Files
Mofox-Core/template/model_config_template.toml
tt-P607 7dabc4273d 修复AttributeError异常**:
- 在ChatConfig中添加get_current_talk_frequency()方法
   - 在ExpressionConfig中添加get_expression_config_for_chat()方法,但是模型配置文件依旧被架空力😭😭😭我解决不了,帮帮我!雅诺狐姐姐!😭😭😭
2025-08-19 17:35:47 +08:00

218 lines
7.2 KiB
TOML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[inner]
version = "1.2.6"
# 配置文件版本号迭代规则同bot_config.toml
[[api_providers]] # API服务提供商可以配置多个
name = "DeepSeek" # API服务商名称可随意命名在models的api-provider中需使用这个命名
base_url = "https://api.deepseek.cn/v1" # API服务商的BaseURL
api_key = "your-api-key-here" # API密钥请替换为实际的API密钥
client_type = "openai" # 请求客户端(可选,默认值为"openai"使用gimini等Google系模型时请配置为"gemini"
max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
timeout = 30 # API请求超时时间单位
retry_interval = 10 # 重试间隔时间(单位:秒)
[[api_providers]] # SiliconFlow的API服务商配置
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
api_key = "your-siliconflow-api-key-here"
client_type = "openai"
max_retry = 2
timeout = 30
retry_interval = 10
[[api_providers]] # 特殊Google的Gimini使用特殊API与OpenAI格式不兼容需要配置client为"gemini"
name = "Google"
base_url = "https://api.google.com/v1"
api_key = "your-google-api-key-1"
client_type = "gemini"
max_retry = 2
timeout = 30
retry_interval = 10
# 内容混淆功能示例配置(可选)
[[api_providers]]
name = "ExampleProviderWithObfuscation" # 启用混淆功能的API提供商示例
base_url = "https://api.example.com/v1"
api_key = "your-api-key-here"
client_type = "openai"
max_retry = 2
timeout = 30
retry_interval = 10
enable_content_obfuscation = true # 启用内容混淆功能
obfuscation_intensity = 2 # 混淆强度1-3级1=低强度2=中强度3=高强度)
[[models]] # 模型(可以配置多个)
model_identifier = "deepseek-chat" # 模型标识符API服务商提供的模型标识符
name = "deepseek-v3" # 模型名称(可随意命名,在后面中需使用这个命名)
api_provider = "DeepSeek" # API服务商名称对应在api_providers中配置的服务商名称
price_in = 2.0 # 输入价格用于API调用统计单位元/ M token可选若无该字段默认值为0
price_out = 8.0 # 输出价格用于API调用统计单位元/ M token可选若无该字段默认值为0
#force_stream_mode = true # 强制流式输出模式若模型不支持非流式输出请取消该注释启用强制流式输出若无该字段默认值为false
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
name = "siliconflow-deepseek-v3"
api_provider = "SiliconFlow"
price_in = 2.0
price_out = 8.0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
price_in = 0.5
price_out = 2.0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "moonshotai/Kimi-K2-Instruct"
name = "moonshotai-Kimi-K2-Instruct"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[model_task_config.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
model_list = ["siliconflow-deepseek-v3"] # 使用的模型列表,每个子项对应上面的模型名称(name)
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800 # 最大输出token数
#concurrency_count = 2 # 并发请求数量默认为1不并发设置为2或更高启用并发
[model_task_config.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型
model_list = ["qwen3-8b"]
temperature = 0.7
max_tokens = 800
[model_task_config.replyer_1] # 首要回复模型,还用于表达器和表达方式学习
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.replyer_2] # 次要回复模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.7
max_tokens = 800
[model_task_config.planner] #决策:负责决定麦麦该做什么的模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.emotion] #负责麦麦的情绪变化
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.mood] #负责麦麦的心情变化
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.maizone] # maizone模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.7
max_tokens = 800
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
[model_task_config.emoji_vlm] # 专用表情包识别模型
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
[model_task_config.utils_video] # 专用视频分析模型
model_list = ["qwen2.5-vl-72b"]
temperature = 0.3
max_tokens = 1500
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
[model_task_config.tool_use] #工具调用模型,需要使用支持工具调用的模型
model_list = ["qwen3-14b"]
temperature = 0.7
max_tokens = 800
[model_task_config.schedule_generator]#日程表生成模型
model_list = ["deepseek-v3"]
temperature = 0.7
max_tokens = 1000
[model_task_config.anti_injection] # 反注入检测专用模型
model_list = ["moonshotai-Kimi-K2-Instruct"] # 使用快速的小模型进行检测
temperature = 0.1 # 低温度确保检测结果稳定
max_tokens = 200 # 检测结果不需要太长的输出
#嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
#------------LPMM知识库模型------------
[model_task_config.lpmm_entity_extract] # 实体提取模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_qa] # 问答模型
model_list = ["deepseek-r1-distill-qwen-32b"]
temperature = 0.7
max_tokens = 800