Files
Mofox-Core/src/heart_flow/sub_mind.py
2025-04-24 16:35:05 +08:00

247 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from .observation import Observation
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
from src.individuality.individuality import Individuality
import random
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.do_tool.tool_use import ToolUser
from src.plugins.utils.json_utils import safe_json_dumps, normalize_llm_response, process_llm_tool_calls
from src.heart_flow.chat_state_info import ChatStateInfo
subheartflow_config = LogConfig(
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("subheartflow", config=subheartflow_config)
def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += "{extra_info}\n"
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是:\n我是{bot_name},我想,{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "\n你现在{mood_info}\n"
prompt += "现在请你生成你的内心想法,要求思考群里正在进行的话题,之前大家聊过的话题,群里成员的关系。"
prompt += "请你思考,要不要对群里的话题进行回复,以及如何对群聊内容进行回复\n"
prompt += "回复的要求是:平淡一些,简短一些,如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要回复自己的发言\n"
prompt += "现在请你先输出想法,{hf_do_next},不要分点输出,文字不要浮夸"
prompt += "在输出完想法后,请你思考应该使用什么工具。工具可以帮你取得一些你不知道的信息,或者进行一些操作。"
prompt += "如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。\n"
Prompt(prompt, "sub_heartflow_prompt_before")
class SubMind:
def __init__(self, subheartflow_id: str, chat_state: ChatStateInfo, observations: Observation):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="sub_heart_flow",
)
self.chat_state = chat_state
self.observations = observations
self.current_mind = ""
self.past_mind = []
self.structured_info = {}
async def do_thinking_before_reply(self):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
返回:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
"""
# 更新活跃时间
self.last_active_time = time.time()
# ---------- 1. 准备基础数据 ----------
# 获取现有想法和情绪状态
current_thinking_info = self.current_mind
mood_info = self.chat_state.mood
# 获取观察对象
observation = self.observations[0]
if not observation:
logger.error(f"[{self.subheartflow_id}] 无法获取观察对象")
self.update_current_mind("(我没看到任何聊天内容...)")
return self.current_mind, self.past_mind
# 获取观察内容
chat_observe_info = observation.get_observe_info()
# ---------- 2. 准备工具和个性化数据 ----------
# 初始化工具
tool_instance = ToolUser()
tools = tool_instance._define_tools()
# 获取个性化信息
individuality = Individuality.get_instance()
# 构建个性部分
prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你"
prompt_personality += individuality.personality.personality_core
# 随机添加个性侧面
if individuality.personality.personality_sides:
random_side = random.choice(individuality.personality.personality_sides)
prompt_personality += f"{random_side}"
# 随机添加身份细节
if individuality.identity.identity_detail:
random_detail = random.choice(individuality.identity.identity_detail)
prompt_personality += f"{random_detail}"
# 获取当前时间
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# ---------- 3. 构建思考指导部分 ----------
# 创建本地随机数生成器,基于分钟数作为种子
local_random = random.Random()
current_minute = int(time.strftime("%M"))
local_random.seed(current_minute)
# 思考指导选项和权重
hf_options = [
("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,但是不要纠结于同一个话题", 0.6),
("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1),
("生成你在这个聊天中的想法,不要太深入", 0.2),
("继续生成你在这个聊天中的想法,进行深入思考", 0.1),
]
# 加权随机选择思考指导
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
)[0]
# ---------- 4. 构建最终提示词 ----------
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info="", # 可以在这里添加额外信息
prompt_personality=prompt_personality,
bot_name=individuality.personality.bot_nickname,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
hf_do_next=hf_do_next,
)
logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
# ---------- 5. 执行LLM请求并处理响应 ----------
content = "" # 初始化内容变量
_reasoning_content = "" # 初始化推理内容变量
try:
# 调用LLM生成响应
response = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
# 标准化响应格式
success, normalized_response, error_msg = normalize_llm_response(
response, log_prefix=f"[{self.subheartflow_id}] "
)
if not success:
# 处理标准化失败情况
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
content = "LLM响应格式无法处理"
else:
# 从标准化响应中提取内容
if len(normalized_response) >= 2:
content = normalized_response[0]
_reasoning_content = normalized_response[1] if len(normalized_response) > 1 else ""
# 处理可能的工具调用
if len(normalized_response) == 3:
# 提取并验证工具调用
success, valid_tool_calls, error_msg = process_llm_tool_calls(
normalized_response, log_prefix=f"[{self.subheartflow_id}] "
)
if success and valid_tool_calls:
# 记录工具调用信息
tool_calls_str = ", ".join(
[call.get("function", {}).get("name", "未知工具") for call in valid_tool_calls]
)
logger.info(
f"[{self.subheartflow_id}] 模型请求调用{len(valid_tool_calls)}个工具: {tool_calls_str}"
)
# 收集工具执行结果
await self._execute_tool_calls(valid_tool_calls, tool_instance)
elif not success:
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
except Exception as e:
# 处理总体异常
logger.error(f"[{self.subheartflow_id}] 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "思考过程中出现错误"
# 记录最终思考结果
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{content}\n")
# 处理空响应情况
if not content:
content = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM返回空结果思考失败。")
# ---------- 6. 更新思考状态并返回结果 ----------
# 更新当前思考内容
self.update_current_mind(content)
return self.current_mind, self.past_mind
async def _execute_tool_calls(self, tool_calls, tool_instance):
"""
执行一组工具调用并收集结果
参数:
tool_calls: 工具调用列表
tool_instance: 工具使用器实例
"""
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
try:
result = await tool_instance._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({"name": result["name"], "content": result["content"]})
except Exception as tool_e:
logger.error(f"[{self.subheartflow_id}] 工具执行失败: {tool_e}")
# 如果有工具结果,记录并更新结构化信息
if structured_info:
logger.debug(f"工具调用收集到结构化信息: {safe_json_dumps(structured_info, ensure_ascii=False)}")
self.structured_info = structured_info
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
init_prompt()