199 lines
8.6 KiB
Python
199 lines
8.6 KiB
Python
from typing import Dict, Any, List, Optional, Union, Tuple
|
|
from openai import OpenAI
|
|
import asyncio
|
|
from functools import partial
|
|
from .message import Message
|
|
from .config import global_config
|
|
from ...common.database import Database
|
|
import random
|
|
import time
|
|
import numpy as np
|
|
from .relationship_manager import relationship_manager
|
|
from .prompt_builder import prompt_builder
|
|
from .config import global_config
|
|
from .utils import process_llm_response
|
|
from nonebot import get_driver
|
|
from ..models.utils_model import LLM_request
|
|
|
|
driver = get_driver()
|
|
config = driver.config
|
|
|
|
|
|
class ResponseGenerator:
|
|
def __init__(self):
|
|
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000)
|
|
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
|
|
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
|
|
self.db = Database.get_instance()
|
|
self.current_model_type = 'r1' # 默认使用 R1
|
|
|
|
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
|
|
"""根据当前模型类型选择对应的生成函数"""
|
|
# 从global_config中获取模型概率值并选择模型
|
|
rand = random.random()
|
|
if rand < global_config.MODEL_R1_PROBABILITY:
|
|
self.current_model_type = 'r1'
|
|
current_model = self.model_r1
|
|
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
|
|
self.current_model_type = 'v3'
|
|
current_model = self.model_v3
|
|
else:
|
|
self.current_model_type = 'r1_distill'
|
|
current_model = self.model_r1_distill
|
|
|
|
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
|
|
|
model_response = await self._generate_response_with_model(message, current_model)
|
|
|
|
if model_response:
|
|
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
|
model_response, emotion = await self._process_response(model_response)
|
|
if model_response:
|
|
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
|
valuedict={
|
|
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
|
}
|
|
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
|
|
|
return model_response, emotion
|
|
return None, []
|
|
|
|
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
|
"""使用指定的模型生成回复"""
|
|
sender_name = message.user_nickname or f"用户{message.user_id}"
|
|
if message.user_cardname:
|
|
sender_name=f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
|
|
|
|
# 获取关系值
|
|
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
|
if relationship_value != 0.0:
|
|
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
|
|
|
# 构建prompt
|
|
prompt, prompt_check = prompt_builder._build_prompt(
|
|
message_txt=message.processed_plain_text,
|
|
sender_name=sender_name,
|
|
relationship_value=relationship_value,
|
|
group_id=message.group_id
|
|
)
|
|
|
|
# 读空气模块 简化逻辑,先停用
|
|
# if global_config.enable_kuuki_read:
|
|
# content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
|
|
# print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
|
|
# if 'yes' not in content_check.lower() and random.random() < 0.3:
|
|
# self._save_to_db(
|
|
# message=message,
|
|
# sender_name=sender_name,
|
|
# prompt=prompt,
|
|
# prompt_check=prompt_check,
|
|
# content="",
|
|
# content_check=content_check,
|
|
# reasoning_content="",
|
|
# reasoning_content_check=reasoning_content_check
|
|
# )
|
|
# return None
|
|
|
|
# 生成回复
|
|
content, reasoning_content = await model.generate_response(prompt)
|
|
|
|
# 保存到数据库
|
|
self._save_to_db(
|
|
message=message,
|
|
sender_name=sender_name,
|
|
prompt=prompt,
|
|
prompt_check=prompt_check,
|
|
content=content,
|
|
# content_check=content_check if global_config.enable_kuuki_read else "",
|
|
reasoning_content=reasoning_content,
|
|
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
|
|
)
|
|
|
|
return content
|
|
|
|
# def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
|
|
# content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
|
|
def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
|
|
content: str, reasoning_content: str,):
|
|
"""保存对话记录到数据库"""
|
|
self.db.db.reasoning_logs.insert_one({
|
|
'time': time.time(),
|
|
'group_id': message.group_id,
|
|
'user': sender_name,
|
|
'message': message.processed_plain_text,
|
|
'model': self.current_model_type,
|
|
# 'reasoning_check': reasoning_content_check,
|
|
# 'response_check': content_check,
|
|
'reasoning': reasoning_content,
|
|
'response': content,
|
|
'prompt': prompt,
|
|
'prompt_check': prompt_check
|
|
})
|
|
|
|
async def _get_emotion_tags(self, content: str) -> List[str]:
|
|
"""提取情感标签"""
|
|
try:
|
|
prompt = f'''请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
|
|
只输出标签就好,不要输出其他内容:
|
|
内容:{content}
|
|
输出:
|
|
'''
|
|
content, _ = await self.model_v3.generate_response(prompt)
|
|
content=content.strip()
|
|
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
|
|
return [content]
|
|
else:
|
|
return ["neutral"]
|
|
|
|
except Exception as e:
|
|
print(f"获取情感标签时出错: {e}")
|
|
return ["neutral"]
|
|
|
|
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
|
"""处理响应内容,返回处理后的内容和情感标签"""
|
|
if not content:
|
|
return None, []
|
|
|
|
emotion_tags = await self._get_emotion_tags(content)
|
|
processed_response = process_llm_response(content)
|
|
|
|
return processed_response, emotion_tags
|
|
|
|
|
|
class InitiativeMessageGenerate:
|
|
def __init__(self):
|
|
self.db = Database.get_instance()
|
|
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
|
|
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
|
|
self.model_r1_distill = LLM_request(
|
|
model=global_config.llm_reasoning_minor, temperature=0.7
|
|
)
|
|
|
|
def gen_response(self, message: Message):
|
|
topic_select_prompt, dots_for_select, prompt_template = (
|
|
prompt_builder._build_initiative_prompt_select(message.group_id)
|
|
)
|
|
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
|
|
print(f"[DEBUG] {content_select} {reasoning}")
|
|
topics_list = [dot[0] for dot in dots_for_select]
|
|
if content_select:
|
|
if content_select in topics_list:
|
|
select_dot = dots_for_select[topics_list.index(content_select)]
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
prompt_check, memory = prompt_builder._build_initiative_prompt_check(
|
|
select_dot[1], prompt_template
|
|
)
|
|
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
|
|
print(f"[DEBUG] {content_check} {reasoning_check}")
|
|
if "yes" not in content_check.lower():
|
|
return None
|
|
prompt = prompt_builder._build_initiative_prompt(
|
|
select_dot, prompt_template, memory
|
|
)
|
|
content, reasoning = self.model_r1.generate_response(prompt)
|
|
print(f"[DEBUG] {content} {reasoning}")
|
|
return content
|