899 lines
36 KiB
Python
899 lines
36 KiB
Python
# Todo: 重构Action,这里现在只剩下了报错。
|
||
import asyncio
|
||
import random
|
||
import time
|
||
from abc import ABC, abstractmethod
|
||
from typing import TYPE_CHECKING
|
||
|
||
from src.chat.message_receive.chat_stream import ChatStream
|
||
from src.common.logger import get_logger
|
||
from src.plugin_system.apis import database_api, message_api, send_api
|
||
from src.plugin_system.base.component_types import ActionActivationType, ActionInfo, ChatMode, ChatType, ComponentType
|
||
|
||
if TYPE_CHECKING:
|
||
from src.llm_models.utils_model import LLMRequest
|
||
|
||
logger = get_logger("base_action")
|
||
|
||
|
||
class BaseAction(ABC):
|
||
"""Action组件基类
|
||
|
||
Action是插件的一种组件类型,用于处理聊天中的动作逻辑
|
||
|
||
==================================================================================
|
||
新的激活机制 (推荐使用)
|
||
==================================================================================
|
||
推荐通过重写 go_activate() 方法来自定义激活逻辑:
|
||
|
||
示例 1 - 关键词激活:
|
||
async def go_activate(self, llm_judge_model=None) -> bool:
|
||
return await self._keyword_match(["你好", "hello"])
|
||
|
||
示例 2 - LLM 判断激活:
|
||
async def go_activate(self, llm_judge_model=None) -> bool:
|
||
return await self._llm_judge_activation(
|
||
"当用户询问天气信息时激活",
|
||
llm_judge_model
|
||
)
|
||
|
||
示例 3 - 组合多种条件:
|
||
async def go_activate(self, llm_judge_model=None) -> bool:
|
||
# 30% 随机概率,或者匹配关键词
|
||
if await self._random_activation(0.3):
|
||
return True
|
||
return await self._keyword_match(["表情", "emoji"])
|
||
|
||
提供的工具函数:
|
||
- _random_activation(probability): 随机激活
|
||
- _keyword_match(keywords, case_sensitive): 关键词匹配(自动获取聊天内容)
|
||
- _llm_judge_activation(judge_prompt, llm_judge_model): LLM 判断(自动获取聊天内容)
|
||
|
||
注意:聊天内容会自动从实例属性中获取,无需手动传入。
|
||
|
||
==================================================================================
|
||
旧的激活机制 (已废弃,但仍然兼容)
|
||
==================================================================================
|
||
子类可以通过类属性定义激活条件(已废弃,但 go_activate() 的默认实现会使用这些):
|
||
- focus_activation_type: 专注模式激活类型
|
||
- normal_activation_type: 普通模式激活类型
|
||
- activation_keywords: 激活关键词列表
|
||
- keyword_case_sensitive: 关键词是否区分大小写
|
||
- random_activation_probability: 随机激活概率
|
||
- llm_judge_prompt: LLM判断提示词
|
||
|
||
==================================================================================
|
||
其他类属性
|
||
==================================================================================
|
||
- mode_enable: 启用的聊天模式
|
||
- parallel_action: 是否允许并行执行
|
||
|
||
二步Action相关属性:
|
||
- is_two_step_action: 是否为二步Action
|
||
- step_one_description: 第一步的描述
|
||
- sub_actions: 子Action列表
|
||
"""
|
||
|
||
# 二步Action相关类属性
|
||
is_two_step_action: bool = False
|
||
"""是否为二步Action。如果为True,Action将分两步执行:第一步选择操作,第二步执行具体操作"""
|
||
step_one_description: str = ""
|
||
"""第一步的描述,用于向LLM展示Action的基本功能"""
|
||
sub_actions: list[tuple[str, str, dict[str, str]]] = []
|
||
"""子Action列表,格式为[(子Action名, 子Action描述, 子Action参数)]。仅在二步Action中使用"""
|
||
|
||
def __init__(
|
||
self,
|
||
action_data: dict,
|
||
reasoning: str,
|
||
cycle_timers: dict,
|
||
thinking_id: str,
|
||
chat_stream: ChatStream,
|
||
log_prefix: str = "",
|
||
plugin_config: dict | None = None,
|
||
action_message: dict | None = None,
|
||
**kwargs,
|
||
):
|
||
# sourcery skip: hoist-similar-statement-from-if, merge-else-if-into-elif, move-assign-in-block, swap-if-else-branches, swap-nested-ifs
|
||
"""初始化Action组件
|
||
|
||
Args:
|
||
action_data: 动作数据
|
||
reasoning: 执行该动作的理由
|
||
cycle_timers: 计时器字典
|
||
thinking_id: 思考ID
|
||
chat_stream: 聊天流对象
|
||
log_prefix: 日志前缀
|
||
plugin_config: 插件配置字典
|
||
action_message: 消息数据
|
||
**kwargs: 其他参数
|
||
"""
|
||
if plugin_config is None:
|
||
plugin_config = {}
|
||
self.action_data = action_data
|
||
self.reasoning = reasoning
|
||
self.cycle_timers = cycle_timers
|
||
self.thinking_id = thinking_id
|
||
self.log_prefix = log_prefix
|
||
|
||
self.plugin_config = plugin_config or {}
|
||
"""对应的插件配置"""
|
||
|
||
# 设置动作基本信息实例属性
|
||
self.action_name: str = getattr(self, "action_name", self.__class__.__name__.lower().replace("action", ""))
|
||
"""Action的名字"""
|
||
self.action_description: str = getattr(self, "action_description", self.__doc__ or "Action组件")
|
||
"""Action的描述"""
|
||
self.action_parameters: dict = getattr(self.__class__, "action_parameters", {}).copy()
|
||
self.action_require: list[str] = getattr(self.__class__, "action_require", []).copy()
|
||
|
||
# 设置激活类型实例属性(从类属性复制,提供默认值)
|
||
self.focus_activation_type = getattr(self.__class__, "focus_activation_type", ActionActivationType.ALWAYS)
|
||
"""FOCUS模式下的激活类型"""
|
||
self.normal_activation_type = getattr(self.__class__, "normal_activation_type", ActionActivationType.ALWAYS)
|
||
"""NORMAL模式下的激活类型"""
|
||
self.activation_type = getattr(self.__class__, "activation_type", self.focus_activation_type)
|
||
"""激活类型"""
|
||
self.random_activation_probability: float = getattr(self.__class__, "random_activation_probability", 0.0)
|
||
"""当激活类型为RANDOM时的概率"""
|
||
self.llm_judge_prompt: str = getattr(self.__class__, "llm_judge_prompt", "")
|
||
"""协助LLM进行判断的Prompt"""
|
||
self.activation_keywords: list[str] = getattr(self.__class__, "activation_keywords", []).copy()
|
||
"""激活类型为KEYWORD时的KEYWORDS列表"""
|
||
self.keyword_case_sensitive: bool = getattr(self.__class__, "keyword_case_sensitive", False)
|
||
self.mode_enable: ChatMode = getattr(self.__class__, "mode_enable", ChatMode.ALL)
|
||
self.parallel_action: bool = getattr(self.__class__, "parallel_action", True)
|
||
self.associated_types: list[str] = getattr(self.__class__, "associated_types", []).copy()
|
||
self.chat_type_allow: ChatType = getattr(self.__class__, "chat_type_allow", ChatType.ALL)
|
||
|
||
# 二步Action相关实例属性
|
||
self.is_two_step_action: bool = getattr(self.__class__, "is_two_step_action", False)
|
||
self.step_one_description: str = getattr(self.__class__, "step_one_description", "")
|
||
self.sub_actions: list[tuple[str, str, dict[str, str]]] = getattr(self.__class__, "sub_actions", []).copy()
|
||
self._selected_sub_action: str | None = None
|
||
"""当前选择的子Action名称,用于二步Action的状态管理"""
|
||
|
||
# =============================================================================
|
||
# 便捷属性 - 直接在初始化时获取常用聊天信息(带类型注解)
|
||
# =============================================================================
|
||
|
||
# 获取聊天流对象
|
||
self.chat_stream = chat_stream or kwargs.get("chat_stream")
|
||
self.chat_id = self.chat_stream.stream_id
|
||
self.platform = getattr(self.chat_stream, "platform", None)
|
||
|
||
# 初始化基础信息(带类型注解)
|
||
self.action_message = action_message
|
||
|
||
self.group_id = None
|
||
self.group_name = None
|
||
self.user_id = None
|
||
self.user_nickname = None
|
||
self.is_group = False
|
||
self.target_id = None
|
||
self.has_action_message = False
|
||
|
||
if self.action_message:
|
||
self.has_action_message = True
|
||
else:
|
||
self.action_message = {}
|
||
|
||
if self.has_action_message:
|
||
if self.action_name != "no_reply":
|
||
self.group_id = str(self.action_message.get("chat_info_group_id", None))
|
||
self.group_name = self.action_message.get("chat_info_group_name", None)
|
||
|
||
self.user_id = str(self.action_message.get("user_id", None))
|
||
self.user_nickname = self.action_message.get("user_nickname", None)
|
||
if self.group_id:
|
||
self.is_group = True
|
||
self.target_id = self.group_id
|
||
else:
|
||
self.is_group = False
|
||
self.target_id = self.user_id
|
||
else:
|
||
if self.chat_stream.group_info:
|
||
self.group_id = self.chat_stream.group_info.group_id
|
||
self.group_name = self.chat_stream.group_info.group_name
|
||
self.is_group = True
|
||
self.target_id = self.group_id
|
||
else:
|
||
self.user_id = self.chat_stream.user_info.user_id
|
||
self.user_nickname = self.chat_stream.user_info.user_nickname
|
||
self.is_group = False
|
||
self.target_id = self.user_id
|
||
|
||
logger.debug(f"{self.log_prefix} Action组件初始化完成")
|
||
logger.debug(
|
||
f"{self.log_prefix} 聊天信息: 类型={'群聊' if self.is_group else '私聊'}, 平台={self.platform}, 目标={self.target_id}"
|
||
)
|
||
|
||
# 验证聊天类型限制
|
||
if not self._validate_chat_type():
|
||
logger.warning(
|
||
f"{self.log_prefix} Action '{self.action_name}' 不支持当前聊天类型: "
|
||
f"{'群聊' if self.is_group else '私聊'}, 允许类型: {self.chat_type_allow.value}"
|
||
)
|
||
|
||
def _validate_chat_type(self) -> bool:
|
||
"""验证当前聊天类型是否允许执行此Action
|
||
|
||
Returns:
|
||
bool: 如果允许执行返回True,否则返回False
|
||
"""
|
||
if self.chat_type_allow == ChatType.ALL:
|
||
return True
|
||
elif self.chat_type_allow == ChatType.GROUP and self.is_group:
|
||
return True
|
||
elif self.chat_type_allow == ChatType.PRIVATE and not self.is_group:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def is_chat_type_allowed(self) -> bool:
|
||
"""检查当前聊天类型是否允许执行此Action
|
||
|
||
这是一个公开的方法,供外部调用检查聊天类型限制
|
||
|
||
Returns:
|
||
bool: 如果允许执行返回True,否则返回False
|
||
"""
|
||
return self._validate_chat_type()
|
||
|
||
async def wait_for_new_message(self, timeout: int = 1200) -> tuple[bool, str]:
|
||
"""等待新消息或超时
|
||
|
||
在loop_start_time之后等待新消息,如果没有新消息且没有超时,就一直等待。
|
||
使用message_api检查self.chat_id对应的聊天中是否有新消息。
|
||
|
||
Args:
|
||
timeout: 超时时间(秒),默认1200秒
|
||
|
||
Returns:
|
||
Tuple[bool, str]: (是否收到新消息, 空字符串)
|
||
"""
|
||
try:
|
||
# 获取循环开始时间,如果没有则使用当前时间
|
||
loop_start_time = self.action_data.get("loop_start_time", time.time())
|
||
logger.info(f"{self.log_prefix} 开始等待新消息... (最长等待: {timeout}秒, 从时间点: {loop_start_time})")
|
||
|
||
# 确保有有效的chat_id
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 等待新消息失败: 没有有效的chat_id")
|
||
return False, "没有有效的chat_id"
|
||
|
||
wait_start_time = asyncio.get_event_loop().time()
|
||
while True:
|
||
# 检查关闭标志
|
||
# shutting_down = self.get_action_context("shutting_down", False)
|
||
# if shutting_down:
|
||
# logger.info(f"{self.log_prefix} 等待新消息时检测到关闭信号,中断等待")
|
||
# return False, ""
|
||
|
||
# 检查新消息
|
||
current_time = time.time()
|
||
new_message_count = await message_api.count_new_messages(
|
||
chat_id=self.chat_id, start_time=loop_start_time, end_time=current_time
|
||
)
|
||
|
||
if new_message_count > 0:
|
||
logger.info(f"{self.log_prefix} 检测到{new_message_count}条新消息,聊天ID: {self.chat_id}")
|
||
return True, ""
|
||
|
||
# 检查超时
|
||
elapsed_time = asyncio.get_event_loop().time() - wait_start_time
|
||
if elapsed_time > timeout:
|
||
logger.warning(f"{self.log_prefix} 等待新消息超时({timeout}秒),聊天ID: {self.chat_id}")
|
||
return False, ""
|
||
|
||
# 每30秒记录一次等待状态
|
||
if int(elapsed_time) % 15 == 0 and int(elapsed_time) > 0:
|
||
logger.debug(f"{self.log_prefix} 已等待{int(elapsed_time)}秒,继续等待新消息...")
|
||
|
||
# 短暂休眠
|
||
await asyncio.sleep(0.5)
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info(f"{self.log_prefix} 等待新消息被中断 (CancelledError)")
|
||
return False, ""
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 等待新消息时发生错误: {e}")
|
||
return False, f"等待新消息失败: {e!s}"
|
||
|
||
async def send_text(self, content: str, reply_to: str = "", typing: bool = False) -> bool:
|
||
"""发送文本消息
|
||
|
||
Args:
|
||
content: 文本内容
|
||
reply_to: 回复消息,格式为"发送者:消息内容"
|
||
|
||
Returns:
|
||
bool: 是否发送成功
|
||
"""
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 缺少聊天ID")
|
||
return False
|
||
|
||
return await send_api.text_to_stream(
|
||
text=content,
|
||
stream_id=self.chat_id,
|
||
set_reply=set_reply,
|
||
reply_message=reply_message,
|
||
typing=typing,
|
||
)
|
||
|
||
async def send_emoji(self, emoji_base64: str, set_reply: bool = False,reply_message: Optional[Dict[str, Any]] = None) -> bool:
|
||
"""发送表情包
|
||
|
||
Args:
|
||
emoji_base64: 表情包的base64编码
|
||
|
||
Returns:
|
||
bool: 是否发送成功
|
||
"""
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 缺少聊天ID")
|
||
return False
|
||
|
||
return await send_api.emoji_to_stream(emoji_base64, self.chat_id,set_reply=set_reply,reply_message=reply_message)
|
||
|
||
async def send_image(self, image_base64: str, set_reply: bool = False,reply_message: Optional[Dict[str, Any]] = None) -> bool:
|
||
"""发送图片
|
||
|
||
Args:
|
||
image_base64: 图片的base64编码
|
||
|
||
Returns:
|
||
bool: 是否发送成功
|
||
"""
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 缺少聊天ID")
|
||
return False
|
||
|
||
return await send_api.image_to_stream(image_base64, self.chat_id,set_reply=set_reply,reply_message=reply_message)
|
||
|
||
async def send_custom(self, message_type: str, content: str, typing: bool = False, set_reply: bool = False,reply_message: Optional[Dict[str, Any]] = None) -> bool:
|
||
"""发送自定义类型消息
|
||
|
||
Args:
|
||
message_type: 消息类型,如"video"、"file"、"audio"等
|
||
content: 消息内容
|
||
typing: 是否显示正在输入
|
||
reply_to: 回复消息,格式为"发送者:消息内容"
|
||
|
||
Returns:
|
||
bool: 是否发送成功
|
||
"""
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 缺少聊天ID")
|
||
return False
|
||
|
||
return await send_api.custom_to_stream(
|
||
message_type=message_type,
|
||
content=content,
|
||
stream_id=self.chat_id,
|
||
typing=typing,
|
||
set_reply=set_reply,
|
||
reply_message=reply_message,
|
||
)
|
||
|
||
async def store_action_info(
|
||
self,
|
||
action_build_into_prompt: bool = False,
|
||
action_prompt_display: str = "",
|
||
action_done: bool = True,
|
||
) -> None:
|
||
"""存储动作信息到数据库
|
||
|
||
Args:
|
||
action_build_into_prompt: 是否构建到提示中
|
||
action_prompt_display: 显示的action提示信息
|
||
action_done: action是否完成
|
||
"""
|
||
await database_api.store_action_info(
|
||
chat_stream=self.chat_stream,
|
||
action_build_into_prompt=action_build_into_prompt,
|
||
action_prompt_display=action_prompt_display,
|
||
action_done=action_done,
|
||
thinking_id=self.thinking_id,
|
||
action_data=self.action_data,
|
||
action_name=self.action_name,
|
||
)
|
||
|
||
async def send_command(
|
||
self, command_name: str, args: dict | None = None, display_message: str = "", storage_message: bool = True
|
||
) -> bool:
|
||
"""发送命令消息
|
||
|
||
使用stream API发送命令
|
||
|
||
Args:
|
||
command_name: 命令名称
|
||
args: 命令参数
|
||
display_message: 显示消息
|
||
storage_message: 是否存储消息到数据库
|
||
|
||
Returns:
|
||
bool: 是否发送成功
|
||
"""
|
||
try:
|
||
if not self.chat_id:
|
||
logger.error(f"{self.log_prefix} 缺少聊天ID")
|
||
return False
|
||
|
||
# 构造命令数据
|
||
command_data = {"name": command_name, "args": args or {}}
|
||
|
||
success = await send_api.command_to_stream(
|
||
command=command_data,
|
||
stream_id=self.chat_id,
|
||
storage_message=storage_message,
|
||
display_message=display_message,
|
||
)
|
||
|
||
if success:
|
||
logger.info(f"{self.log_prefix} 成功发送命令: {command_name}")
|
||
else:
|
||
logger.error(f"{self.log_prefix} 发送命令失败: {command_name}")
|
||
|
||
return success
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 发送命令时出错: {e}")
|
||
return False
|
||
|
||
async def call_action(self, action_name: str, action_data: dict | None = None) -> tuple[bool, str]:
|
||
"""
|
||
在当前Action中调用另一个Action。
|
||
|
||
Args:
|
||
action_name (str): 要调用的Action的名称。
|
||
action_data (Optional[dict], optional): 传递给被调用Action的动作数据。如果为None,则使用当前Action的action_data。
|
||
|
||
Returns:
|
||
Tuple[bool, str]: 被调用Action的执行结果 (is_success, message)。
|
||
"""
|
||
log_prefix = f"{self.log_prefix} [call_action -> {action_name}]"
|
||
logger.info(f"{log_prefix} 尝试调用Action: {action_name}")
|
||
|
||
try:
|
||
from src.plugin_system.core.component_registry import component_registry
|
||
# 1. 从注册中心获取Action类
|
||
from src.plugin_system.core.component_registry import component_registry
|
||
|
||
action_class = component_registry.get_component_class(action_name, ComponentType.ACTION)
|
||
if not action_class:
|
||
logger.error(f"{log_prefix} 未找到Action: {action_name}")
|
||
return False, f"未找到Action: {action_name}"
|
||
|
||
# 2. 准备实例化参数
|
||
# 复用当前Action的大部分上下文信息
|
||
called_action_data = action_data if action_data is not None else self.action_data
|
||
|
||
component_info = component_registry.get_component_info(action_name, ComponentType.ACTION)
|
||
if not component_info:
|
||
logger.warning(f"{log_prefix} 未找到Action组件信息: {action_name}")
|
||
return False, f"未找到Action组件信息: {action_name}"
|
||
|
||
# 确保获取的是Action组件
|
||
if component_info.component_type != ComponentType.ACTION:
|
||
logger.error(
|
||
f"{log_prefix} 尝试调用的组件 '{action_name}' 不是一个Action,而是一个 '{component_info.component_type.value}'"
|
||
)
|
||
return False, f"组件 '{action_name}' 不是一个有效的Action"
|
||
|
||
plugin_config = component_registry.get_plugin_config(component_info.plugin_name)
|
||
# 3. 实例化被调用的Action
|
||
action_params = {
|
||
"action_data": called_action_data,
|
||
"reasoning": f"Called by {self.action_name}",
|
||
"cycle_timers": self.cycle_timers,
|
||
"thinking_id": self.thinking_id,
|
||
"chat_stream": self.chat_stream,
|
||
"log_prefix": log_prefix,
|
||
"plugin_config": plugin_config,
|
||
"action_message": self.action_message,
|
||
}
|
||
action_instance = action_class(**action_params)
|
||
|
||
# 4. 执行Action
|
||
logger.debug(f"{log_prefix} 开始执行...")
|
||
execute_result = await action_instance.execute() # Todo: 修复类型错误
|
||
# 确保返回类型符合 (bool, str) 格式
|
||
is_success = execute_result[0] if isinstance(execute_result, tuple) and len(execute_result) > 0 else False
|
||
message = execute_result[1] if isinstance(execute_result, tuple) and len(execute_result) > 1 else ""
|
||
result = (is_success, str(message))
|
||
logger.info(f"{log_prefix} 执行完成,结果: {result}")
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"{log_prefix} 调用时发生错误: {e}", exc_info=True)
|
||
return False, f"调用Action '{action_name}' 时发生错误: {e}"
|
||
|
||
@classmethod
|
||
def get_action_info(cls) -> "ActionInfo":
|
||
"""从类属性生成ActionInfo
|
||
|
||
所有信息都从类属性中读取,确保一致性和完整性。
|
||
Action类必须定义所有必要的类属性。
|
||
|
||
Returns:
|
||
ActionInfo: 生成的Action信息对象
|
||
"""
|
||
|
||
# 从类属性读取名称,如果没有定义则使用类名自动生成
|
||
name = getattr(cls, "action_name", cls.__name__.lower().replace("action", ""))
|
||
if "." in name:
|
||
logger.error(f"Action名称 '{name}' 包含非法字符 '.',请使用下划线替代")
|
||
raise ValueError(f"Action名称 '{name}' 包含非法字符 '.',请使用下划线替代")
|
||
# 获取focus_activation_type和normal_activation_type
|
||
focus_activation_type = getattr(cls, "focus_activation_type", ActionActivationType.ALWAYS)
|
||
normal_activation_type = getattr(cls, "normal_activation_type", ActionActivationType.ALWAYS)
|
||
|
||
# 处理activation_type:如果插件中声明了就用插件的值,否则默认使用focus_activation_type
|
||
activation_type = getattr(cls, "activation_type", focus_activation_type)
|
||
|
||
return ActionInfo(
|
||
name=name,
|
||
component_type=ComponentType.ACTION,
|
||
description=getattr(cls, "action_description", "Action动作"),
|
||
focus_activation_type=focus_activation_type,
|
||
normal_activation_type=normal_activation_type,
|
||
activation_type=activation_type,
|
||
activation_keywords=getattr(cls, "activation_keywords", []).copy(),
|
||
keyword_case_sensitive=getattr(cls, "keyword_case_sensitive", False),
|
||
mode_enable=getattr(cls, "mode_enable", ChatMode.ALL),
|
||
parallel_action=getattr(cls, "parallel_action", True),
|
||
random_activation_probability=getattr(cls, "random_activation_probability", 0.0),
|
||
llm_judge_prompt=getattr(cls, "llm_judge_prompt", ""),
|
||
# 使用正确的字段名
|
||
action_parameters=getattr(cls, "action_parameters", {}).copy(),
|
||
action_require=getattr(cls, "action_require", []).copy(),
|
||
associated_types=getattr(cls, "associated_types", []).copy(),
|
||
chat_type_allow=getattr(cls, "chat_type_allow", ChatType.ALL),
|
||
# 二步Action相关属性
|
||
is_two_step_action=getattr(cls, "is_two_step_action", False),
|
||
step_one_description=getattr(cls, "step_one_description", ""),
|
||
sub_actions=getattr(cls, "sub_actions", []).copy(),
|
||
)
|
||
|
||
async def handle_step_one(self) -> tuple[bool, str]:
|
||
"""处理二步Action的第一步
|
||
|
||
Returns:
|
||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||
"""
|
||
if not self.is_two_step_action:
|
||
return False, "此Action不是二步Action"
|
||
|
||
# 检查action_data中是否包含选择的子Action
|
||
selected_action = self.action_data.get("selected_action")
|
||
if not selected_action:
|
||
# 第一步:展示可用的子Action
|
||
[sub_action[0] for sub_action in self.sub_actions]
|
||
description = self.step_one_description or f"{self.action_name}支持以下操作"
|
||
|
||
actions_list = "\n".join([f"- {action}: {desc}" for action, desc, _ in self.sub_actions])
|
||
response = f"{description}\n\n可用操作:\n{actions_list}\n\n请选择要执行的操作。"
|
||
|
||
return True, response
|
||
else:
|
||
# 验证选择的子Action是否有效
|
||
valid_actions = [sub_action[0] for sub_action in self.sub_actions]
|
||
if selected_action not in valid_actions:
|
||
return False, f"无效的操作选择: {selected_action}。可用操作: {valid_actions}"
|
||
|
||
# 保存选择的子Action
|
||
self._selected_sub_action = selected_action
|
||
|
||
# 调用第二步执行
|
||
return await self.execute_step_two(selected_action)
|
||
|
||
async def execute_step_two(self, sub_action_name: str) -> tuple[bool, str]:
|
||
"""执行二步Action的第二步
|
||
|
||
Args:
|
||
sub_action_name: 子Action名称
|
||
|
||
Returns:
|
||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||
"""
|
||
if not self.is_two_step_action:
|
||
return False, "此Action不是二步Action"
|
||
|
||
# 子类需要重写此方法来实现具体的第二步逻辑
|
||
return False, f"二步Action必须实现execute_step_two方法来处理操作: {sub_action_name}"
|
||
|
||
# =============================================================================
|
||
# 新的激活机制 - go_activate 和工具函数
|
||
# =============================================================================
|
||
|
||
def _get_chat_content(self) -> str:
|
||
"""获取聊天内容用于激活判断
|
||
|
||
从实例属性中获取聊天内容。子类可以重写此方法来自定义获取逻辑。
|
||
|
||
Returns:
|
||
str: 聊天内容
|
||
"""
|
||
# 尝试从不同的实例属性中获取聊天内容
|
||
# 优先级:_activation_chat_content > action_data['chat_content'] > ""
|
||
|
||
# 1. 如果有专门设置的激活用聊天内容(由 ActionModifier 设置)
|
||
if hasattr(self, "_activation_chat_content"):
|
||
return getattr(self, "_activation_chat_content", "")
|
||
|
||
# 2. 尝试从 action_data 中获取
|
||
if hasattr(self, "action_data") and isinstance(self.action_data, dict):
|
||
return self.action_data.get("chat_content", "")
|
||
|
||
# 3. 默认返回空字符串
|
||
return ""
|
||
|
||
async def go_activate(
|
||
self,
|
||
llm_judge_model: "LLMRequest | None" = None,
|
||
) -> bool:
|
||
"""判断此 Action 是否应该被激活
|
||
|
||
这是新的激活机制的核心方法。子类可以重写此方法来实现自定义的激活逻辑,
|
||
也可以使用提供的工具函数来简化常见的激活判断。
|
||
|
||
默认实现会检查类属性中的激活类型配置,提供向后兼容支持。
|
||
|
||
聊天内容会自动从实例属性中获取,不需要手动传入。
|
||
|
||
Args:
|
||
llm_judge_model: LLM 判断模型,如果需要使用 LLM 判断
|
||
|
||
Returns:
|
||
bool: True 表示应该激活,False 表示不激活
|
||
|
||
Example:
|
||
>>> # 简单的关键词激活
|
||
>>> async def go_activate(self, llm_judge_model=None) -> bool:
|
||
>>> return await self._keyword_match(["你好", "hello"])
|
||
>>>
|
||
>>> # LLM 判断激活
|
||
>>> async def go_activate(self, llm_judge_model=None) -> bool:
|
||
>>> return await self._llm_judge_activation(
|
||
>>> "当用户询问天气信息时激活",
|
||
>>> llm_judge_model
|
||
>>> )
|
||
>>>
|
||
>>> # 组合多种条件
|
||
>>> async def go_activate(self, llm_judge_model=None) -> bool:
|
||
>>> # 随机 30% 概率,或者匹配关键词
|
||
>>> if await self._random_activation(0.3):
|
||
>>> return True
|
||
>>> return await self._keyword_match(["天气"])
|
||
"""
|
||
# 默认实现:向后兼容旧的激活类型系统
|
||
activation_type = getattr(self, "activation_type", ActionActivationType.ALWAYS)
|
||
|
||
if activation_type == ActionActivationType.ALWAYS:
|
||
return True
|
||
|
||
elif activation_type == ActionActivationType.NEVER:
|
||
return False
|
||
|
||
elif activation_type == ActionActivationType.RANDOM:
|
||
probability = getattr(self, "random_activation_probability", 0.0)
|
||
return await self._random_activation(probability)
|
||
|
||
elif activation_type == ActionActivationType.KEYWORD:
|
||
keywords = getattr(self, "activation_keywords", [])
|
||
case_sensitive = getattr(self, "keyword_case_sensitive", False)
|
||
return await self._keyword_match(keywords, case_sensitive)
|
||
|
||
elif activation_type == ActionActivationType.LLM_JUDGE:
|
||
prompt = getattr(self, "llm_judge_prompt", "")
|
||
return await self._llm_judge_activation(
|
||
judge_prompt=prompt,
|
||
llm_judge_model=llm_judge_model,
|
||
)
|
||
|
||
# 未知类型,默认不激活
|
||
logger.warning(f"{self.log_prefix} 未知的激活类型: {activation_type}")
|
||
return False
|
||
|
||
async def _random_activation(self, probability: float) -> bool:
|
||
"""随机激活工具函数
|
||
|
||
Args:
|
||
probability: 激活概率,范围 0.0 到 1.0
|
||
|
||
Returns:
|
||
bool: 是否激活
|
||
"""
|
||
result = random.random() < probability
|
||
logger.debug(f"{self.log_prefix} 随机激活判断: 概率={probability}, 结果={'激活' if result else '不激活'}")
|
||
return result
|
||
|
||
async def _keyword_match(
|
||
self,
|
||
keywords: list[str],
|
||
case_sensitive: bool = False,
|
||
) -> bool:
|
||
"""关键词匹配工具函数
|
||
|
||
聊天内容会自动从实例属性中获取。
|
||
|
||
Args:
|
||
keywords: 关键词列表
|
||
case_sensitive: 是否区分大小写
|
||
|
||
Returns:
|
||
bool: 是否匹配到关键词
|
||
"""
|
||
if not keywords:
|
||
logger.warning(f"{self.log_prefix} 关键词列表为空,默认不激活")
|
||
return False
|
||
|
||
# 自动获取聊天内容
|
||
chat_content = self._get_chat_content()
|
||
|
||
search_text = chat_content
|
||
if not case_sensitive:
|
||
search_text = search_text.lower()
|
||
|
||
matched_keywords = []
|
||
for keyword in keywords:
|
||
check_keyword = keyword if case_sensitive else keyword.lower()
|
||
if check_keyword in search_text:
|
||
matched_keywords.append(keyword)
|
||
|
||
if matched_keywords:
|
||
logger.debug(f"{self.log_prefix} 匹配到关键词: {matched_keywords}")
|
||
return True
|
||
else:
|
||
logger.debug(f"{self.log_prefix} 未匹配到任何关键词: {keywords}")
|
||
return False
|
||
|
||
async def _llm_judge_activation(
|
||
self,
|
||
judge_prompt: str = "",
|
||
llm_judge_model: "LLMRequest | None" = None,
|
||
action_description: str = "",
|
||
action_require: list[str] | None = None,
|
||
) -> bool:
|
||
"""LLM 判断激活工具函数
|
||
|
||
使用 LLM 来判断是否应该激活此 Action。
|
||
会自动构建完整的判断提示词,只需要提供核心判断逻辑即可。
|
||
|
||
聊天内容会自动从实例属性中获取。
|
||
|
||
Args:
|
||
judge_prompt: 自定义判断提示词(核心判断逻辑)
|
||
llm_judge_model: LLM 判断模型实例,如果为 None 则会创建默认的小模型
|
||
action_description: Action 描述,如果不提供则使用类属性
|
||
action_require: Action 使用场景,如果不提供则使用类属性
|
||
|
||
Returns:
|
||
bool: 是否应该激活
|
||
|
||
Example:
|
||
>>> # 最简单的用法
|
||
>>> result = await self._llm_judge_activation(
|
||
>>> "当用户询问天气信息时激活"
|
||
>>> )
|
||
>>>
|
||
>>> # 提供详细信息
|
||
>>> result = await self._llm_judge_activation(
|
||
>>> judge_prompt="当用户表达情绪或需要情感支持时激活",
|
||
>>> action_description="发送安慰表情包",
|
||
>>> action_require=["用户情绪低落", "需要情感支持"]
|
||
>>> )
|
||
"""
|
||
try:
|
||
# 自动获取聊天内容
|
||
chat_content = self._get_chat_content()
|
||
|
||
# 如果没有提供 LLM 模型,创建一个默认的
|
||
if llm_judge_model is None:
|
||
from src.config.config import model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
|
||
llm_judge_model = LLMRequest(
|
||
model_set=model_config.model_task_config.utils_small,
|
||
request_type="action.judge",
|
||
)
|
||
|
||
# 使用类属性作为默认值
|
||
if not action_description:
|
||
action_description = getattr(self, "action_description", "Action 动作")
|
||
|
||
if action_require is None:
|
||
action_require = getattr(self, "action_require", [])
|
||
|
||
# 构建完整的判断提示词
|
||
prompt = f"""你需要判断在当前聊天情况下,是否应该激活名为"{self.action_name}"的动作。
|
||
|
||
动作描述:{action_description}
|
||
"""
|
||
|
||
if action_require:
|
||
prompt += "\n动作使用场景:\n"
|
||
for req in action_require:
|
||
prompt += f"- {req}\n"
|
||
|
||
if judge_prompt:
|
||
prompt += f"\n额外判定条件:\n{judge_prompt}\n"
|
||
|
||
if chat_content:
|
||
prompt += f"\n当前聊天记录:\n{chat_content}\n"
|
||
|
||
prompt += """
|
||
请根据以上信息判断是否应该激活这个动作。
|
||
只需要回答"是"或"否",不要有其他内容。
|
||
"""
|
||
|
||
# 调用 LLM 进行判断
|
||
response, _ = await llm_judge_model.generate_response_async(prompt=prompt)
|
||
response = response.strip().lower()
|
||
|
||
should_activate = "是" in response or "yes" in response or "true" in response
|
||
|
||
logger.debug(
|
||
f"{self.log_prefix} LLM 判断结果: 响应='{response}', 结果={'激活' if should_activate else '不激活'}"
|
||
)
|
||
return should_activate
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} LLM 判断激活时出错: {e}")
|
||
# 出错时默认不激活
|
||
return False
|
||
|
||
@abstractmethod
|
||
async def execute(self) -> tuple[bool, str]:
|
||
"""执行Action的抽象方法,子类必须实现
|
||
|
||
对于二步Action,会自动处理第一步逻辑
|
||
|
||
Returns:
|
||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||
"""
|
||
# 如果是二步Action,自动处理第一步
|
||
if self.is_two_step_action:
|
||
return await self.handle_step_one()
|
||
|
||
# 普通Action由子类实现
|
||
pass
|
||
|
||
async def handle_action(self) -> tuple[bool, str]:
|
||
"""兼容旧系统的handle_action接口,委托给execute方法
|
||
|
||
为了保持向后兼容性,旧系统的代码可能会调用handle_action方法。
|
||
此方法将调用委托给新的execute方法。
|
||
|
||
Returns:
|
||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||
"""
|
||
return await self.execute()
|
||
|
||
def get_config(self, key: str, default=None):
|
||
"""获取插件配置值,使用嵌套键访问
|
||
|
||
Args:
|
||
key: 配置键名,使用嵌套访问如 "section.subsection.key"
|
||
default: 默认值
|
||
|
||
Returns:
|
||
Any: 配置值或默认值
|
||
"""
|
||
if not self.plugin_config:
|
||
return default
|
||
|
||
# 支持嵌套键访问
|
||
keys = key.split(".")
|
||
current = self.plugin_config
|
||
|
||
for k in keys:
|
||
if isinstance(current, dict) and k in current:
|
||
current = current[k]
|
||
else:
|
||
return default
|
||
|
||
return current
|