为事件系统添加权限控制功能,包括: - 在BaseEvent中新增allowed_subscribers和allowed_triggers白名单字段 - 事件管理器触发和订阅时进行白名单验证 - 为所有系统默认事件设置仅允许SYSTEM插件触发 - 在所有事件触发调用处显式传递plugin_name="SYSTEM"参数 确保只有授权插件可以触发特定事件和订阅处理器,增强系统安全性。
1480 lines
62 KiB
Python
1480 lines
62 KiB
Python
import traceback
|
||
import time
|
||
import asyncio
|
||
import random
|
||
import re
|
||
|
||
from typing import List, Optional, Dict, Any, Tuple
|
||
from datetime import datetime
|
||
from src.mais4u.mai_think import mai_thinking_manager
|
||
from src.common.logger import get_logger
|
||
from src.config.config import global_config, model_config
|
||
from src.config.api_ada_configs import TaskConfig
|
||
from src.individuality.individuality import get_individuality
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.chat.message_receive.message import UserInfo, Seg, MessageRecv, MessageSending
|
||
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
|
||
from src.chat.message_receive.uni_message_sender import HeartFCSender
|
||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||
from src.chat.utils.chat_message_builder import (
|
||
build_readable_messages,
|
||
get_raw_msg_before_timestamp_with_chat,
|
||
replace_user_references_sync,
|
||
build_readable_messages_with_id,
|
||
)
|
||
from src.chat.express.expression_selector import expression_selector
|
||
from src.chat.memory_system.memory_activator import MemoryActivator
|
||
from src.chat.memory_system.vector_instant_memory import VectorInstantMemoryV2
|
||
from src.mood.mood_manager import mood_manager
|
||
from src.person_info.relationship_fetcher import relationship_fetcher_manager
|
||
from src.person_info.person_info import get_person_info_manager
|
||
from src.plugin_system.base.component_types import ActionInfo, EventType
|
||
from src.plugin_system.apis import llm_api
|
||
from src.schedule.schedule_manager import schedule_manager
|
||
|
||
logger = get_logger("replyer")
|
||
|
||
|
||
def init_prompt():
|
||
Prompt("你正在qq群里聊天,下面是群里在聊的内容:", "chat_target_group1")
|
||
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
|
||
Prompt("在群里聊天", "chat_target_group2")
|
||
Prompt("和{sender_name}聊天", "chat_target_private2")
|
||
|
||
Prompt(
|
||
"""
|
||
{expression_habits_block}
|
||
{relation_info_block}
|
||
|
||
{chat_target}
|
||
{time_block}
|
||
{chat_info}
|
||
{identity}
|
||
|
||
你正在{chat_target_2},{reply_target_block}
|
||
对这句话,你想表达,原句:{raw_reply},原因是:{reason}。你现在要思考怎么组织回复
|
||
你现在的心情是:{mood_state}
|
||
你需要使用合适的语法和句法,参考聊天内容,组织一条日常且口语化的回复。请你修改你想表达的原句,符合你的表达风格和语言习惯
|
||
{reply_style},你可以完全重组回复,保留最基本的表达含义就好,但重组后保持语意通顺。
|
||
{keywords_reaction_prompt}
|
||
{moderation_prompt}
|
||
不要复读你前面发过的内容,意思相近也不行。
|
||
不要浮夸,不要夸张修辞,平淡且不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 ),只输出一条回复就好。
|
||
现在,你说:
|
||
""",
|
||
"default_expressor_prompt",
|
||
)
|
||
|
||
# s4u 风格的 prompt 模板
|
||
Prompt(
|
||
"""
|
||
你正在一个QQ群里聊天,你需要理解整个群的聊天动态和话题走向,并做出自然的回应。
|
||
|
||
**重要:消息针对性判断**
|
||
在回应之前,首先分析消息的针对性:
|
||
1. **直接针对你**:@你、回复你、明确询问你 → 必须回应
|
||
2. **间接相关**:涉及你感兴趣的话题但未直接问你 → 谨慎参与
|
||
3. **他人对话**:与你无关的私人交流 → 通常不参与
|
||
4. **重复内容**:他人已充分回答的问题 → 避免重复
|
||
|
||
{expression_habits_block}
|
||
{tool_info_block}
|
||
{knowledge_prompt}
|
||
{memory_block}
|
||
{relation_info_block}
|
||
{extra_info_block}
|
||
|
||
{cross_context_block}
|
||
|
||
{identity}
|
||
|
||
{action_descriptions}
|
||
你现在的主要任务是和 {sender_name} 聊天。同时,也有其他用户会参与你们的聊天,你可以参考他们的回复内容,但是你主要还是关注你和{sender_name}的聊天内容。
|
||
|
||
{background_dialogue_prompt}
|
||
--------------------------------
|
||
{time_block}
|
||
这是你和{sender_name}的对话,你们正在交流中:
|
||
|
||
{core_dialogue_prompt}
|
||
|
||
{reply_target_block}
|
||
|
||
{schedule_block}
|
||
|
||
你现在的心情是:{mood_state}
|
||
{reply_style}
|
||
注意不要复读你前面发过的内容,意思相近也不行。
|
||
{keywords_reaction_prompt}
|
||
请注意不要输出多余内容(包括前后缀,冒号和引号,at或 @等 )。只输出回复内容。
|
||
{moderation_prompt}
|
||
你的核心任务是针对 {reply_target_block} 中提到的内容,生成一段紧密相关且能推动对话的回复。你的回复应该:
|
||
1. 明确回应目标消息,而不是宽泛地评论。
|
||
2. 可以分享你的看法、提出相关问题,或者开个合适的玩笑。
|
||
3. 目的是让对话更有趣、更深入。
|
||
4. 不要浮夸,不要夸张修辞,不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。
|
||
最终请输出一条简短、完整且口语化的回复。
|
||
现在,你说:
|
||
""",
|
||
"s4u_style_prompt",
|
||
)
|
||
|
||
Prompt(
|
||
"""
|
||
你是一个专门获取知识的助手。你的名字是{bot_name}。现在是{time_now}。
|
||
群里正在进行的聊天内容:
|
||
{chat_history}
|
||
|
||
现在,{sender}发送了内容:{target_message},你想要回复ta。
|
||
请仔细分析聊天内容,考虑以下几点:
|
||
1. 内容中是否包含需要查询信息的问题
|
||
2. 是否有明确的知识获取指令
|
||
|
||
If you need to use the search tool, please directly call the function "lpmm_search_knowledge". If you do not need to use any tool, simply output "No tool needed".
|
||
""",
|
||
name="lpmm_get_knowledge_prompt",
|
||
)
|
||
|
||
# normal 版 prompt 模板(0.9之前的简化模式)
|
||
logger.debug("[Prompt模式调试] 正在注册normal_style_prompt模板")
|
||
Prompt(
|
||
"""
|
||
你正在一个QQ群里聊天,你需要理解整个群的聊天动态和话题走向,并做出自然的回应。
|
||
|
||
**重要:消息针对性判断**
|
||
在回应之前,首先分析消息的针对性:
|
||
1. **直接针对你**:@你、回复你、明确询问你 → 必须回应
|
||
2. **间接相关**:涉及你感兴趣的话题但未直接问你 → 谨慎参与
|
||
3. **他人对话**:与你无关的私人交流 → 通常不参与
|
||
4. **重复内容**:他人已充分回答的问题 → 避免重复
|
||
|
||
{expression_habits_block}
|
||
{tool_info_block}
|
||
{knowledge_prompt}
|
||
{memory_block}
|
||
{relation_info_block}
|
||
{extra_info_block}
|
||
|
||
{cross_context_block}
|
||
{identity}
|
||
如果有人说你是人机,你可以用一种阴阳怪气的口吻来回应
|
||
{schedule_block}
|
||
|
||
{action_descriptions}
|
||
|
||
下面是群里最近的聊天内容:
|
||
--------------------------------
|
||
{time_block}
|
||
{chat_info}
|
||
--------------------------------
|
||
|
||
{reply_target_block}
|
||
|
||
你现在的心情是:{mood_state}
|
||
{config_expression_style}
|
||
注意不要复读你前面发过的内容,意思相近也不行。
|
||
{keywords_reaction_prompt}
|
||
请注意不要输出多余内容(包括前后缀,冒号和引号,at或 @等 )。只输出回复内容。
|
||
{moderation_prompt}
|
||
你的核心任务是针对 {reply_target_block} 中提到的内容,生成一段紧密相关且能推动对话的回复。你的回复应该:
|
||
1. 明确回应目标消息,而不是宽泛地评论。
|
||
2. 可以分享你的看法、提出相关问题,或者开个合适的玩笑。
|
||
3. 目的是让对话更有趣、更深入。
|
||
最终请输出一条简短、完整且口语化的回复。
|
||
现在,你说:
|
||
""",
|
||
"normal_style_prompt",
|
||
)
|
||
logger.debug("[Prompt模式调试] normal_style_prompt模板注册完成")
|
||
|
||
|
||
class DefaultReplyer:
|
||
def __init__(
|
||
self,
|
||
chat_stream: ChatStream,
|
||
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
|
||
request_type: str = "focus.replyer",
|
||
):
|
||
self.request_type = request_type
|
||
|
||
if model_set_with_weight:
|
||
# self.express_model_configs = model_configs
|
||
self.model_set: List[Tuple[TaskConfig, float]] = model_set_with_weight
|
||
else:
|
||
# 当未提供配置时,使用默认配置并赋予默认权重
|
||
|
||
# model_config_1 = global_config.model.replyer_1.copy()
|
||
# model_config_2 = global_config.model.replyer_2.copy()
|
||
prob_first = global_config.chat.replyer_random_probability
|
||
|
||
# model_config_1["weight"] = prob_first
|
||
# model_config_2["weight"] = 1.0 - prob_first
|
||
|
||
# self.express_model_configs = [model_config_1, model_config_2]
|
||
self.model_set = [
|
||
(model_config.model_task_config.replyer_1, prob_first),
|
||
(model_config.model_task_config.replyer_2, 1.0 - prob_first),
|
||
]
|
||
|
||
# if not self.express_model_configs:
|
||
# logger.warning("未找到有效的模型配置,回复生成可能会失败。")
|
||
# # 提供一个最终的回退,以防止在空列表上调用 random.choice
|
||
# fallback_config = global_config.model.replyer_1.copy()
|
||
# fallback_config.setdefault("weight", 1.0)
|
||
# self.express_model_configs = [fallback_config]
|
||
|
||
self.chat_stream = chat_stream
|
||
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id)
|
||
|
||
self.heart_fc_sender = HeartFCSender()
|
||
self.memory_activator = MemoryActivator()
|
||
# 使用纯向量瞬时记忆系统V2,支持自定义保留时间
|
||
self.instant_memory = VectorInstantMemoryV2(chat_id=self.chat_stream.stream_id, retention_hours=1)
|
||
|
||
from src.plugin_system.core.tool_use import ToolExecutor # 延迟导入ToolExecutor,不然会循环依赖
|
||
|
||
self.tool_executor = ToolExecutor(chat_id=self.chat_stream.stream_id)
|
||
|
||
async def _build_cross_context_block(self, current_chat_id: str, target_user_info: Optional[Dict[str, Any]]) -> str:
|
||
"""构建跨群聊上下文"""
|
||
if not global_config.cross_context.enable:
|
||
return ""
|
||
|
||
# 找到当前群聊所在的共享组
|
||
target_group = None
|
||
current_stream = get_chat_manager().get_stream(current_chat_id)
|
||
if not current_stream or not current_stream.group_info:
|
||
return ""
|
||
current_chat_raw_id = current_stream.group_info.group_id
|
||
|
||
for group in global_config.cross_context.groups:
|
||
if str(current_chat_raw_id) in group.chat_ids:
|
||
target_group = group
|
||
break
|
||
|
||
if not target_group:
|
||
return ""
|
||
|
||
# 根据prompt_mode选择策略
|
||
prompt_mode = global_config.personality.prompt_mode
|
||
other_chat_raw_ids = [chat_id for chat_id in target_group.chat_ids if chat_id != str(current_chat_raw_id)]
|
||
|
||
cross_context_messages = []
|
||
|
||
if prompt_mode == "normal":
|
||
# normal模式:获取其他群聊的最近N条消息
|
||
for chat_raw_id in other_chat_raw_ids:
|
||
stream_id = get_chat_manager().get_stream_id(current_stream.platform, chat_raw_id, is_group=True)
|
||
if not stream_id:
|
||
continue
|
||
|
||
messages = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=stream_id,
|
||
timestamp=time.time(),
|
||
limit=5, # 可配置
|
||
)
|
||
if messages:
|
||
chat_name = get_chat_manager().get_stream_name(stream_id) or stream_id
|
||
formatted_messages, _ = build_readable_messages_with_id(messages, timestamp_mode="relative")
|
||
cross_context_messages.append(f"[以下是来自“{chat_name}”的近期消息]\n{formatted_messages}")
|
||
|
||
elif prompt_mode == "s4u":
|
||
# s4u模式:获取当前发言用户在其他群聊的消息
|
||
if target_user_info:
|
||
user_id = target_user_info.get("user_id")
|
||
|
||
if user_id:
|
||
for chat_raw_id in other_chat_raw_ids:
|
||
stream_id = get_chat_manager().get_stream_id(
|
||
current_stream.platform, chat_raw_id, is_group=True
|
||
)
|
||
if not stream_id:
|
||
continue
|
||
|
||
messages = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=stream_id,
|
||
timestamp=time.time(),
|
||
limit=20, # 获取更多消息以供筛选
|
||
)
|
||
user_messages = [msg for msg in messages if msg.get("user_id") == user_id][
|
||
-5:
|
||
] # 筛选并取最近5条
|
||
|
||
if user_messages:
|
||
chat_name = get_chat_manager().get_stream_name(stream_id) or stream_id
|
||
user_name = (
|
||
target_user_info.get("person_name") or target_user_info.get("user_nickname") or user_id
|
||
)
|
||
formatted_messages, _ = build_readable_messages_with_id(
|
||
user_messages, timestamp_mode="relative"
|
||
)
|
||
cross_context_messages.append(
|
||
f"[以下是“{user_name}”在“{chat_name}”的近期发言]\n{formatted_messages}"
|
||
)
|
||
|
||
if not cross_context_messages:
|
||
return ""
|
||
|
||
return "# 跨群上下文参考\n" + "\n\n".join(cross_context_messages) + "\n"
|
||
|
||
def _select_weighted_models_config(self) -> Tuple[TaskConfig, float]:
|
||
"""使用加权随机选择来挑选一个模型配置"""
|
||
configs = self.model_set
|
||
# 提取权重,如果模型配置中没有'weight'键,则默认为1.0
|
||
weights = [weight for _, weight in configs]
|
||
|
||
return random.choices(population=configs, weights=weights, k=1)[0]
|
||
|
||
async def generate_reply_with_context(
|
||
self,
|
||
reply_to: str = "",
|
||
extra_info: str = "",
|
||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||
enable_tool: bool = True,
|
||
from_plugin: bool = True,
|
||
stream_id: Optional[str] = None,
|
||
) -> Tuple[bool, Optional[Dict[str, Any]], Optional[str]]:
|
||
# sourcery skip: merge-nested-ifs
|
||
"""
|
||
回复器 (Replier): 负责生成回复文本的核心逻辑。
|
||
|
||
Args:
|
||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||
extra_info: 额外信息,用于补充上下文
|
||
available_actions: 可用的动作信息字典
|
||
enable_tool: 是否启用工具调用
|
||
from_plugin: 是否来自插件
|
||
|
||
Returns:
|
||
Tuple[bool, Optional[Dict[str, Any]], Optional[str]]: (是否成功, 生成的回复, 使用的prompt)
|
||
"""
|
||
prompt = None
|
||
if available_actions is None:
|
||
available_actions = {}
|
||
llm_response = None
|
||
try:
|
||
# 3. 构建 Prompt
|
||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||
prompt = await self.build_prompt_reply_context(
|
||
reply_to=reply_to,
|
||
extra_info=extra_info,
|
||
available_actions=available_actions,
|
||
enable_tool=enable_tool,
|
||
)
|
||
|
||
if not prompt:
|
||
logger.warning("构建prompt失败,跳过回复生成")
|
||
return False, None, None
|
||
from src.plugin_system.core.event_manager import event_manager
|
||
|
||
if not from_plugin:
|
||
result = await event_manager.trigger_event(EventType.POST_LLM,plugin_name="SYSTEM",prompt=prompt,stream_id=stream_id)
|
||
if not result.all_continue_process():
|
||
raise UserWarning(f"插件{result.get_summary().get('stopped_handlers', '')}于请求前中断了内容生成")
|
||
|
||
# 4. 调用 LLM 生成回复
|
||
content = None
|
||
reasoning_content = None
|
||
model_name = "unknown_model"
|
||
|
||
try:
|
||
content, reasoning_content, model_name, tool_call = await self.llm_generate_content(prompt)
|
||
logger.debug(f"replyer生成内容: {content}")
|
||
llm_response = {
|
||
"content": content,
|
||
"reasoning": reasoning_content,
|
||
"model": model_name,
|
||
"tool_calls": tool_call,
|
||
}
|
||
# 触发 AFTER_LLM 事件
|
||
if not from_plugin:
|
||
result = await event_manager.trigger_event(EventType.AFTER_LLM,plugin_name="SYSTEM",prompt=prompt,llm_response=llm_response,stream_id=stream_id)
|
||
if not result.all_continue_process():
|
||
raise UserWarning(f"插件{result.get_summary().get('stopped_handlers','')}于请求后取消了内容生成")
|
||
except UserWarning as e:
|
||
raise e
|
||
except Exception as llm_e:
|
||
# 精简报错信息
|
||
logger.error(f"LLM 生成失败: {llm_e}")
|
||
return False, None, prompt # LLM 调用失败则无法生成回复
|
||
|
||
return True, llm_response, prompt
|
||
|
||
except UserWarning as uw:
|
||
raise uw
|
||
except Exception as e:
|
||
logger.error(f"回复生成意外失败: {e}")
|
||
traceback.print_exc()
|
||
return False, None, prompt
|
||
|
||
async def rewrite_reply_with_context(
|
||
self,
|
||
raw_reply: str = "",
|
||
reason: str = "",
|
||
reply_to: str = "",
|
||
return_prompt: bool = False,
|
||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||
"""
|
||
表达器 (Expressor): 负责重写和优化回复文本。
|
||
|
||
Args:
|
||
raw_reply: 原始回复内容
|
||
reason: 回复原因
|
||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||
relation_info: 关系信息
|
||
|
||
Returns:
|
||
Tuple[bool, Optional[str]]: (是否成功, 重写后的回复内容)
|
||
"""
|
||
try:
|
||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||
prompt = await self.build_prompt_rewrite_context(
|
||
raw_reply=raw_reply,
|
||
reason=reason,
|
||
reply_to=reply_to,
|
||
)
|
||
|
||
content = None
|
||
reasoning_content = None
|
||
model_name = "unknown_model"
|
||
if not prompt:
|
||
logger.error("Prompt 构建失败,无法生成回复。")
|
||
return False, None, None
|
||
|
||
try:
|
||
content, reasoning_content, model_name, _ = await self.llm_generate_content(prompt)
|
||
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
|
||
|
||
except Exception as llm_e:
|
||
# 精简报错信息
|
||
logger.error(f"LLM 生成失败: {llm_e}")
|
||
return False, None, prompt if return_prompt else None # LLM 调用失败则无法生成回复
|
||
|
||
return True, content, prompt if return_prompt else None
|
||
|
||
except Exception as e:
|
||
logger.error(f"回复生成意外失败: {e}")
|
||
traceback.print_exc()
|
||
return False, None, prompt if return_prompt else None
|
||
|
||
async def build_relation_info(self, reply_to: str = ""):
|
||
if not global_config.relationship.enable_relationship:
|
||
return ""
|
||
|
||
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
|
||
if not reply_to:
|
||
return ""
|
||
sender, text = self._parse_reply_target(reply_to)
|
||
if not sender or not text:
|
||
return ""
|
||
|
||
# 获取用户ID
|
||
person_info_manager = get_person_info_manager()
|
||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||
if not person_id:
|
||
logger.warning(f"未找到用户 {sender} 的ID,跳过信息提取")
|
||
return f"你完全不认识{sender},不理解ta的相关信息。"
|
||
|
||
return await relationship_fetcher.build_relation_info(person_id, points_num=5)
|
||
|
||
async def build_expression_habits(self, chat_history: str, target: str) -> str:
|
||
"""构建表达习惯块
|
||
|
||
Args:
|
||
chat_history: 聊天历史记录
|
||
target: 目标消息内容
|
||
|
||
Returns:
|
||
str: 表达习惯信息字符串
|
||
"""
|
||
# 检查是否允许在此聊天流中使用表达
|
||
use_expression, _, _ = global_config.expression.get_expression_config_for_chat(self.chat_stream.stream_id)
|
||
if not use_expression:
|
||
return ""
|
||
|
||
style_habits = []
|
||
grammar_habits = []
|
||
|
||
# 使用从处理器传来的选中表达方式
|
||
# LLM模式:调用LLM选择5-10个,然后随机选5个
|
||
selected_expressions = await expression_selector.select_suitable_expressions_llm(
|
||
self.chat_stream.stream_id, chat_history, max_num=8, min_num=2, target_message=target
|
||
)
|
||
|
||
if selected_expressions:
|
||
logger.debug(f"使用处理器选中的{len(selected_expressions)}个表达方式")
|
||
for expr in selected_expressions:
|
||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||
expr_type = expr.get("type", "style")
|
||
if expr_type == "grammar":
|
||
grammar_habits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||
else:
|
||
style_habits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||
else:
|
||
logger.debug("没有从处理器获得表达方式,将使用空的表达方式")
|
||
# 不再在replyer中进行随机选择,全部交给处理器处理
|
||
|
||
style_habits_str = "\n".join(style_habits)
|
||
grammar_habits_str = "\n".join(grammar_habits)
|
||
|
||
# 动态构建expression habits块
|
||
expression_habits_block = ""
|
||
expression_habits_title = ""
|
||
if style_habits_str.strip():
|
||
expression_habits_title = (
|
||
"你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:"
|
||
)
|
||
expression_habits_block += f"{style_habits_str}\n"
|
||
if grammar_habits_str.strip():
|
||
expression_habits_title = (
|
||
"你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:"
|
||
)
|
||
expression_habits_block += f"{grammar_habits_str}\n"
|
||
|
||
if style_habits_str.strip() and grammar_habits_str.strip():
|
||
expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:"
|
||
|
||
return f"{expression_habits_title}\n{expression_habits_block}"
|
||
|
||
async def build_memory_block(self, chat_history: str, target: str) -> str:
|
||
"""构建记忆块
|
||
|
||
Args:
|
||
chat_history: 聊天历史记录
|
||
target: 目标消息内容
|
||
|
||
Returns:
|
||
str: 记忆信息字符串
|
||
"""
|
||
if not global_config.memory.enable_memory:
|
||
return ""
|
||
|
||
instant_memory = None
|
||
|
||
running_memories = await self.memory_activator.activate_memory_with_chat_history(
|
||
target_message=target, chat_history_prompt=chat_history
|
||
)
|
||
|
||
if global_config.memory.enable_instant_memory:
|
||
# 使用异步记忆包装器(最优化的非阻塞模式)
|
||
try:
|
||
from src.chat.memory_system.async_instant_memory_wrapper import get_async_instant_memory
|
||
|
||
# 获取异步记忆包装器
|
||
async_memory = get_async_instant_memory(self.chat_stream.stream_id)
|
||
|
||
# 后台存储聊天历史(完全非阻塞)
|
||
async_memory.store_memory_background(chat_history)
|
||
|
||
# 快速检索记忆,最大超时2秒
|
||
instant_memory = await async_memory.get_memory_with_fallback(target, max_timeout=2.0)
|
||
|
||
logger.info(f"异步瞬时记忆:{instant_memory}")
|
||
|
||
except ImportError:
|
||
# 如果异步包装器不可用,尝试使用异步记忆管理器
|
||
try:
|
||
from src.chat.memory_system.async_memory_optimizer import (
|
||
retrieve_memory_nonblocking,
|
||
store_memory_nonblocking,
|
||
)
|
||
|
||
# 异步存储聊天历史(非阻塞)
|
||
asyncio.create_task(
|
||
store_memory_nonblocking(chat_id=self.chat_stream.stream_id, content=chat_history)
|
||
)
|
||
|
||
# 尝试从缓存获取瞬时记忆
|
||
instant_memory = await retrieve_memory_nonblocking(chat_id=self.chat_stream.stream_id, query=target)
|
||
|
||
# 如果没有缓存结果,快速检索一次
|
||
if instant_memory is None:
|
||
try:
|
||
instant_memory = await asyncio.wait_for(
|
||
self.instant_memory.get_memory_for_context(target), timeout=1.5
|
||
)
|
||
except asyncio.TimeoutError:
|
||
logger.warning("瞬时记忆检索超时,使用空结果")
|
||
instant_memory = ""
|
||
|
||
logger.info(f"向量瞬时记忆:{instant_memory}")
|
||
|
||
except ImportError:
|
||
# 最后的fallback:使用原有逻辑但加上超时控制
|
||
logger.warning("异步记忆系统不可用,使用带超时的同步方式")
|
||
|
||
# 异步存储聊天历史
|
||
asyncio.create_task(self.instant_memory.store_message(chat_history))
|
||
|
||
# 带超时的记忆检索
|
||
try:
|
||
instant_memory = await asyncio.wait_for(
|
||
self.instant_memory.get_memory_for_context(target),
|
||
timeout=1.0, # 最保守的1秒超时
|
||
)
|
||
except asyncio.TimeoutError:
|
||
logger.warning("瞬时记忆检索超时,跳过记忆获取")
|
||
instant_memory = ""
|
||
except Exception as e:
|
||
logger.error(f"瞬时记忆检索失败: {e}")
|
||
instant_memory = ""
|
||
|
||
logger.info(f"同步瞬时记忆:{instant_memory}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"瞬时记忆系统异常: {e}")
|
||
instant_memory = ""
|
||
|
||
# 构建记忆字符串,即使某种记忆为空也要继续
|
||
memory_str = ""
|
||
has_any_memory = False
|
||
|
||
# 添加长期记忆
|
||
if running_memories:
|
||
if not memory_str:
|
||
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
|
||
for running_memory in running_memories:
|
||
memory_str += f"- {running_memory['content']}\n"
|
||
has_any_memory = True
|
||
|
||
# 添加瞬时记忆
|
||
if instant_memory:
|
||
if not memory_str:
|
||
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
|
||
memory_str += f"- {instant_memory}\n"
|
||
has_any_memory = True
|
||
|
||
# 只有当完全没有任何记忆时才返回空字符串
|
||
return memory_str if has_any_memory else ""
|
||
|
||
async def build_tool_info(self, chat_history: str, reply_to: str = "", enable_tool: bool = True) -> str:
|
||
"""构建工具信息块
|
||
|
||
Args:
|
||
chat_history: 聊天历史记录
|
||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||
enable_tool: 是否启用工具调用
|
||
|
||
Returns:
|
||
str: 工具信息字符串
|
||
"""
|
||
|
||
if not enable_tool:
|
||
return ""
|
||
|
||
if not reply_to:
|
||
return ""
|
||
|
||
sender, text = self._parse_reply_target(reply_to)
|
||
|
||
if not text:
|
||
return ""
|
||
|
||
try:
|
||
# 使用工具执行器获取信息
|
||
tool_results, _, _ = await self.tool_executor.execute_from_chat_message(
|
||
sender=sender, target_message=text, chat_history=chat_history, return_details=False
|
||
)
|
||
|
||
if tool_results:
|
||
tool_info_str = "以下是你通过工具获取到的实时信息:\n"
|
||
for tool_result in tool_results:
|
||
tool_name = tool_result.get("tool_name", "unknown")
|
||
content = tool_result.get("content", "")
|
||
result_type = tool_result.get("type", "tool_result")
|
||
|
||
tool_info_str += f"- 【{tool_name}】{result_type}: {content}\n"
|
||
|
||
tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。"
|
||
logger.info(f"获取到 {len(tool_results)} 个工具结果")
|
||
|
||
return tool_info_str
|
||
else:
|
||
logger.debug("未获取到任何工具结果")
|
||
return ""
|
||
|
||
except Exception as e:
|
||
logger.error(f"工具信息获取失败: {e}")
|
||
return ""
|
||
|
||
def _parse_reply_target(self, target_message: str) -> Tuple[str, str]:
|
||
"""解析回复目标消息
|
||
|
||
Args:
|
||
target_message: 目标消息,格式为 "发送者:消息内容" 或 "发送者:消息内容"
|
||
|
||
Returns:
|
||
Tuple[str, str]: (发送者名称, 消息内容)
|
||
"""
|
||
sender = ""
|
||
target = ""
|
||
# 添加None检查,防止NoneType错误
|
||
if target_message is None:
|
||
return sender, target
|
||
if ":" in target_message or ":" in target_message:
|
||
# 使用正则表达式匹配中文或英文冒号
|
||
parts = re.split(pattern=r"[::]", string=target_message, maxsplit=1)
|
||
if len(parts) == 2:
|
||
sender = parts[0].strip()
|
||
target = parts[1].strip()
|
||
return sender, target
|
||
|
||
async def build_keywords_reaction_prompt(self, target: Optional[str]) -> str:
|
||
"""构建关键词反应提示
|
||
|
||
Args:
|
||
target: 目标消息内容
|
||
|
||
Returns:
|
||
str: 关键词反应提示字符串
|
||
"""
|
||
# 关键词检测与反应
|
||
keywords_reaction_prompt = ""
|
||
try:
|
||
# 添加None检查,防止NoneType错误
|
||
if target is None:
|
||
return keywords_reaction_prompt
|
||
|
||
# 处理关键词规则
|
||
for rule in global_config.keyword_reaction.keyword_rules:
|
||
if any(keyword in target for keyword in rule.keywords):
|
||
logger.info(f"检测到关键词规则:{rule.keywords},触发反应:{rule.reaction}")
|
||
keywords_reaction_prompt += f"{rule.reaction},"
|
||
|
||
# 处理正则表达式规则
|
||
for rule in global_config.keyword_reaction.regex_rules:
|
||
for pattern_str in rule.regex:
|
||
try:
|
||
pattern = re.compile(pattern_str)
|
||
if result := pattern.search(target):
|
||
reaction = rule.reaction
|
||
for name, content in result.groupdict().items():
|
||
reaction = reaction.replace(f"[{name}]", content)
|
||
logger.info(f"匹配到正则表达式:{pattern_str},触发反应:{reaction}")
|
||
keywords_reaction_prompt += f"{reaction},"
|
||
break
|
||
except re.error as e:
|
||
logger.error(f"正则表达式编译错误: {pattern_str}, 错误信息: {str(e)}")
|
||
continue
|
||
except Exception as e:
|
||
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
|
||
|
||
return keywords_reaction_prompt
|
||
|
||
async def _time_and_run_task(self, coroutine, name: str) -> Tuple[str, Any, float]:
|
||
"""计时并运行异步任务的辅助函数
|
||
|
||
Args:
|
||
coroutine: 要执行的协程
|
||
name: 任务名称
|
||
|
||
Returns:
|
||
Tuple[str, Any, float]: (任务名称, 任务结果, 执行耗时)
|
||
"""
|
||
start_time = time.time()
|
||
result = await coroutine
|
||
end_time = time.time()
|
||
duration = end_time - start_time
|
||
return name, result, duration
|
||
|
||
def build_s4u_chat_history_prompts(
|
||
self, message_list_before_now: List[Dict[str, Any]], target_user_id: str
|
||
) -> Tuple[str, str]:
|
||
"""
|
||
构建 s4u 风格的分离对话 prompt
|
||
|
||
Args:
|
||
message_list_before_now: 历史消息列表
|
||
target_user_id: 目标用户ID(当前对话对象)
|
||
|
||
Returns:
|
||
Tuple[str, str]: (核心对话prompt, 背景对话prompt)
|
||
"""
|
||
core_dialogue_list = []
|
||
background_dialogue_list = []
|
||
bot_id = str(global_config.bot.qq_account)
|
||
|
||
# 过滤消息:分离bot和目标用户的对话 vs 其他用户的对话
|
||
for msg_dict in message_list_before_now:
|
||
try:
|
||
msg_user_id = str(msg_dict.get("user_id"))
|
||
reply_to = msg_dict.get("reply_to", "")
|
||
_platform, reply_to_user_id = self._parse_reply_target(reply_to)
|
||
if (msg_user_id == bot_id and reply_to_user_id == target_user_id) or msg_user_id == target_user_id:
|
||
# bot 和目标用户的对话
|
||
core_dialogue_list.append(msg_dict)
|
||
else:
|
||
# 其他用户的对话
|
||
background_dialogue_list.append(msg_dict)
|
||
except Exception as e:
|
||
logger.error(f"处理消息记录时出错: {msg_dict}, 错误: {e}")
|
||
|
||
# 构建背景对话 prompt
|
||
background_dialogue_prompt = ""
|
||
if background_dialogue_list:
|
||
latest_25_msgs = background_dialogue_list[-int(global_config.chat.max_context_size * 0.5) :]
|
||
background_dialogue_prompt_str = build_readable_messages(
|
||
latest_25_msgs,
|
||
replace_bot_name=True,
|
||
timestamp_mode="normal",
|
||
truncate=True,
|
||
)
|
||
background_dialogue_prompt = f"这是其他用户的发言:\n{background_dialogue_prompt_str}"
|
||
|
||
# 构建核心对话 prompt
|
||
core_dialogue_prompt = ""
|
||
if core_dialogue_list:
|
||
core_dialogue_list = core_dialogue_list[-int(global_config.chat.max_context_size * 2) :] # 限制消息数量
|
||
|
||
core_dialogue_prompt_str = build_readable_messages(
|
||
core_dialogue_list,
|
||
replace_bot_name=True,
|
||
merge_messages=False,
|
||
timestamp_mode="normal",
|
||
read_mark=0.0,
|
||
truncate=True,
|
||
show_actions=True,
|
||
)
|
||
core_dialogue_prompt = core_dialogue_prompt_str
|
||
|
||
return core_dialogue_prompt, background_dialogue_prompt
|
||
|
||
def build_mai_think_context(
|
||
self,
|
||
chat_id: str,
|
||
memory_block: str,
|
||
relation_info: str,
|
||
time_block: str,
|
||
chat_target_1: str,
|
||
chat_target_2: str,
|
||
mood_prompt: str,
|
||
identity_block: str,
|
||
sender: str,
|
||
target: str,
|
||
chat_info: str,
|
||
) -> Any:
|
||
"""构建 mai_think 上下文信息
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
memory_block: 记忆块内容
|
||
relation_info: 关系信息
|
||
time_block: 时间块内容
|
||
chat_target_1: 聊天目标1
|
||
chat_target_2: 聊天目标2
|
||
mood_prompt: 情绪提示
|
||
identity_block: 身份块内容
|
||
sender: 发送者名称
|
||
target: 目标消息内容
|
||
chat_info: 聊天信息
|
||
|
||
Returns:
|
||
Any: mai_think 实例
|
||
"""
|
||
mai_think = mai_thinking_manager.get_mai_think(chat_id)
|
||
mai_think.memory_block = memory_block
|
||
mai_think.relation_info_block = relation_info
|
||
mai_think.time_block = time_block
|
||
mai_think.chat_target = chat_target_1
|
||
mai_think.chat_target_2 = chat_target_2
|
||
mai_think.chat_info = chat_info
|
||
mai_think.mood_state = mood_prompt
|
||
mai_think.identity = identity_block
|
||
mai_think.sender = sender
|
||
mai_think.target = target
|
||
return mai_think
|
||
|
||
async def build_prompt_reply_context(
|
||
self,
|
||
reply_to: str,
|
||
extra_info: str = "",
|
||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||
enable_tool: bool = True,
|
||
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
|
||
"""
|
||
构建回复器上下文
|
||
|
||
Args:
|
||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||
extra_info: 额外信息,用于补充上下文
|
||
available_actions: 可用动作
|
||
enable_timeout: 是否启用超时处理
|
||
enable_tool: 是否启用工具调用
|
||
|
||
Returns:
|
||
str: 构建好的上下文
|
||
"""
|
||
if available_actions is None:
|
||
available_actions = {}
|
||
chat_stream = self.chat_stream
|
||
chat_id = chat_stream.stream_id
|
||
person_info_manager = get_person_info_manager()
|
||
is_group_chat = bool(chat_stream.group_info)
|
||
|
||
if global_config.mood.enable_mood:
|
||
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
|
||
mood_prompt = chat_mood.mood_state
|
||
|
||
# 检查是否有愤怒状态的补充提示词
|
||
angry_prompt_addition = mood_manager.get_angry_prompt_addition(chat_id)
|
||
if angry_prompt_addition:
|
||
mood_prompt = f"{mood_prompt}。{angry_prompt_addition}"
|
||
else:
|
||
mood_prompt = ""
|
||
|
||
sender, target = self._parse_reply_target(reply_to)
|
||
person_info_manager = get_person_info_manager()
|
||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||
user_id = person_info_manager.get_value_sync(person_id, "user_id")
|
||
platform = chat_stream.platform
|
||
if user_id == global_config.bot.qq_account and platform == global_config.bot.platform:
|
||
logger.warning("选取了自身作为回复对象,跳过构建prompt")
|
||
return ""
|
||
|
||
target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True)
|
||
|
||
# 构建action描述 (如果启用planner)
|
||
action_descriptions = ""
|
||
if available_actions:
|
||
action_descriptions = "你有以下的动作能力,但执行这些动作不由你决定,由另外一个模型同步决定,因此你只需要知道有如下能力即可:\n"
|
||
for action_name, action_info in available_actions.items():
|
||
action_description = action_info.description
|
||
action_descriptions += f"- {action_name}: {action_description}\n"
|
||
action_descriptions += "\n"
|
||
|
||
message_list_before_now_long = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=chat_id,
|
||
timestamp=time.time(),
|
||
limit=global_config.chat.max_context_size * 2,
|
||
)
|
||
|
||
message_list_before_short = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=chat_id,
|
||
timestamp=time.time(),
|
||
limit=int(global_config.chat.max_context_size * 0.33),
|
||
)
|
||
chat_talking_prompt_short = build_readable_messages(
|
||
message_list_before_short,
|
||
replace_bot_name=True,
|
||
merge_messages=False,
|
||
timestamp_mode="relative",
|
||
read_mark=0.0,
|
||
show_actions=True,
|
||
)
|
||
|
||
# 获取目标用户信息,用于s4u模式
|
||
target_user_info = None
|
||
if sender:
|
||
target_user_info = await person_info_manager.get_person_info_by_name(sender)
|
||
|
||
# 并行执行六个构建任务
|
||
task_results = await asyncio.gather(
|
||
self._time_and_run_task(
|
||
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
|
||
),
|
||
self._time_and_run_task(self.build_relation_info(reply_to), "relation_info"),
|
||
self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"),
|
||
self._time_and_run_task(
|
||
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
|
||
),
|
||
self._time_and_run_task(self.get_prompt_info(chat_talking_prompt_short, reply_to), "prompt_info"),
|
||
self._time_and_run_task(self._build_cross_context_block(chat_id, target_user_info), "cross_context"),
|
||
)
|
||
|
||
# 任务名称中英文映射
|
||
task_name_mapping = {
|
||
"expression_habits": "选取表达方式",
|
||
"relation_info": "感受关系",
|
||
"memory_block": "回忆",
|
||
"tool_info": "使用工具",
|
||
"prompt_info": "获取知识",
|
||
}
|
||
|
||
# 处理结果
|
||
timing_logs = []
|
||
results_dict = {}
|
||
for name, result, duration in task_results:
|
||
results_dict[name] = result
|
||
chinese_name = task_name_mapping.get(name, name)
|
||
timing_logs.append(f"{chinese_name}: {duration:.1f}s")
|
||
if duration > 8:
|
||
logger.warning(f"回复生成前信息获取耗时过长: {chinese_name} 耗时: {duration:.1f}s,请使用更快的模型")
|
||
logger.info(f"在回复前的步骤耗时: {'; '.join(timing_logs)}")
|
||
|
||
expression_habits_block = results_dict["expression_habits"]
|
||
relation_info = results_dict["relation_info"]
|
||
memory_block = results_dict["memory_block"]
|
||
tool_info = results_dict["tool_info"]
|
||
prompt_info = results_dict["prompt_info"]
|
||
cross_context_block = results_dict["cross_context"]
|
||
|
||
# 检查是否为视频分析结果,并注入引导语
|
||
if target and ("[视频内容]" in target or "好的,我将根据您提供的" in target):
|
||
video_prompt_injection = "\n请注意,以上内容是你刚刚观看的视频,请以第一人称分享你的观后感,而不是在分析一份报告。"
|
||
memory_block += video_prompt_injection
|
||
|
||
# 检查是否为视频分析结果,并注入引导语
|
||
if target and ("[视频内容]" in target or "好的,我将根据您提供的" in target):
|
||
video_prompt_injection = "\n请注意,以上内容是你刚刚观看的视频,请以第一人称分享你的观后感,而不是在分析一份报告。"
|
||
memory_block += video_prompt_injection
|
||
|
||
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
|
||
|
||
if extra_info:
|
||
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
|
||
else:
|
||
extra_info_block = ""
|
||
|
||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||
|
||
identity_block = await get_individuality().get_personality_block()
|
||
|
||
schedule_block = ""
|
||
if global_config.schedule.enable:
|
||
current_activity = schedule_manager.get_current_activity()
|
||
if current_activity:
|
||
schedule_block = f"你当前正在:{current_activity}。"
|
||
|
||
moderation_prompt_block = (
|
||
"请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
|
||
)
|
||
|
||
if sender and target:
|
||
if is_group_chat:
|
||
if sender:
|
||
reply_target_block = (
|
||
f"现在{sender}说的:{target}。引起了你的注意,你想要在群里发言或者回复这条消息。"
|
||
)
|
||
elif target:
|
||
reply_target_block = f"现在{target}引起了你的注意,你想要在群里发言或者回复这条消息。"
|
||
else:
|
||
reply_target_block = "现在,你想要在群里发言或者回复消息。"
|
||
else: # private chat
|
||
if sender:
|
||
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意,针对这条消息回复。"
|
||
elif target:
|
||
reply_target_block = f"现在{target}引起了你的注意,针对这条消息回复。"
|
||
else:
|
||
reply_target_block = "现在,你想要回复。"
|
||
else:
|
||
reply_target_block = ""
|
||
|
||
template_name = "default_generator_prompt"
|
||
if is_group_chat:
|
||
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||
else:
|
||
chat_target_name = "对方"
|
||
if self.chat_target_info:
|
||
chat_target_name = (
|
||
self.chat_target_info.get("person_name") or self.chat_target_info.get("user_nickname") or "对方"
|
||
)
|
||
chat_target_1 = await global_prompt_manager.format_prompt(
|
||
"chat_target_private1", sender_name=chat_target_name
|
||
)
|
||
chat_target_2 = await global_prompt_manager.format_prompt(
|
||
"chat_target_private2", sender_name=chat_target_name
|
||
)
|
||
|
||
target_user_id = ""
|
||
person_id = ""
|
||
if sender:
|
||
# 根据sender通过person_info_manager反向查找person_id,再获取user_id
|
||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||
|
||
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
|
||
try:
|
||
user_id_value = await person_info_manager.get_value(person_id, "user_id")
|
||
if user_id_value:
|
||
target_user_id = str(user_id_value)
|
||
except Exception as e:
|
||
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
|
||
target_user_id = ""
|
||
|
||
# 构建分离的对话 prompt
|
||
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
|
||
message_list_before_now_long, target_user_id
|
||
)
|
||
|
||
self.build_mai_think_context(
|
||
chat_id=chat_id,
|
||
memory_block=memory_block,
|
||
relation_info=relation_info,
|
||
time_block=time_block,
|
||
chat_target_1=chat_target_1,
|
||
chat_target_2=chat_target_2,
|
||
mood_prompt=mood_prompt,
|
||
identity_block=identity_block,
|
||
sender=sender,
|
||
target=target,
|
||
chat_info=f"""
|
||
{background_dialogue_prompt}
|
||
--------------------------------
|
||
{time_block}
|
||
这是你和{sender}的对话,你们正在交流中:
|
||
{core_dialogue_prompt}""",
|
||
)
|
||
|
||
# 根据配置选择模板
|
||
current_prompt_mode = global_config.personality.prompt_mode
|
||
logger.debug(f"[Prompt模式调试] 当前配置的prompt_mode: {current_prompt_mode}")
|
||
|
||
if current_prompt_mode == "normal":
|
||
template_name = "normal_style_prompt"
|
||
logger.debug(f"[Prompt模式调试] 选择使用normal模式模板: {template_name}")
|
||
# normal模式使用统一的聊天历史,不分离核心对话和背景对话
|
||
config_expression_style = global_config.personality.reply_style
|
||
|
||
# 获取统一的聊天历史(不分离)
|
||
unified_message_list = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=self.chat_stream.stream_id,
|
||
timestamp=time.time(),
|
||
limit=int(global_config.chat.max_context_size * 1.5),
|
||
)
|
||
unified_chat_history = build_readable_messages(
|
||
unified_message_list,
|
||
replace_bot_name=True,
|
||
merge_messages=False,
|
||
timestamp_mode="normal",
|
||
read_mark=0.0,
|
||
truncate=True,
|
||
show_actions=True,
|
||
)
|
||
|
||
# 为normal模式构建简化的chat_info(不包含时间,因为time_block单独传递)
|
||
chat_info = f"""群里的聊天内容:
|
||
{unified_chat_history}"""
|
||
logger.debug("[Prompt模式调试] normal模式使用统一聊天历史,不分离对话")
|
||
|
||
logger.debug("[Prompt模式调试] normal模式参数准备完成,开始调用format_prompt")
|
||
logger.debug(f"[Prompt模式调试] normal模式传递的参数: template_name={template_name}")
|
||
logger.debug("[Prompt模式调试] 检查global_prompt_manager是否有该模板...")
|
||
|
||
# 检查模板是否存在
|
||
try:
|
||
test_prompt = await global_prompt_manager.get_prompt_async(template_name)
|
||
logger.debug(f"[Prompt模式调试] 找到模板 {template_name}, 内容预览: {test_prompt[:100]}...")
|
||
except Exception as e:
|
||
logger.error(f"[Prompt模式调试] 模板 {template_name} 不存在或获取失败: {e}")
|
||
|
||
result = await global_prompt_manager.format_prompt(
|
||
template_name,
|
||
expression_habits_block=expression_habits_block,
|
||
tool_info_block=tool_info,
|
||
knowledge_prompt=prompt_info,
|
||
memory_block=memory_block,
|
||
relation_info_block=relation_info,
|
||
extra_info_block=extra_info_block,
|
||
identity=identity_block,
|
||
schedule_block=schedule_block,
|
||
action_descriptions=action_descriptions,
|
||
time_block=time_block,
|
||
chat_info=chat_info,
|
||
reply_target_block=reply_target_block,
|
||
mood_state=mood_prompt,
|
||
config_expression_style=config_expression_style,
|
||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||
moderation_prompt=moderation_prompt_block,
|
||
cross_context_block=cross_context_block,
|
||
)
|
||
return result
|
||
else:
|
||
# 使用 s4u 风格的模板
|
||
template_name = "s4u_style_prompt"
|
||
logger.debug(f"[Prompt模式调试] 选择使用s4u模式模板: {template_name} (prompt_mode={current_prompt_mode})")
|
||
|
||
logger.debug("[Prompt模式调试] s4u模式参数准备完成,开始调用format_prompt")
|
||
|
||
# 检查s4u模板是否存在
|
||
try:
|
||
test_prompt = await global_prompt_manager.get_prompt_async(template_name)
|
||
logger.debug(f"[Prompt模式调试] 找到s4u模板 {template_name}, 内容预览: {test_prompt[:100]}...")
|
||
except Exception as e:
|
||
# 理论上我觉得这玩意没多大可能炸就是了
|
||
logger.error(f"[Prompt模式调试] s4u模板 {template_name} 不存在或获取失败: {e}")
|
||
|
||
result = await global_prompt_manager.format_prompt(
|
||
template_name,
|
||
expression_habits_block=expression_habits_block,
|
||
tool_info_block=tool_info,
|
||
knowledge_prompt=prompt_info,
|
||
memory_block=memory_block,
|
||
relation_info_block=relation_info,
|
||
extra_info_block=extra_info_block,
|
||
identity=identity_block,
|
||
schedule_block=schedule_block,
|
||
action_descriptions=action_descriptions,
|
||
sender_name=sender,
|
||
mood_state=mood_prompt,
|
||
background_dialogue_prompt=background_dialogue_prompt,
|
||
time_block=time_block,
|
||
core_dialogue_prompt=core_dialogue_prompt,
|
||
reply_target_block=reply_target_block,
|
||
message_txt=target,
|
||
reply_style=global_config.personality.reply_style,
|
||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||
moderation_prompt=moderation_prompt_block,
|
||
cross_context_block=cross_context_block,
|
||
)
|
||
logger.debug(f"[Prompt模式调试] s4u format_prompt调用完成,结果预览: {result[:200]}...")
|
||
return result
|
||
|
||
async def build_prompt_rewrite_context(
|
||
self,
|
||
raw_reply: str,
|
||
reason: str,
|
||
reply_to: str,
|
||
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
|
||
chat_stream = self.chat_stream
|
||
chat_id = chat_stream.stream_id
|
||
is_group_chat = bool(chat_stream.group_info)
|
||
|
||
sender, target = self._parse_reply_target(reply_to)
|
||
|
||
# 添加情绪状态获取
|
||
if global_config.mood.enable_mood:
|
||
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
|
||
mood_prompt = chat_mood.mood_state
|
||
|
||
# 检查是否有愤怒状态的补充提示词
|
||
angry_prompt_addition = mood_manager.get_angry_prompt_addition(chat_id)
|
||
if angry_prompt_addition:
|
||
mood_prompt = f"{mood_prompt}。{angry_prompt_addition}"
|
||
else:
|
||
mood_prompt = ""
|
||
|
||
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=chat_id,
|
||
timestamp=time.time(),
|
||
limit=min(int(global_config.chat.max_context_size * 0.33), 15),
|
||
)
|
||
chat_talking_prompt_half = build_readable_messages(
|
||
message_list_before_now_half,
|
||
replace_bot_name=True,
|
||
merge_messages=False,
|
||
timestamp_mode="relative",
|
||
read_mark=0.0,
|
||
show_actions=True,
|
||
)
|
||
|
||
# 并行执行2个构建任务
|
||
expression_habits_block, relation_info = await asyncio.gather(
|
||
self.build_expression_habits(chat_talking_prompt_half, target),
|
||
self.build_relation_info(reply_to),
|
||
)
|
||
|
||
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
|
||
|
||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||
|
||
identity_block = await get_individuality().get_personality_block()
|
||
|
||
moderation_prompt_block = (
|
||
"请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
|
||
)
|
||
|
||
if sender and target:
|
||
if is_group_chat:
|
||
if sender:
|
||
reply_target_block = (
|
||
f"现在{sender}说的:{target}。引起了你的注意,你想要在群里发言或者回复这条消息。"
|
||
)
|
||
elif target:
|
||
reply_target_block = f"现在{target}引起了你的注意,你想要在群里发言或者回复这条消息。"
|
||
else:
|
||
reply_target_block = "现在,你想要在群里发言或者回复消息。"
|
||
else: # private chat
|
||
if sender:
|
||
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意,针对这条消息回复。"
|
||
elif target:
|
||
reply_target_block = f"现在{target}引起了你的注意,针对这条消息回复。"
|
||
else:
|
||
reply_target_block = "现在,你想要回复。"
|
||
else:
|
||
reply_target_block = ""
|
||
|
||
if is_group_chat:
|
||
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||
else:
|
||
chat_target_name = "对方"
|
||
if self.chat_target_info:
|
||
chat_target_name = (
|
||
self.chat_target_info.get("person_name") or self.chat_target_info.get("user_nickname") or "对方"
|
||
)
|
||
chat_target_1 = await global_prompt_manager.format_prompt(
|
||
"chat_target_private1", sender_name=chat_target_name
|
||
)
|
||
chat_target_2 = await global_prompt_manager.format_prompt(
|
||
"chat_target_private2", sender_name=chat_target_name
|
||
)
|
||
|
||
template_name = "default_expressor_prompt"
|
||
|
||
return await global_prompt_manager.format_prompt(
|
||
template_name,
|
||
expression_habits_block=expression_habits_block,
|
||
relation_info_block=relation_info,
|
||
chat_target=chat_target_1,
|
||
time_block=time_block,
|
||
chat_info=chat_talking_prompt_half,
|
||
identity=identity_block,
|
||
chat_target_2=chat_target_2,
|
||
reply_target_block=reply_target_block,
|
||
raw_reply=raw_reply,
|
||
reason=reason,
|
||
mood_state=mood_prompt, # 添加情绪状态参数
|
||
reply_style=global_config.personality.reply_style,
|
||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||
moderation_prompt=moderation_prompt_block,
|
||
)
|
||
|
||
async def _build_single_sending_message(
|
||
self,
|
||
message_id: str,
|
||
message_segment: Seg,
|
||
reply_to: bool,
|
||
is_emoji: bool,
|
||
thinking_start_time: float,
|
||
display_message: str,
|
||
anchor_message: Optional[MessageRecv] = None,
|
||
) -> MessageSending:
|
||
"""构建单个发送消息"""
|
||
|
||
bot_user_info = UserInfo(
|
||
user_id=str(global_config.bot.qq_account),
|
||
user_nickname=global_config.bot.nickname,
|
||
platform=self.chat_stream.platform,
|
||
)
|
||
|
||
# await anchor_message.process()
|
||
sender_info = anchor_message.message_info.user_info if anchor_message else None
|
||
|
||
return MessageSending(
|
||
message_id=message_id, # 使用片段的唯一ID
|
||
chat_stream=self.chat_stream,
|
||
bot_user_info=bot_user_info,
|
||
sender_info=sender_info,
|
||
message_segment=message_segment,
|
||
reply=anchor_message, # 回复原始锚点
|
||
is_head=reply_to,
|
||
is_emoji=is_emoji,
|
||
thinking_start_time=thinking_start_time, # 传递原始思考开始时间
|
||
display_message=display_message,
|
||
)
|
||
|
||
async def llm_generate_content(self, prompt: str):
|
||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||
# 加权随机选择一个模型配置
|
||
selected_model_config, weight = self._select_weighted_models_config()
|
||
logger.info(f"使用模型集生成回复: {selected_model_config} (选中概率: {weight})")
|
||
|
||
express_model = LLMRequest(model_set=selected_model_config, request_type=self.request_type)
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"\n{prompt}\n")
|
||
else:
|
||
logger.debug(f"\n{prompt}\n")
|
||
|
||
content, (reasoning_content, model_name, tool_calls) = await express_model.generate_response_async(prompt)
|
||
|
||
logger.debug(f"replyer生成内容: {content}")
|
||
return content, reasoning_content, model_name, tool_calls
|
||
|
||
async def get_prompt_info(self, message: str, reply_to: str):
|
||
related_info = ""
|
||
start_time = time.time()
|
||
from src.plugins.built_in.knowledge.lpmm_get_knowledge import SearchKnowledgeFromLPMMTool
|
||
|
||
if not reply_to:
|
||
logger.debug("没有回复对象,跳过获取知识库内容")
|
||
return ""
|
||
sender, content = self._parse_reply_target(reply_to)
|
||
if not content:
|
||
logger.debug("回复对象内容为空,跳过获取知识库内容")
|
||
return ""
|
||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||
# 从LPMM知识库获取知识
|
||
try:
|
||
# 检查LPMM知识库是否启用
|
||
if not global_config.lpmm_knowledge.enable:
|
||
logger.debug("LPMM知识库未启用,跳过获取知识库内容")
|
||
return ""
|
||
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||
|
||
bot_name = global_config.bot.nickname
|
||
|
||
prompt = await global_prompt_manager.format_prompt(
|
||
"lpmm_get_knowledge_prompt",
|
||
bot_name=bot_name,
|
||
time_now=time_now,
|
||
chat_history=message,
|
||
sender=sender,
|
||
target_message=content,
|
||
)
|
||
_, _, _, _, tool_calls = await llm_api.generate_with_model_with_tools(
|
||
prompt,
|
||
model_config=model_config.model_task_config.tool_use,
|
||
tool_options=[SearchKnowledgeFromLPMMTool.get_tool_definition()],
|
||
)
|
||
if tool_calls:
|
||
result = await self.tool_executor.execute_tool_call(tool_calls[0], SearchKnowledgeFromLPMMTool())
|
||
end_time = time.time()
|
||
if not result or not result.get("content"):
|
||
logger.debug("从LPMM知识库获取知识失败,返回空知识...")
|
||
return ""
|
||
found_knowledge_from_lpmm = result.get("content", "")
|
||
logger.debug(
|
||
f"从LPMM知识库获取知识,相关信息:{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}"
|
||
)
|
||
related_info += found_knowledge_from_lpmm
|
||
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
|
||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||
|
||
return f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
||
else:
|
||
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
||
return ""
|
||
except Exception as e:
|
||
logger.error(f"获取知识库内容时发生异常: {str(e)}")
|
||
return ""
|
||
|
||
|
||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||
"""
|
||
加权且不放回地随机抽取k个元素。
|
||
|
||
参数:
|
||
items: 待抽取的元素列表
|
||
weights: 每个元素对应的权重(与items等长,且为正数)
|
||
k: 需要抽取的元素个数
|
||
返回:
|
||
selected: 按权重加权且不重复抽取的k个元素组成的列表
|
||
|
||
如果 items 中的元素不足 k 个,就只会返回所有可用的元素
|
||
|
||
实现思路:
|
||
每次从当前池中按权重加权随机选出一个元素,选中后将其从池中移除,重复k次。
|
||
这样保证了:
|
||
1. count越大被选中概率越高
|
||
2. 不会重复选中同一个元素
|
||
"""
|
||
selected = []
|
||
pool = list(zip(items, weights, strict=False))
|
||
for _ in range(min(k, len(pool))):
|
||
total = sum(w for _, w in pool)
|
||
r = random.uniform(0, total)
|
||
upto = 0
|
||
for idx, (item, weight) in enumerate(pool):
|
||
upto += weight
|
||
if upto >= r:
|
||
selected.append(item)
|
||
pool.pop(idx)
|
||
break
|
||
return selected
|
||
|
||
|
||
init_prompt()
|