat["all_time"][key][sub_key][nested_key] += nested_val
else:
stat["all_time"][key][sub_key][nested_key] = nested_val
else:
# 普通数值累加
stat["all_time"][key][sub_key] += sub_val
else:
stat["all_time"][key][sub_key] = sub_val
else:
# 直接合并
stat["all_time"][key] += val
# 更新上次完整统计数据的时间戳
# 将所有defaultdict转换为普通dict以避免类型冲突
clean_stat_data = self._convert_defaultdict_to_dict(stat["all_time"])
local_storage["last_full_statistics"] = {
"name_mapping": self.name_mapping,
"stat_data": clean_stat_data,
"timestamp": now.timestamp(),
}
return stat
def _convert_defaultdict_to_dict(self, data):
# sourcery skip: dict-comprehension, extract-duplicate-method, inline-immediately-returned-variable, merge-duplicate-blocks
"""递归转换defaultdict为普通dict"""
if isinstance(data, defaultdict):
# 转换defaultdict为普通dict
result = {}
for key, value in data.items():
result[key] = self._convert_defaultdict_to_dict(value)
return result
elif isinstance(data, dict):
# 递归处理普通dict
result = {}
for key, value in data.items():
result[key] = self._convert_defaultdict_to_dict(value)
return result
else:
# 其他类型直接返回
return data
# -- 以下为统计数据格式化方法 --
@staticmethod
def _format_total_stat(stats: Dict[str, Any]) -> str:
"""
格式化总统计数据
"""
output = [
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
f"总消息数: {stats[TOTAL_MSG_CNT]}",
f"总请求数: {stats[TOTAL_REQ_CNT]}",
f"总花费: {stats[TOTAL_COST]:.4f}¥",
"",
]
return "\n".join(output)
@staticmethod
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
"""
格式化按模型分类的统计数据
"""
if stats[TOTAL_REQ_CNT] <= 0:
return ""
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
output = [
"按模型分类统计:",
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费",
]
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name
in_tokens = stats[IN_TOK_BY_MODEL][model_name]
out_tokens = stats[OUT_TOK_BY_MODEL][model_name]
tokens = stats[TOTAL_TOK_BY_MODEL][model_name]
cost = stats[COST_BY_MODEL][model_name]
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
output.append("")
return "\n".join(output)
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
"""
格式化聊天统计数据
"""
if stats[TOTAL_MSG_CNT] <= 0:
return ""
output = ["聊天消息统计:", " 联系人/群组名称 消息数量"]
output.extend(
f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}"
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items())
)
output.append("")
return "\n".join(output)
def _format_focus_stat(self, stats: Dict[str, Any]) -> str:
"""
格式化Focus统计数据
"""
if stats[FOCUS_TOTAL_CYCLES] <= 0:
return ""
output = ["Focus系统统计:", f"总循环数: {stats[FOCUS_TOTAL_CYCLES]}", ""]
# 全局阶段平均时间
if stats[FOCUS_AVG_TIMES_BY_STAGE]:
output.append("全局阶段平均时间:")
output.extend(f" {stage}: {avg_time:.3f}" for stage, avg_time in stats[FOCUS_AVG_TIMES_BY_STAGE].items())
output.append("")
# Action类型比例
if stats[FOCUS_ACTION_RATIOS]:
total_actions = sum(stats[FOCUS_ACTION_RATIOS].values())
output.append("Action类型分布:")
for action_type, count in sorted(stats[FOCUS_ACTION_RATIOS].items()):
ratio = (count / total_actions) * 100 if total_actions > 0 else 0
output.append(f" {action_type}: {count} ({ratio:.1f}%)")
output.append("")
# 按Chat统计仅显示前10个
if stats[FOCUS_CYCLE_CNT_BY_CHAT]:
output.append("按聊天流统计 (前10):")
sorted_chats = sorted(stats[FOCUS_CYCLE_CNT_BY_CHAT].items(), key=lambda x: x[1], reverse=True)[:10]
for chat_id, count in sorted_chats:
chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0]
output.append(f" {chat_name[:30]}: {count} 循环")
output.append("")
return "\n".join(output)
def _get_chat_display_name_from_id(self, chat_id: str) -> str:
"""从chat_id获取显示名称"""
try:
# 首先尝试从chat_stream获取真实群组名称
from src.chat.message_receive.chat_stream import get_chat_manager
chat_manager = get_chat_manager()
if chat_id in chat_manager.streams:
stream = chat_manager.streams[chat_id]
if stream.group_info and hasattr(stream.group_info, "group_name"):
group_name = stream.group_info.group_name
if group_name and group_name.strip():
return group_name.strip()
elif stream.user_info and hasattr(stream.user_info, "user_nickname"):
user_name = stream.user_info.user_nickname
if user_name and user_name.strip():
return user_name.strip()
# 如果从chat_stream获取失败尝试解析chat_id格式
if chat_id.startswith("g"):
return f"群聊{chat_id[1:]}"
elif chat_id.startswith("u"):
return f"用户{chat_id[1:]}"
else:
return chat_id
except Exception as e:
logger.warning(f"获取聊天显示名称失败: {e}")
return chat_id
def _generate_html_report(self, stat: dict[str, Any], now: datetime):
"""
生成HTML格式的统计报告
:param stat: 统计数据
:param now: 基准当前时间
:return: HTML格式的统计报告
"""
tab_list = [
f'<button class="tab-link" onclick="showTab(event, \'{period[0]}\')">{period[2]}</button>'
for period in self.stat_period
]
# 添加Focus统计、版本对比和图表选项卡
tab_list.append('<button class="tab-link" onclick="showTab(event, \'focus\')">Focus统计</button>')
tab_list.append('<button class="tab-link" onclick="showTab(event, \'versions\')">版本对比</button>')
tab_list.append('<button class="tab-link" onclick="showTab(event, \'charts\')">数据图表</button>')
def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str:
"""
格式化一个时间段的统计数据到html div块
:param stat_data: 统计数据
:param div_id: div的ID
:param start_time: 统计时间段开始时间
"""
# format总在线时间
# 按模型分类统计
model_rows = "\n".join(
[
f"<tr>"
f"<td>{model_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.4f} ¥</td>"
f"</tr>"
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
]
)
# 按请求类型分类统计
type_rows = "\n".join(
[
f"<tr>"
f"<td>{req_type}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.4f} ¥</td>"
f"</tr>"
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
]
)
# 按模块分类统计
module_rows = "\n".join(
[
f"<tr>"
f"<td>{module_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[COST_BY_MODULE][module_name]:.4f} ¥</td>"
f"</tr>"
for module_name, count in sorted(stat_data[REQ_CNT_BY_MODULE].items())
]
)
# 聊天消息统计
chat_rows = "\n".join(
[
f"<tr><td>{self.name_mapping[chat_id][0]}</td><td>{count}</td></tr>"
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items())
]
)
# Focus统计数据
# focus_action_rows = ""
# focus_chat_rows = ""
# focus_stage_rows = ""
# focus_action_stage_rows = ""
if stat_data.get(FOCUS_TOTAL_CYCLES, 0) > 0:
# Action类型统计
total_actions = sum(stat_data[FOCUS_ACTION_RATIOS].values()) if stat_data[FOCUS_ACTION_RATIOS] else 0
_focus_action_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count / total_actions * 100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
]
)
# 按聊天流统计
_focus_chat_rows = "\n".join(
[
f"<tr><td>{self.name_mapping.get(chat_id, (chat_id, 0))[0]}</td><td>{count}</td><td>{stat_data[FOCUS_TOTAL_TIME_BY_CHAT].get(chat_id, 0):.2f}秒</td></tr>"
for chat_id, count in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].items(), key=lambda x: x[1], reverse=True
)
]
)
# 全局阶段时间统计
_focus_stage_rows = "\n".join(
[
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
]
)
# 按Action类型的阶段时间统计
focus_action_stage_items = []
for action_type, stage_times in stat_data[FOCUS_AVG_TIMES_BY_ACTION].items():
for stage, avg_time in stage_times.items():
focus_action_stage_items.append((action_type, stage, avg_time))
_focus_action_stage_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for action_type, stage, avg_time in sorted(focus_action_stage_items)
]
)
# 生成HTML
return f"""
<div id=\"{div_id}\" class=\"tab-content\">
<p class=\"info-item\">
<strong>统计时段: </strong>
{start_time.strftime("%Y-%m-%d %H:%M:%S")} ~ {now.strftime("%Y-%m-%d %H:%M:%S")}
</p>
<p class=\"info-item\"><strong>总在线时间: </strong>{_format_online_time(stat_data[ONLINE_TIME])}</p>
<p class=\"info-item\"><strong>总消息数: </strong>{stat_data[TOTAL_MSG_CNT]}</p>
<p class=\"info-item\"><strong>总请求数: </strong>{stat_data[TOTAL_REQ_CNT]}</p>
<p class=\"info-item\"><strong>总花费: </strong>{stat_data[TOTAL_COST]:.4f} ¥</p>
<h2>按模型分类统计</h2>
<table>
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr></thead>
<tbody>
{model_rows}
</tbody>
</table>
<h2>按模块分类统计</h2>
<table>
<thead>
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{module_rows}
</tbody>
</table>
<h2>按请求类型分类统计</h2>
<table>
<thead>
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
</thead>
<tbody>
{type_rows}
</tbody>
</table>
<h2>聊天消息统计</h2>
<table>
<thead>
<tr><th>联系人/群组名称</th><th>消息数量</th></tr>
</thead>
<tbody>
{chat_rows}
</tbody>
</table>
</div>
"""
tab_content_list = [
_format_stat_data(stat[period[0]], period[0], now - period[1])
for period in self.stat_period
if period[0] != "all_time"
]
tab_content_list.append(
_format_stat_data(stat["all_time"], "all_time", datetime.fromtimestamp(local_storage["deploy_time"])) # type: ignore
)
# 添加Focus统计内容
focus_tab = self._generate_focus_tab(stat)
tab_content_list.append(focus_tab)
# 添加版本对比内容
versions_tab = self._generate_versions_tab(stat)
tab_content_list.append(versions_tab)
# 添加图表内容
chart_data = self._generate_chart_data(stat)
tab_content_list.append(self._generate_chart_tab(chart_data))
joined_tab_list = "\n".join(tab_list)
joined_tab_content = "\n".join(tab_content_list)
html_template = (
"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>MaiBot运行统计报告</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f7f6;
color: #333;
line-height: 1.6;
}
.container {
max-width: 900px;
margin: 20px auto;
background-color: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1, h2 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 10px;
margin-top: 0;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
p {
margin-bottom: 10px;
}
.info-item {
background-color: #ecf0f1;
padding: 8px 12px;
border-radius: 4px;
margin-bottom: 8px;
font-size: 0.95em;
}
.info-item strong {
color: #2980b9;
}
table {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
font-size: 0.9em;
}
th, td {
border: 1px solid #ddd;
padding: 10px;
text-align: left;
}
th {
background-color: #3498db;
color: white;
font-weight: bold;
}
tr:nth-child(even) {
background-color: #f9f9f9;
}
.footer {
text-align: center;
margin-top: 30px;
font-size: 0.8em;
color: #7f8c8d;
}
.tabs {
overflow: hidden;
background: #ecf0f1;
display: flex;
}
.tabs button {
background: inherit; border: none; outline: none;
padding: 14px 16px; cursor: pointer;
transition: 0.3s; font-size: 16px;
}
.tabs button:hover {
background-color: #d4dbdc;
}
.tabs button.active {
background-color: #b3bbbd;
}
.tab-content {
display: none;
padding: 20px;
background-color: #fff;
border: 1px solid #ccc;
}
.tab-content.active {
display: block;
}
</style>
</head>
<body>
"""
+ f"""
<div class="container">
<h1>MaiBot运行统计报告</h1>
<p class="info-item"><strong>统计截止时间:</strong> {now.strftime("%Y-%m-%d %H:%M:%S")}</p>
<div class="tabs">
{joined_tab_list}
</div>
{joined_tab_content}
</div>
"""
+ """
<script>
let i, tab_content, tab_links;
tab_content = document.getElementsByClassName("tab-content");
tab_links = document.getElementsByClassName("tab-link");
tab_content[0].classList.add("active");
tab_links[0].classList.add("active");
function showTab(evt, tabName) {{
for (i = 0; i < tab_content.length; i++) tab_content[i].classList.remove("active");
for (i = 0; i < tab_links.length; i++) tab_links[i].classList.remove("active");
document.getElementById(tabName).classList.add("active");
evt.currentTarget.classList.add("active");
}}
</script>
</body>
</html>
"""
)
with open(self.record_file_path, "w", encoding="utf-8") as f:
f.write(html_template)
def _generate_focus_tab(self, stat: dict[str, Any]) -> str:
# sourcery skip: for-append-to-extend, list-comprehension, use-any
"""生成Focus统计独立分页的HTML内容"""
# 为每个时间段准备Focus数据
focus_sections = []
for period_name, period_delta, period_desc in self.stat_period:
stat_data = stat.get(period_name, {})
if stat_data.get(FOCUS_TOTAL_CYCLES, 0) <= 0:
continue
# 生成Focus统计数据行
focus_action_rows = ""
focus_chat_rows = ""
focus_stage_rows = ""
focus_action_stage_rows = ""
# Action类型统计
total_actions = sum(stat_data[FOCUS_ACTION_RATIOS].values()) if stat_data[FOCUS_ACTION_RATIOS] else 0
if total_actions > 0:
focus_action_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count / total_actions * 100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
]
)
# 按聊天流统计横向表格显示各阶段时间差异和不同action的平均时间
focus_chat_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION]:
# 获取前三个阶段(不包括执行动作)
basic_stages = ["观察", "规划器"]
existing_basic_stages = []
for stage in basic_stages:
# 检查是否有任何聊天流在这个阶段有数据
stage_exists = False
for _chat_id, stage_times in stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION].items():
if stage in stage_times:
stage_exists = True
break
if stage_exists:
existing_basic_stages.append(stage)
# 获取所有action类型按出现频率排序
all_action_types = sorted(
stat_data[FOCUS_ACTION_RATIOS].keys(), key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x], reverse=True
)
# 为每个聊天流生成一行
chat_rows = []
for chat_id in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x],
reverse=True,
):
chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0]
cycle_count = stat_data[FOCUS_CYCLE_CNT_BY_CHAT][chat_id]
# 获取该聊天流的各阶段平均时间
stage_times = stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION].get(chat_id, {})
row_cells = [f"<td><strong>{chat_name}</strong><br><small>({cycle_count}次循环)</small></td>"]
# 添加基础阶段时间
for stage in existing_basic_stages:
time_val = stage_times.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
# 添加每个action类型的平均执行时间
for action_type in all_action_types:
# 使用真实的按聊天流+action类型分组的执行时间数据
exec_times_by_chat_action = stat_data.get("focus_exec_times_by_chat_action", {})
chat_action_times = exec_times_by_chat_action.get(chat_id, {})
avg_exec_time = chat_action_times.get(action_type, 0.0)
if avg_exec_time > 0:
row_cells.append(f"<td>{avg_exec_time:.3f}秒</td>")
else:
row_cells.append("<td>-</td>")
chat_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
stage_headers = "".join([f"<th>{stage}</th>" for stage in existing_basic_stages])
action_headers = "".join(
[f"<th>{action_type}<br><small>(执行)</small></th>" for action_type in all_action_types]
)
focus_chat_table_header = f"<tr><th>聊天流</th>{stage_headers}{action_headers}</tr>"
focus_chat_rows = focus_chat_table_header + "\n" + "\n".join(chat_rows)
# 全局阶段时间统计
focus_stage_rows = "\n".join(
[
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
]
)
# 聊天流Action选择比例对比表横向表格
focus_chat_action_ratios_rows = ""
if stat_data.get("focus_action_ratios_by_chat"):
if all_action_types_for_ratio := sorted(
stat_data[FOCUS_ACTION_RATIOS].keys(),
key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x],
reverse=True,
):
# 为每个聊天流生成数据行(按循环数排序)
chat_ratio_rows = []
for chat_id in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x],
reverse=True,
):
chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0]
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_CHAT][chat_id]
chat_action_counts = stat_data["focus_action_ratios_by_chat"].get(chat_id, {})
row_cells = [f"<td><strong>{chat_name}</strong><br><small>({total_cycles}次循环)</small></td>"]
# 添加每个action类型的数量和百分比
for action_type in all_action_types_for_ratio:
count = chat_action_counts.get(action_type, 0)
ratio = (count / total_cycles * 100) if total_cycles > 0 else 0
if count > 0:
row_cells.append(f"<td>{count}<br><small>({ratio:.1f}%)</small></td>")
else:
row_cells.append("<td>-<br><small>(0%)</small></td>")
chat_ratio_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
action_headers = "".join([f"<th>{action_type}</th>" for action_type in all_action_types_for_ratio])
chat_action_ratio_table_header = f"<tr><th>聊天流</th>{action_headers}</tr>"
focus_chat_action_ratios_rows = chat_action_ratio_table_header + "\n" + "\n".join(chat_ratio_rows)
# 按Action类型的阶段时间统计横向表格
focus_action_stage_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_ACTION]:
# 获取所有阶段(按固定顺序)
stage_order = ["观察", "规划器", "执行动作"]
all_stages = []
for stage in stage_order:
if any(stage in stage_times for stage_times in stat_data[FOCUS_AVG_TIMES_BY_ACTION].values()):
all_stages.append(stage)
# 为每个Action类型生成一行
action_rows = []
for action_type in sorted(stat_data[FOCUS_AVG_TIMES_BY_ACTION].keys()):
stage_times = stat_data[FOCUS_AVG_TIMES_BY_ACTION][action_type]
row_cells = [f"<td><strong>{action_type}</strong></td>"]
for stage in all_stages:
time_val = stage_times.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
action_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
stage_headers = "".join([f"<th>{stage}</th>" for stage in all_stages])
focus_action_stage_table_header = f"<tr><th>Action类型</th>{stage_headers}</tr>"
focus_action_stage_rows = focus_action_stage_table_header + "\n" + "\n".join(action_rows)
# 计算时间范围
if period_name == "all_time":
from src.manager.local_store_manager import local_storage
start_time = datetime.fromtimestamp(local_storage["deploy_time"]) # type: ignore
else:
start_time = datetime.now() - period_delta
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
# 生成该时间段的Focus统计HTML
section_html = f"""
<div class="focus-period-section">
<h2>{period_desc}Focus统计</h2>
<p class="info-item"><strong>统计时段:</strong> {time_range}</p>
<p class="info-item"><strong>总循环数:</strong> {stat_data.get(FOCUS_TOTAL_CYCLES, 0)}</p>
<div class="focus-stats-grid">
<div class="focus-stat-item">
<h3>全局阶段平均时间</h3>
<table>
<thead><tr><th>阶段</th><th>平均时间</th></tr></thead>
<tbody>{focus_stage_rows}</tbody>
</table>
</div>
<div class="focus-stat-item">
<h3>Action类型分布</h3>
<table>
<thead><tr><th>Action类型</th><th>次数</th><th>占比</th></tr></thead>
<tbody>{focus_action_rows}</tbody>
</table>
</div>
</div>
<div class="focus-stat-item">
<h3>按聊天流各阶段时间统计</h3>
<table class="chat-stage-table">
<thead></thead>
<tbody>{focus_chat_rows}</tbody>
</table>
</div>
<div class="focus-stat-item">
<h3>聊天流Action选择比例对比</h3>
<table class="chat-action-ratio-table">
<thead></thead>
<tbody>{focus_chat_action_ratios_rows}</tbody>
</table>
</div>
<div class="focus-stat-item">
<h3>Action类型阶段时间详情</h3>
<table class="action-stage-table">
<thead></thead>
<tbody>{focus_action_stage_rows}</tbody>
</table>
</div>
</div>
"""
focus_sections.append(section_html)
# 如果没有任何Focus数据
if not focus_sections:
focus_sections.append("""
<div class="focus-period-section">
<h2>暂无Focus统计数据</h2>
<p class="info-item">在指定时间段内未找到任何Focus循环数据。</p>
<p class="info-item">请确保 <code>log/hfc_loop/</code> 目录下存在相应的JSON文件。</p>
</div>
""")
return f"""
<div id="focus" class="tab-content">
<h1>Focus系统详细统计</h1>
<p class="info-item">
<strong>数据来源:</strong> log/hfc_loop/ 目录下的JSON文件<br>
<strong>统计内容:</strong> 各时间段的Focus循环性能分析
</p>
{"".join(focus_sections)}
<style>
.focus-period-section {{
margin-bottom: 40px;
padding: 20px;
border: 1px solid #ddd;
border-radius: 8px;
background-color: #fafafa;
}}
.focus-stats-grid {{
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin: 20px 0;
}}
.focus-stat-item {{
background-color: white;
padding: 15px;
border-radius: 6px;
border: 1px solid #eee;
}}
.focus-stat-item h3 {{
margin-top: 0;
color: #2c3e50;
border-bottom: 1px solid #3498db;
padding-bottom: 5px;
}}
@media (max-width: 768px) {{
.focus-stats-grid {{
grid-template-columns: 1fr;
}}
}}
/* 为横向表格添加特殊样式 */
.focus-stat-item table.action-stage-table,
.focus-stat-item table.chat-stage-table,
.focus-stat-item table.chat-action-ratio-table {{
width: 100%;
overflow-x: auto;
display: block;
white-space: nowrap;
}}
.focus-stat-item table.action-stage-table tbody,
.focus-stat-item table.chat-stage-table tbody,
.focus-stat-item table.chat-action-ratio-table tbody {{
display: table;
width: 100%;
}}
.focus-stat-item table.action-stage-table tr:first-child,
.focus-stat-item table.chat-stage-table tr:first-child,
.focus-stat-item table.chat-action-ratio-table tr:first-child {{
background-color: #3498db;
color: white;
font-weight: bold;
}}
.focus-stat-item table.action-stage-table tr:first-child td,
.focus-stat-item table.chat-stage-table tr:first-child td,
.focus-stat-item table.chat-action-ratio-table tr:first-child td {{
background-color: #3498db !important;
color: white !important;
font-weight: bold;
}}
/* 为聊天流表格添加额外样式 */
.focus-stat-item table.chat-stage-table td:first-child,
.focus-stat-item table.chat-action-ratio-table td:first-child {{
min-width: 150px;
max-width: 200px;
word-wrap: break-word;
white-space: normal;
}}
.focus-stat-item table.chat-stage-table small,
.focus-stat-item table.chat-action-ratio-table small {{
color: #7f8c8d;
font-size: 0.8em;
}}
/* 聊天流Action比例表格的特殊样式 */
.focus-stat-item table.chat-action-ratio-table {{
border-spacing: 0;
}}
.focus-stat-item table.chat-action-ratio-table td {{
text-align: center;
padding: 8px;
}}
.focus-stat-item table.chat-action-ratio-table td:first-child {{
text-align: left;
font-weight: bold;
}}
</style>
</div>
"""
def _generate_versions_tab(self, stat: dict[str, Any]) -> str:
"""生成版本对比独立分页的HTML内容"""
# 为每个时间段准备版本对比数据
version_sections = []
for period_name, period_delta, period_desc in self.stat_period:
stat_data = stat.get(period_name, {})
if not stat_data.get(FOCUS_CYCLE_CNT_BY_VERSION):
continue
# 获取所有版本(按循环数排序)
all_versions = sorted(
stat_data[FOCUS_CYCLE_CNT_BY_VERSION].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_VERSION][x],
reverse=True,
)
# 生成版本Action分布表
focus_version_action_rows = ""
if stat_data[FOCUS_ACTION_RATIOS_BY_VERSION]:
# 获取所有action类型
all_action_types_for_version = set()
for version_actions in stat_data[FOCUS_ACTION_RATIOS_BY_VERSION].values():
all_action_types_for_version.update(version_actions.keys())
all_action_types_for_version = sorted(all_action_types_for_version)
if all_action_types_for_version:
version_action_rows = []
for version in all_versions:
version_actions = stat_data[FOCUS_ACTION_RATIOS_BY_VERSION].get(version, {})
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_VERSION][version]
row_cells = [f"<td><strong>{version}</strong><br><small>({total_cycles}次循环)</small></td>"]
for action_type in all_action_types_for_version:
count = version_actions.get(action_type, 0)
ratio = (count / total_cycles * 100) if total_cycles > 0 else 0
row_cells.append(f"<td>{count}<br><small>({ratio:.1f}%)</small></td>")
version_action_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
action_headers = "".join(
[f"<th>{action_type}</th>" for action_type in all_action_types_for_version]
)
version_action_table_header = f"<tr><th>版本</th>{action_headers}</tr>"
focus_version_action_rows = version_action_table_header + "\n" + "\n".join(version_action_rows)
# 生成版本阶段时间表按action类型分解执行时间
focus_version_stage_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_VERSION]:
# 基础三个阶段
basic_stages = ["观察", "规划器"]
# 获取所有action类型用于执行时间列
all_action_types_for_exec = set()
if stat_data.get("focus_exec_times_by_version_action"):
for version_actions in stat_data["focus_exec_times_by_version_action"].values():
all_action_types_for_exec.update(version_actions.keys())
all_action_types_for_exec = sorted(all_action_types_for_exec)
# 检查哪些基础阶段存在数据
existing_basic_stages = []
for stage in basic_stages:
stage_exists = False
for version_stages in stat_data[FOCUS_AVG_TIMES_BY_VERSION].values():
if stage in version_stages:
stage_exists = True
break
if stage_exists:
existing_basic_stages.append(stage)
# 构建表格
if existing_basic_stages or all_action_types_for_exec:
version_stage_rows = []
# 为每个版本生成数据行
for version in all_versions:
version_stages = stat_data[FOCUS_AVG_TIMES_BY_VERSION].get(version, {})
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_VERSION][version]
row_cells = [f"<td><strong>{version}</strong><br><small>({total_cycles}次循环)</small></td>"]
# 添加基础阶段时间
for stage in existing_basic_stages:
time_val = version_stages.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
# 添加不同action类型的执行时间
for action_type in all_action_types_for_exec:
# 获取该版本该action类型的平均执行时间
version_exec_times = stat_data.get("focus_exec_times_by_version_action", {})
if version in version_exec_times and action_type in version_exec_times[version]:
exec_time = version_exec_times[version][action_type]
row_cells.append(f"<td>{exec_time:.3f}秒</td>")
else:
row_cells.append("<td>-</td>")
version_stage_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
basic_headers = "".join([f"<th>{stage}</th>" for stage in existing_basic_stages])
action_headers = "".join(
[
f"<th>执行时间<br><small>[{action_type}]</small></th>"
for action_type in all_action_types_for_exec
]
)
version_stage_table_header = f"<tr><th>版本</th>{basic_headers}{action_headers}</tr>"
focus_version_stage_rows = version_stage_table_header + "\n" + "\n".join(version_stage_rows)
# 计算时间范围
if period_name == "all_time":
from src.manager.local_store_manager import local_storage
start_time = datetime.fromtimestamp(local_storage["deploy_time"]) # type: ignore
else:
start_time = datetime.now() - period_delta
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
# 生成该时间段的版本对比HTML
section_html = f"""
<div class="version-period-section">
<h2>{period_desc}版本对比</h2>
<p class="info-item"><strong>统计时段:</strong> {time_range}</p>
<p class="info-item"><strong>包含版本:</strong> {len(all_versions)} 个版本</p>
<div class="version-stats-grid">
<div class="version-stat-item">
<h3>版本Action类型分布对比</h3>
<table class="version-comparison-table">
<thead></thead>
<tbody>{focus_version_action_rows}</tbody>
</table>
</div>
<div class="version-stat-item">
<h3>版本阶段时间对比</h3>
<table class="version-comparison-table">
<thead></thead>
<tbody>{focus_version_stage_rows}</tbody>
</table>
</div>
</div>
</div>
"""
version_sections.append(section_html)
# 如果没有任何版本数据
if not version_sections:
version_sections.append("""
<div class="version-period-section">
<h2>暂无版本对比数据</h2>
<p class="info-item">在指定时间段内未找到任何版本信息。</p>
<p class="info-item">请确保 <code>log/hfc_loop/</code> 目录下的JSON文件包含版本信息。</p>
</div>
""")
return f"""
<div id="versions" class="tab-content">
<h1>Focus HFC版本对比分析</h1>
<p class="info-item">
<strong>对比内容:</strong> 不同版本的Action类型分布和各阶段性能表现<br>
<strong>数据来源:</strong> log/hfc_loop/ 目录下JSON文件中的version字段
</p>
{"".join(version_sections)}
<style>
.version-period-section {{
margin-bottom: 40px;
padding: 20px;
border: 1px solid #e74c3c;
border-radius: 8px;
background-color: #fdf2f2;
}}
.version-stats-grid {{
display: grid;
grid-template-columns: 1fr;
gap: 30px;
margin: 20px 0;
}}
.version-stat-item {{
background-color: white;
padding: 15px;
border-radius: 6px;
border: 1px solid #eee;
}}
.version-stat-item h3 {{
margin-top: 0;
color: #c0392b;
border-bottom: 1px solid #e74c3c;
padding-bottom: 5px;
}}
@media (max-width: 768px) {{
.version-stats-grid {{
grid-template-columns: 1fr;
gap: 20px;
}}
}}
/* 版本对比表格样式 */
.version-stat-item table.version-comparison-table {{
width: 100%;
overflow-x: auto;
display: block;
white-space: nowrap;
}}
.version-stat-item table.version-comparison-table tbody {{
display: table;
width: 100%;
}}
.version-stat-item table.version-comparison-table tr:first-child {{
background-color: #e74c3c;
color: white;
font-weight: bold;
}}
.version-stat-item table.version-comparison-table tr:first-child td {{
background-color: #e74c3c !important;
color: white !important;
font-weight: bold;
}}
.version-stat-item table.version-comparison-table td:first-child {{
min-width: 120px;
font-weight: bold;
}}
.version-stat-item table.version-comparison-table small {{
color: #7f8c8d;
font-size: 0.8em;
}}
/* 版本差异高亮 */
.version-stat-item table.version-comparison-table tr:nth-child(even) {{
background-color: #f9f9f9;
}}
.version-stat-item table.version-comparison-table tr:hover {{
background-color: #f5f5f5;
}}
</style>
</div>
"""
def _generate_chart_data(self, stat: dict[str, Any]) -> dict:
"""生成图表数据"""
now = datetime.now()
chart_data = {}
# 支持多个时间范围
time_ranges = [
("6h", 6, 10), # 6小时10分钟间隔
("12h", 12, 15), # 12小时15分钟间隔
("24h", 24, 15), # 24小时15分钟间隔
("48h", 48, 30), # 48小时30分钟间隔
]
for range_key, hours, interval_minutes in time_ranges:
range_data = self._collect_interval_data(now, hours, interval_minutes)
chart_data[range_key] = range_data
return chart_data
def _collect_interval_data(self, now: datetime, hours: int, interval_minutes: int) -> dict:
"""收集指定时间范围内每个间隔的数据"""
# 生成时间点
start_time = now - timedelta(hours=hours)
time_points = []
current_time = start_time
while current_time <= now:
time_points.append(current_time)
current_time += timedelta(minutes=interval_minutes)
# 初始化数据结构
total_cost_data = [0] * len(time_points)
cost_by_model = {}
cost_by_module = {}
message_by_chat = {}
time_labels = [t.strftime("%H:%M") for t in time_points]
interval_seconds = interval_minutes * 60
# 查询LLM使用记录
query_start_time = start_time
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): # type: ignore
record_time = record.timestamp
# 找到对应的时间间隔索引
time_diff = (record_time - start_time).total_seconds()
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
# 累加总花费数据
cost = record.cost or 0.0
total_cost_data[interval_index] += cost # type: ignore
# 累加按模型分类的花费
model_name = record.model_name or "unknown"
if model_name not in cost_by_model:
cost_by_model[model_name] = [0] * len(time_points)
cost_by_model[model_name][interval_index] += cost
# 累加按模块分类的花费
request_type = record.request_type or "unknown"
module_name = request_type.split(".")[0] if "." in request_type else request_type
if module_name not in cost_by_module:
cost_by_module[module_name] = [0] * len(time_points)
cost_by_module[module_name][interval_index] += cost
# 查询消息记录
query_start_timestamp = start_time.timestamp()
for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
message_time_ts = message.time
# 找到对应的时间间隔索引
time_diff = message_time_ts - query_start_timestamp
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
# 确定聊天流名称
chat_name = None
if message.chat_info_group_id:
chat_name = message.chat_info_group_name or f"{message.chat_info_group_id}"
elif message.user_id:
chat_name = message.user_nickname or f"用户{message.user_id}"
else:
continue
if not chat_name:
continue
# 累加消息数
if chat_name not in message_by_chat:
message_by_chat[chat_name] = [0] * len(time_points)
message_by_chat[chat_name][interval_index] += 1
# 查询Focus循环记录
focus_cycles_by_action = {}
focus_time_by_stage = {}
log_dir = "log/hfc_loop"
if os.path.exists(log_dir):
json_files = glob.glob(os.path.join(log_dir, "*.json"))
for json_file in json_files:
try:
# 解析文件时间
filename = os.path.basename(json_file)
name_parts = filename.replace(".json", "").split("_")
if len(name_parts) >= 4:
date_str = name_parts[-2]
time_str = name_parts[-1]
file_time_str = f"{date_str}_{time_str}"
file_time = datetime.strptime(file_time_str, "%Y%m%d_%H%M%S")
if file_time >= start_time:
with open(json_file, "r", encoding="utf-8") as f:
cycles_data = json.load(f)
for cycle in cycles_data:
try:
timestamp_str = cycle.get("timestamp", "")
if timestamp_str:
cycle_time = datetime.fromisoformat(timestamp_str.replace("Z", "+00:00"))
else:
cycle_time = file_time
if cycle_time >= start_time:
# 计算时间间隔索引
time_diff = (cycle_time - start_time).total_seconds()
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
action_type = cycle.get("action_type", "unknown")
step_times = cycle.get("step_times", {})
# 累计action类型数据
if action_type not in focus_cycles_by_action:
focus_cycles_by_action[action_type] = [0] * len(time_points)
focus_cycles_by_action[action_type][interval_index] += 1
# 累计阶段时间数据
for stage, time_val in step_times.items():
if stage not in focus_time_by_stage:
focus_time_by_stage[stage] = [0] * len(time_points)
focus_time_by_stage[stage][interval_index] += time_val
except Exception:
continue
except Exception:
continue
return {
"time_labels": time_labels,
"total_cost_data": total_cost_data,
"cost_by_model": cost_by_model,
"cost_by_module": cost_by_module,
"message_by_chat": message_by_chat,
"focus_cycles_by_action": focus_cycles_by_action,
"focus_time_by_stage": focus_time_by_stage,
}
def _generate_chart_tab(self, chart_data: dict) -> str:
# sourcery skip: extract-duplicate-method, move-assign-in-block
"""生成图表选项卡HTML内容"""
# 生成不同颜色的调色板
colors = [
"#3498db",
"#e74c3c",
"#2ecc71",
"#f39c12",
"#9b59b6",
"#1abc9c",
"#34495e",
"#e67e22",
"#95a5a6",
"#f1c40f",
]
# 默认使用24小时数据生成数据集
default_data = chart_data["24h"]
# 为每个模型生成数据集
model_datasets = []
for i, (model_name, cost_data) in enumerate(default_data["cost_by_model"].items()):
color = colors[i % len(colors)]
model_datasets.append(f"""{{
label: '{model_name}',
data: {cost_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(model_datasets)
# 为每个模块生成数据集
module_datasets = []
for i, (module_name, cost_data) in enumerate(default_data["cost_by_module"].items()):
color = colors[i % len(colors)]
module_datasets.append(f"""{{
label: '{module_name}',
data: {cost_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(module_datasets)
# 为每个聊天流生成消息数据集
message_datasets = []
for i, (chat_name, message_data) in enumerate(default_data["message_by_chat"].items()):
color = colors[i % len(colors)]
message_datasets.append(f"""{{
label: '{chat_name}',
data: {message_data},
borderColor: '{color}',
backgroundColor: '{color}20',
tension: 0.4,
fill: false
}}""")
",\n ".join(message_datasets)
return f"""
<div id="charts" class="tab-content">
<h2>数据图表</h2>
<!-- 时间范围选择按钮 -->
<div style="margin: 20px 0; text-align: center;">
<label style="margin-right: 10px; font-weight: bold;">时间范围:</label>
<button class="time-range-btn" onclick="switchTimeRange('6h')">6小时</button>
<button class="time-range-btn" onclick="switchTimeRange('12h')">12小时</button>
<button class="time-range-btn active" onclick="switchTimeRange('24h')">24小时</button>
<button class="time-range-btn" onclick="switchTimeRange('48h')">48小时</button>
</div>
<div style="margin-top: 20px;">
<div style="margin-bottom: 40px;">
<canvas id="totalCostChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costByModuleChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costByModelChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="messageByChatChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="focusCyclesByActionChart" width="800" height="400"></canvas>
</div>
<div>
<canvas id="focusTimeByStageChart" width="800" height="400"></canvas>
</div>
</div>
<style>
.time-range-btn {{
background-color: #ecf0f1;
border: 1px solid #bdc3c7;
color: #2c3e50;
padding: 8px 16px;
margin: 0 5px;
border-radius: 4px;
cursor: pointer;
font-size: 14px;
transition: all 0.3s ease;
}}
.time-range-btn:hover {{
background-color: #d5dbdb;
}}
.time-range-btn.active {{
background-color: #3498db;
color: white;
border-color: #2980b9;
}}
</style>
<script>
const allChartData = {chart_data};
let currentCharts = {{}};
// 图表配置模板
const chartConfigs = {{
totalCost: {{
id: 'totalCostChart',
title: '总花费',
yAxisLabel: '花费 (¥)',
dataKey: 'total_cost_data',
fill: true
}},
costByModule: {{
id: 'costByModuleChart',
title: '各模块花费',
yAxisLabel: '花费 (¥)',
dataKey: 'cost_by_module',
fill: false
}},
costByModel: {{
id: 'costByModelChart',
title: '各模型花费',
yAxisLabel: '花费 (¥)',
dataKey: 'cost_by_model',
fill: false
}},
messageByChat: {{
id: 'messageByChatChart',
title: '各聊天流消息数',
yAxisLabel: '消息数',
dataKey: 'message_by_chat',
fill: false
}},
focusCyclesByAction: {{
id: 'focusCyclesByActionChart',
title: 'Focus循环按Action类型',
yAxisLabel: '循环数',
dataKey: 'focus_cycles_by_action',
fill: false
}},
focusTimeByStage: {{
id: 'focusTimeByStageChart',
title: 'Focus各阶段累计时间',
yAxisLabel: '时间 (秒)',
dataKey: 'focus_time_by_stage',
fill: false
}}
}};
function switchTimeRange(timeRange) {{
// 更新按钮状态
document.querySelectorAll('.time-range-btn').forEach(btn => {{
btn.classList.remove('active');
}});
event.target.classList.add('active');
// 更新图表数据
const data = allChartData[timeRange];
updateAllCharts(data, timeRange);
}}
function updateAllCharts(data, timeRange) {{
// 销毁现有图表
Object.values(currentCharts).forEach(chart => {{
if (chart) chart.destroy();
}});
currentCharts = {{}};
// 重新创建图表
createChart('totalCost', data, timeRange);
createChart('costByModule', data, timeRange);
createChart('costByModel', data, timeRange);
createChart('messageByChat', data, timeRange);
createChart('focusCyclesByAction', data, timeRange);
createChart('focusTimeByStage', data, timeRange);
}}
function createChart(chartType, data, timeRange) {{
const config = chartConfigs[chartType];
const colors = ['#3498db', '#e74c3c', '#2ecc71', '#f39c12', '#9b59b6', '#1abc9c', '#34495e', '#e67e22', '#95a5a6', '#f1c40f'];
let datasets = [];
if (chartType === 'totalCost') {{
datasets = [{{
label: config.title,
data: data[config.dataKey],
borderColor: colors[0],
backgroundColor: 'rgba(52, 152, 219, 0.1)',
tension: 0.4,
fill: config.fill
}}];
}} else {{
let i = 0;
Object.entries(data[config.dataKey]).forEach(([name, chartData]) => {{
datasets.push({{
label: name,
data: chartData,
borderColor: colors[i % colors.length],
backgroundColor: colors[i % colors.length] + '20',
tension: 0.4,
fill: config.fill
}});
i++;
}});
}}
currentCharts[chartType] = new Chart(document.getElementById(config.id), {{
type: 'line',
data: {{
labels: data.time_labels,
datasets: datasets
}},
options: {{
responsive: true,
plugins: {{
title: {{
display: true,
text: timeRange + '' + config.title + '趋势',
font: {{ size: 16 }}
}},
legend: {{
display: chartType !== 'totalCost',
position: 'top'
}}
}},
scales: {{
x: {{
title: {{
display: true,
text: '时间'
}},
ticks: {{
maxTicksLimit: 12
}}
}},
y: {{
title: {{
display: true,
text: config.yAxisLabel
}},
beginAtZero: true
}}
}},
interaction: {{
intersect: false,
mode: 'index'
}}
}}
}});
}}
// 初始化图表默认24小时
document.addEventListener('DOMContentLoaded', function() {{
updateAllCharts(allChartData['24h'], '24h');
}});
</script>
</div>
"""
class AsyncStatisticOutputTask(AsyncTask):
"""完全异步的统计输出任务 - 更高性能版本"""
def __init__(self, record_file_path: str = "maibot_statistics.html"):
# 延迟0秒启动运行间隔300秒
super().__init__(task_name="Async Statistics Data Output Task", wait_before_start=0, run_interval=300)
# 直接复用 StatisticOutputTask 的初始化逻辑
temp_stat_task = StatisticOutputTask(record_file_path)
self.name_mapping = temp_stat_task.name_mapping
self.record_file_path = temp_stat_task.record_file_path
self.stat_period = temp_stat_task.stat_period
async def run(self):
"""完全异步执行统计任务"""
async def _async_collect_and_output():
try:
now = datetime.now()
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
logger.info("正在后台收集统计数据...")
# 数据收集任务
collect_task = asyncio.create_task(
loop.run_in_executor(executor, self._collect_all_statistics, now) # type: ignore
)
stats = await collect_task
logger.info("统计数据收集完成")
# 创建并发的输出任务
output_tasks = [
asyncio.create_task(loop.run_in_executor(executor, self._statistic_console_output, stats, now)), # type: ignore
asyncio.create_task(loop.run_in_executor(executor, self._generate_html_report, stats, now)), # type: ignore
]
# 等待所有输出任务完成
await asyncio.gather(*output_tasks)
logger.info("统计数据后台输出完成")
except Exception as e:
logger.exception(f"后台统计数据输出过程中发生异常:{e}")
# 创建后台任务,立即返回
asyncio.create_task(_async_collect_and_output())
# 复用 StatisticOutputTask 的所有方法
def _collect_all_statistics(self, now: datetime):
return StatisticOutputTask._collect_all_statistics(self, now)
def _statistic_console_output(self, stats: Dict[str, Any], now: datetime):
return StatisticOutputTask._statistic_console_output(self, stats, now)
def _generate_html_report(self, stats: dict[str, Any], now: datetime):
return StatisticOutputTask._generate_html_report(self, stats, now)
# 其他需要的方法也可以类似复用...
@staticmethod
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_model_request_for_period(collect_period)
@staticmethod
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime]], now: datetime) -> Dict[str, Any]:
return StatisticOutputTask._collect_online_time_for_period(collect_period, now)
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_message_count_for_period(self, collect_period)
def _collect_focus_statistics_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_focus_statistics_for_period(self, collect_period)
def _process_focus_file_data(
self,
cycles_data: List[Dict],
stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]],
file_time: datetime,
):
return StatisticOutputTask._process_focus_file_data(self, cycles_data, stats, collect_period, file_time)
def _calculate_focus_averages(self, stats: Dict[str, Any]):
return StatisticOutputTask._calculate_focus_averages(self, stats)
@staticmethod
def _format_total_stat(stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_total_stat(stats)
@staticmethod
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_model_classified_stat(stats)
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_chat_stat(self, stats)
def _format_focus_stat(self, stats: Dict[str, Any]) -> str:
return StatisticOutputTask._format_focus_stat(self, stats)
def _generate_chart_data(self, stat: dict[str, Any]) -> dict:
return StatisticOutputTask._generate_chart_data(self, stat)
def _collect_interval_data(self, now: datetime, hours: int, interval_minutes: int) -> dict:
return StatisticOutputTask._collect_interval_data(self, now, hours, interval_minutes)
def _generate_chart_tab(self, chart_data: dict) -> str:
return StatisticOutputTask._generate_chart_tab(self, chart_data)
def _get_chat_display_name_from_id(self, chat_id: str) -> str:
return StatisticOutputTask._get_chat_display_name_from_id(self, chat_id)
def _generate_focus_tab(self, stat: dict[str, Any]) -> str:
return StatisticOutputTask._generate_focus_tab(self, stat)
def _generate_versions_tab(self, stat: dict[str, Any]) -> str:
return StatisticOutputTask._generate_versions_tab(self, stat)
def _convert_defaultdict_to_dict(self, data):
return StatisticOutputTask._convert_defaultdict_to_dict(self, data)