- 修复异常处理链,使用from语法保留原始异常 - 格式化代码以符合项目规范 - 优化导入模块的顺序 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
237 lines
9.8 KiB
Python
237 lines
9.8 KiB
Python
import random
|
|
import time
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
from nonebot import get_driver
|
|
|
|
from ...common.database import db
|
|
from ..models.utils_model import LLM_request
|
|
from .config import global_config
|
|
from .message import MessageRecv, MessageThinking, Message
|
|
from .prompt_builder import prompt_builder
|
|
from .utils import process_llm_response
|
|
from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG
|
|
|
|
# 定义日志配置
|
|
llm_config = LogConfig(
|
|
# 使用消息发送专用样式
|
|
console_format=LLM_STYLE_CONFIG["console_format"],
|
|
file_format=LLM_STYLE_CONFIG["file_format"],
|
|
)
|
|
|
|
logger = get_module_logger("llm_generator", config=llm_config)
|
|
|
|
driver = get_driver()
|
|
config = driver.config
|
|
|
|
|
|
class ResponseGenerator:
|
|
def __init__(self):
|
|
self.model_r1 = LLM_request(
|
|
model=global_config.llm_reasoning,
|
|
temperature=0.7,
|
|
max_tokens=1000,
|
|
stream=True,
|
|
)
|
|
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7, max_tokens=3000)
|
|
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7, max_tokens=3000)
|
|
self.model_v25 = LLM_request(model=global_config.llm_normal_minor, temperature=0.7, max_tokens=3000)
|
|
self.current_model_type = "r1" # 默认使用 R1
|
|
|
|
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
|
|
"""根据当前模型类型选择对应的生成函数"""
|
|
# 从global_config中获取模型概率值并选择模型
|
|
rand = random.random()
|
|
if rand < global_config.MODEL_R1_PROBABILITY:
|
|
self.current_model_type = "r1"
|
|
current_model = self.model_r1
|
|
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
|
|
self.current_model_type = "v3"
|
|
current_model = self.model_v3
|
|
else:
|
|
self.current_model_type = "r1_distill"
|
|
current_model = self.model_r1_distill
|
|
|
|
logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中")
|
|
|
|
model_response = await self._generate_response_with_model(message, current_model)
|
|
raw_content = model_response
|
|
|
|
# print(f"raw_content: {raw_content}")
|
|
# print(f"model_response: {model_response}")
|
|
|
|
if model_response:
|
|
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
|
|
model_response = await self._process_response(model_response)
|
|
if model_response:
|
|
return model_response, raw_content
|
|
return None, raw_content
|
|
|
|
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request) -> Optional[str]:
|
|
"""使用指定的模型生成回复"""
|
|
sender_name = ""
|
|
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
|
|
sender_name = (
|
|
f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]"
|
|
f"{message.chat_stream.user_info.user_cardname}"
|
|
)
|
|
elif message.chat_stream.user_info.user_nickname:
|
|
sender_name = f"({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}"
|
|
else:
|
|
sender_name = f"用户({message.chat_stream.user_info.user_id})"
|
|
|
|
# 构建prompt
|
|
prompt, prompt_check = await prompt_builder._build_prompt(
|
|
message.chat_stream,
|
|
message_txt=message.processed_plain_text,
|
|
sender_name=sender_name,
|
|
stream_id=message.chat_stream.stream_id,
|
|
)
|
|
|
|
# 读空气模块 简化逻辑,先停用
|
|
# if global_config.enable_kuuki_read:
|
|
# content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
|
|
# print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
|
|
# if 'yes' not in content_check.lower() and random.random() < 0.3:
|
|
# self._save_to_db(
|
|
# message=message,
|
|
# sender_name=sender_name,
|
|
# prompt=prompt,
|
|
# prompt_check=prompt_check,
|
|
# content="",
|
|
# content_check=content_check,
|
|
# reasoning_content="",
|
|
# reasoning_content_check=reasoning_content_check
|
|
# )
|
|
# return None
|
|
|
|
# 生成回复
|
|
try:
|
|
content, reasoning_content = await model.generate_response(prompt)
|
|
except Exception:
|
|
logger.exception("生成回复时出错")
|
|
return None
|
|
|
|
# 保存到数据库
|
|
self._save_to_db(
|
|
message=message,
|
|
sender_name=sender_name,
|
|
prompt=prompt,
|
|
prompt_check=prompt_check,
|
|
content=content,
|
|
# content_check=content_check if global_config.enable_kuuki_read else "",
|
|
reasoning_content=reasoning_content,
|
|
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
|
|
)
|
|
|
|
return content
|
|
|
|
# def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
|
|
# content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
|
|
def _save_to_db(
|
|
self,
|
|
message: MessageRecv,
|
|
sender_name: str,
|
|
prompt: str,
|
|
prompt_check: str,
|
|
content: str,
|
|
reasoning_content: str,
|
|
):
|
|
"""保存对话记录到数据库"""
|
|
db.reasoning_logs.insert_one(
|
|
{
|
|
"time": time.time(),
|
|
"chat_id": message.chat_stream.stream_id,
|
|
"user": sender_name,
|
|
"message": message.processed_plain_text,
|
|
"model": self.current_model_type,
|
|
# 'reasoning_check': reasoning_content_check,
|
|
# 'response_check': content_check,
|
|
"reasoning": reasoning_content,
|
|
"response": content,
|
|
"prompt": prompt,
|
|
"prompt_check": prompt_check,
|
|
}
|
|
)
|
|
|
|
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
|
|
"""提取情感标签,结合立场和情绪"""
|
|
try:
|
|
# 构建提示词,结合回复内容、被回复的内容以及立场分析
|
|
prompt = f"""
|
|
请根据以下对话内容,完成以下任务:
|
|
1. 判断回复者的立场是"supportive"(支持)、"opposed"(反对)还是"neutrality"(中立)。
|
|
2. 从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。
|
|
3. 按照"立场-情绪"的格式输出结果,例如:"supportive-happy"。
|
|
|
|
被回复的内容:
|
|
{processed_plain_text}
|
|
|
|
回复内容:
|
|
{content}
|
|
|
|
请分析回复者的立场和情感倾向,并输出结果:
|
|
"""
|
|
|
|
# 调用模型生成结果
|
|
result, _ = await self.model_v25.generate_response(prompt)
|
|
result = result.strip()
|
|
|
|
# 解析模型输出的结果
|
|
if "-" in result:
|
|
stance, emotion = result.split("-", 1)
|
|
valid_stances = ["supportive", "opposed", "neutrality"]
|
|
valid_emotions = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
|
|
if stance in valid_stances and emotion in valid_emotions:
|
|
return stance, emotion # 返回有效的立场-情绪组合
|
|
else:
|
|
return "neutrality", "neutral" # 默认返回中立-中性
|
|
else:
|
|
return "neutrality", "neutral" # 格式错误时返回默认值
|
|
|
|
except Exception as e:
|
|
print(f"获取情感标签时出错: {e}")
|
|
return "neutrality", "neutral" # 出错时返回默认值
|
|
|
|
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
|
"""处理响应内容,返回处理后的内容和情感标签"""
|
|
if not content:
|
|
return None, []
|
|
|
|
processed_response = process_llm_response(content)
|
|
|
|
# print(f"得到了处理后的llm返回{processed_response}")
|
|
|
|
return processed_response
|
|
|
|
|
|
class InitiativeMessageGenerate:
|
|
def __init__(self):
|
|
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
|
|
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
|
|
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7)
|
|
|
|
def gen_response(self, message: Message):
|
|
topic_select_prompt, dots_for_select, prompt_template = prompt_builder._build_initiative_prompt_select(
|
|
message.group_id
|
|
)
|
|
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
|
|
logger.debug(f"{content_select} {reasoning}")
|
|
topics_list = [dot[0] for dot in dots_for_select]
|
|
if content_select:
|
|
if content_select in topics_list:
|
|
select_dot = dots_for_select[topics_list.index(content_select)]
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
prompt_check, memory = prompt_builder._build_initiative_prompt_check(select_dot[1], prompt_template)
|
|
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
|
|
logger.info(f"{content_check} {reasoning_check}")
|
|
if "yes" not in content_check.lower():
|
|
return None
|
|
prompt = prompt_builder._build_initiative_prompt(select_dot, prompt_template, memory)
|
|
content, reasoning = self.model_r1.generate_response_async(prompt)
|
|
logger.debug(f"[DEBUG] {content} {reasoning}")
|
|
return content
|