Files
Mofox-Core/scripts/analyze_group_similarity.py
2025-06-03 01:01:21 +08:00

137 lines
4.4 KiB
Python

import json
import os
from pathlib import Path
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import matplotlib as mpl
import sqlite3
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 使用微软雅黑
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['font.family'] = 'sans-serif'
# 获取脚本所在目录
SCRIPT_DIR = Path(__file__).parent
def get_group_name(stream_id):
"""从数据库中获取群组名称"""
conn = sqlite3.connect('data/maibot.db')
cursor = conn.cursor()
cursor.execute('''
SELECT group_name, user_nickname, platform
FROM chat_streams
WHERE stream_id = ?
''', (stream_id,))
result = cursor.fetchone()
conn.close()
if result:
group_name, user_nickname, platform = result
if group_name:
return group_name
if user_nickname:
return user_nickname
if platform:
return f"{platform}-{stream_id[:8]}"
return stream_id
def load_group_expressions(group_dir):
"""加载单个群组的表达方式数据"""
json_path = Path(group_dir) / "expressions.json"
if not json_path.exists():
return []
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# 将所有表达方式合并成一个文本
all_expressions = []
for item in data:
all_expressions.extend([item['style']] * item['count'])
return ' '.join(all_expressions)
def analyze_group_similarity():
# 获取所有群组目录
base_dir = Path("data/expression/learnt_style")
group_dirs = [d for d in base_dir.iterdir() if d.is_dir()]
group_ids = [d.name for d in group_dirs]
# 获取群组名称
group_names = [get_group_name(group_id) for group_id in group_ids]
# 加载所有群组的表达方式
group_texts = [load_group_expressions(d) for d in group_dirs]
# 使用TF-IDF向量化文本
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(group_texts)
# 计算余弦相似度
similarity_matrix = cosine_similarity(tfidf_matrix)
# 对相似度矩阵进行对数变换
log_similarity_matrix = np.log1p(similarity_matrix)
# 创建热力图
plt.figure(figsize=(15, 12))
sns.heatmap(log_similarity_matrix,
xticklabels=group_names,
yticklabels=group_names,
cmap='YlOrRd',
annot=True,
fmt='.2f',
vmin=0,
vmax=np.log1p(0.2)) # 调整最大值以匹配对数变换
plt.title('群组表达方式相似度热力图 (对数变换)')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig(SCRIPT_DIR / 'group_similarity_heatmap.png', dpi=300, bbox_inches='tight')
plt.close()
# 创建网络图
G = nx.Graph()
# 添加节点
for group_id, group_name in zip(group_ids, group_names):
G.add_node(group_id, label=group_name)
# 添加边(使用对数变换后的相似度)
for i in range(len(group_ids)):
for j in range(i+1, len(group_ids)):
if log_similarity_matrix[i][j] > np.log1p(0.05): # 调整阈值
G.add_edge(group_ids[i], group_ids[j],
weight=log_similarity_matrix[i][j])
# 绘制网络图
plt.figure(figsize=(20, 20))
pos = nx.spring_layout(G, k=1, iterations=50)
# 绘制节点
nx.draw_networkx_nodes(G, pos, node_size=20000, node_color='lightblue', alpha=0.8)
# 绘制边
edges = G.edges()
weights = [G[u][v]['weight'] * 40 for u, v in edges] # 增加线条粗细系数
nx.draw_networkx_edges(G, pos, width=weights, alpha=0.6, edge_color='gray')
# 添加标签
labels = {node: G.nodes[node]['label'] for node in G.nodes()}
nx.draw_networkx_labels(G, pos, labels, font_size=20, font_weight='bold')
plt.title('群组表达方式相似度网络图\n(连线粗细表示对数变换后的相似度)')
plt.axis('off')
plt.tight_layout()
plt.savefig(SCRIPT_DIR / 'group_similarity_network.png', dpi=300, bbox_inches='tight')
plt.close()
if __name__ == "__main__":
analyze_group_similarity()