Files
Mofox-Core/src/plugins/chat/utils_image.py
SengokuCola 5963214d95 ruff fix
2025-04-30 17:50:47 +08:00

377 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import base64
import os
import time
import hashlib
from typing import Optional
from PIL import Image
import io
import numpy as np
from ...common.database import db
from ...config.config import global_config
from ..models.utils_model import LLMRequest
from src.common.logger_manager import get_logger
logger = get_logger("chat_image")
class ImageManager:
_instance = None
IMAGE_DIR = "data" # 图像存储根目录
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self._ensure_image_collection()
self._ensure_description_collection()
self._ensure_image_dir()
self._initialized = True
self._llm = LLMRequest(model=global_config.vlm, temperature=0.4, max_tokens=300, request_type="image")
def _ensure_image_dir(self):
"""确保图像存储目录存在"""
os.makedirs(self.IMAGE_DIR, exist_ok=True)
@staticmethod
def _ensure_image_collection():
"""确保images集合存在并创建索引"""
if "images" not in db.list_collection_names():
db.create_collection("images")
# 删除旧索引
db.images.drop_indexes()
# 创建新的复合索引
db.images.create_index([("hash", 1), ("type", 1)], unique=True)
db.images.create_index([("url", 1)])
db.images.create_index([("path", 1)])
@staticmethod
def _ensure_description_collection():
"""确保image_descriptions集合存在并创建索引"""
if "image_descriptions" not in db.list_collection_names():
db.create_collection("image_descriptions")
# 删除旧索引
db.image_descriptions.drop_indexes()
# 创建新的复合索引
db.image_descriptions.create_index([("hash", 1), ("type", 1)], unique=True)
@staticmethod
def _get_description_from_db(image_hash: str, description_type: str) -> Optional[str]:
"""从数据库获取图片描述
Args:
image_hash: 图片哈希值
description_type: 描述类型 ('emoji''image')
Returns:
Optional[str]: 描述文本如果不存在则返回None
"""
result = db.image_descriptions.find_one({"hash": image_hash, "type": description_type})
return result["description"] if result else None
@staticmethod
def _save_description_to_db(image_hash: str, description: str, description_type: str) -> None:
"""保存图片描述到数据库
Args:
image_hash: 图片哈希值
description: 描述文本
description_type: 描述类型 ('emoji''image')
"""
try:
db.image_descriptions.update_one(
{"hash": image_hash, "type": description_type},
{
"$set": {
"description": description,
"timestamp": int(time.time()),
"hash": image_hash, # 确保hash字段存在
"type": description_type, # 确保type字段存在
}
},
upsert=True,
)
except Exception as e:
logger.error(f"保存描述到数据库失败: {str(e)}")
async def get_emoji_description(self, image_base64: str) -> str:
"""获取表情包描述,带查重和保存功能"""
try:
# 计算图片哈希
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
image_format = Image.open(io.BytesIO(image_bytes)).format.lower()
# 查询缓存的描述
cached_description = self._get_description_from_db(image_hash, "emoji")
if cached_description:
# logger.debug(f"缓存表情包描述: {cached_description}")
return f"[表达了:{cached_description}]"
# 调用AI获取描述
if image_format == "gif" or image_format == "GIF":
image_base64 = self.transform_gif(image_base64)
prompt = "这是一个动态图表情包每一张图代表了动态图的某一帧黑色背景代表透明使用1-2个词描述一下表情包表达的情感和内容简短一些"
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, "jpg")
else:
prompt = "这是一个表情包,请用使用几个词描述一下表情包所表达的情感和内容,简短一些"
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
cached_description = self._get_description_from_db(image_hash, "emoji")
if cached_description:
logger.warning(f"虽然生成了描述,但是找到缓存表情包描述: {cached_description}")
return f"[表达了:{cached_description}]"
# 根据配置决定是否保存图片
if global_config.save_emoji:
# 生成文件名和路径
timestamp = int(time.time())
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
if not os.path.exists(os.path.join(self.IMAGE_DIR, "emoji")):
os.makedirs(os.path.join(self.IMAGE_DIR, "emoji"))
file_path = os.path.join(self.IMAGE_DIR, "emoji", filename)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库
image_doc = {
"hash": image_hash,
"path": file_path,
"type": "emoji",
"description": description,
"timestamp": timestamp,
}
db.images.update_one({"hash": image_hash}, {"$set": image_doc}, upsert=True)
logger.trace(f"保存表情包: {file_path}")
except Exception as e:
logger.error(f"保存表情包文件失败: {str(e)}")
# 保存描述到数据库
self._save_description_to_db(image_hash, description, "emoji")
return f"[表情包:{description}]"
except Exception as e:
logger.error(f"获取表情包描述失败: {str(e)}")
return "[表情包]"
async def get_image_description(self, image_base64: str) -> str:
"""获取普通图片描述,带查重和保存功能"""
try:
# 计算图片哈希
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
image_format = Image.open(io.BytesIO(image_bytes)).format.lower()
# 查询缓存的描述
cached_description = self._get_description_from_db(image_hash, "image")
if cached_description:
logger.debug(f"图片描述缓存中 {cached_description}")
return f"[图片:{cached_description}]"
# 调用AI获取描述
prompt = (
"请用中文描述这张图片的内容。如果有文字请把文字都描述出来。并尝试猜测这个图片的含义。最多100个字。"
)
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
cached_description = self._get_description_from_db(image_hash, "image")
if cached_description:
logger.warning(f"虽然生成了描述,但是找到缓存图片描述 {cached_description}")
return f"[图片:{cached_description}]"
logger.debug(f"描述是{description}")
if description is None:
logger.warning("AI未能生成图片描述")
return "[图片]"
# 根据配置决定是否保存图片
if global_config.save_pic:
# 生成文件名和路径
timestamp = int(time.time())
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
if not os.path.exists(os.path.join(self.IMAGE_DIR, "image")):
os.makedirs(os.path.join(self.IMAGE_DIR, "image"))
file_path = os.path.join(self.IMAGE_DIR, "image", filename)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库
image_doc = {
"hash": image_hash,
"path": file_path,
"type": "image",
"description": description,
"timestamp": timestamp,
}
db.images.update_one({"hash": image_hash}, {"$set": image_doc}, upsert=True)
logger.trace(f"保存图片: {file_path}")
except Exception as e:
logger.error(f"保存图片文件失败: {str(e)}")
# 保存描述到数据库
self._save_description_to_db(image_hash, description, "image")
return f"[图片:{description}]"
except Exception as e:
logger.error(f"获取图片描述失败: {str(e)}")
return "[图片]"
@staticmethod
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
"""将GIF转换为水平拼接的静态图像, 跳过相似的帧
Args:
gif_base64: GIF的base64编码字符串
similarity_threshold: 判定帧相似的阈值 (MSE)越小表示要求差异越大才算不同帧默认1000.0
max_frames: 最大抽取的帧数默认15
Returns:
Optional[str]: 拼接后的JPG图像的base64编码字符串, 或者在失败时返回None
"""
try:
# 解码base64
gif_data = base64.b64decode(gif_base64)
gif = Image.open(io.BytesIO(gif_data))
# 收集所有帧
all_frames = []
try:
while True:
gif.seek(len(all_frames))
# 确保是RGB格式方便比较
frame = gif.convert("RGB")
all_frames.append(frame.copy())
except EOFError:
pass # 读完啦
if not all_frames:
logger.warning("GIF中没有找到任何帧")
return None # 空的GIF直接返回None
# --- 新的帧选择逻辑 ---
selected_frames = []
last_selected_frame_np = None
for i, current_frame in enumerate(all_frames):
current_frame_np = np.array(current_frame)
# 第一帧总是要选的
if i == 0:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
continue
# 计算和上一张选中帧的差异(均方误差 MSE
if last_selected_frame_np is not None:
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
# logger.trace(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# 如果差异够大,就选它!
if mse > similarity_threshold:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
# 检查是不是选够了
if len(selected_frames) >= max_frames:
# logger.debug(f"已选够 {max_frames} 帧,停止选择。")
break
# 如果差异不大就跳过这一帧啦
# --- 帧选择逻辑结束 ---
# 如果选择后连一帧都没有比如GIF只有一帧且后续处理失败或者原始GIF就没帧也返回None
if not selected_frames:
logger.warning("处理后没有选中任何帧")
return None
# logger.debug(f"总帧数: {len(all_frames)}, 选中帧数: {len(selected_frames)}")
# 获取选中的第一帧的尺寸(假设所有帧尺寸一致)
frame_width, frame_height = selected_frames[0].size
# 计算目标尺寸,保持宽高比
target_height = 200 # 固定高度
# 防止除以零
if frame_height == 0:
logger.error("帧高度为0无法计算缩放尺寸")
return None
target_width = int((target_height / frame_height) * frame_width)
# 宽度也不能是0
if target_width == 0:
logger.warning(f"计算出的目标宽度为0 (原始尺寸 {frame_width}x{frame_height})调整为1")
target_width = 1
# 调整所有选中帧的大小
resized_frames = [
frame.resize((target_width, target_height), Image.Resampling.LANCZOS) for frame in selected_frames
]
# 创建拼接图像
total_width = target_width * len(resized_frames)
# 防止总宽度为0
if total_width == 0 and len(resized_frames) > 0:
logger.warning("计算出的总宽度为0但有选中帧可能目标宽度太小")
# 至少给点宽度吧
total_width = len(resized_frames)
elif total_width == 0:
logger.error("计算出的总宽度为0且无选中帧")
return None
combined_image = Image.new("RGB", (total_width, target_height))
# 水平拼接图像
for idx, frame in enumerate(resized_frames):
combined_image.paste(frame, (idx * target_width, 0))
# 转换为base64
buffer = io.BytesIO()
combined_image.save(buffer, format="JPEG", quality=85) # 保存为JPEG
result_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
return result_base64
except MemoryError:
logger.error("GIF转换失败: 内存不足可能是GIF太大或帧数太多")
return None # 内存不够啦
except Exception as e:
logger.error(f"GIF转换失败: {str(e)}", exc_info=True) # 记录详细错误信息
return None # 其他错误也返回None
# 创建全局单例
image_manager = ImageManager()
def image_path_to_base64(image_path: str) -> str:
"""将图片路径转换为base64编码
Args:
image_path: 图片文件路径
Returns:
str: base64编码的图片数据
Raises:
FileNotFoundError: 当图片文件不存在时
IOError: 当读取图片文件失败时
"""
if not os.path.exists(image_path):
raise FileNotFoundError(f"图片文件不存在: {image_path}")
with open(image_path, "rb") as f:
image_data = f.read()
if not image_data:
raise IOError(f"读取图片文件失败: {image_path}")
return base64.b64encode(image_data).decode("utf-8")