将原先独立的 Exa 和 Tavily 搜索引擎配置项合并到 `web_search` 配置块中,以实现更统一的管理。同时,移除了已废弃的 `Telemetry` 和部分 `Experimental` 功能配置,简化了整体配置文件结构。 主要变更: - `ExaConfig` 和 `TavilyConfig` 被移除,其 API 密钥设置已迁移至 `WebSearchConfig`。 - 删除了 `TelemetryConfig` 及其在主配置中的引用。 - 简化了 `planner` 的自定义提示词逻辑,现在仅通过内容是否为空来判断是否启用。 - 更新了配置文件模板,以反映上述结构调整并移除过时的注释和配置项。
574 lines
26 KiB
Python
574 lines
26 KiB
Python
import orjson
|
||
import time
|
||
import traceback
|
||
from typing import Dict, Any, Optional, Tuple
|
||
from rich.traceback import install
|
||
from datetime import datetime
|
||
from json_repair import repair_json
|
||
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.config.config import global_config, model_config
|
||
from src.common.logger import get_logger
|
||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||
from src.chat.utils.chat_message_builder import (
|
||
build_readable_actions,
|
||
get_actions_by_timestamp_with_chat,
|
||
build_readable_messages_with_id,
|
||
get_raw_msg_before_timestamp_with_chat,
|
||
)
|
||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||
from src.chat.planner_actions.action_manager import ActionManager
|
||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType
|
||
from src.plugin_system.core.component_registry import component_registry
|
||
from src.manager.schedule_manager import schedule_manager
|
||
from src.mood.mood_manager import mood_manager
|
||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||
logger = get_logger("planner")
|
||
|
||
install(extra_lines=3)
|
||
|
||
|
||
def init_prompt():
|
||
Prompt(
|
||
"""
|
||
{schedule_block}
|
||
{mood_block}
|
||
{time_block}
|
||
{identity_block}
|
||
|
||
{custom_prompt_block}
|
||
{chat_context_description},以下是具体的聊天内容
|
||
{chat_content_block}
|
||
|
||
{moderation_prompt}
|
||
|
||
现在请你根据{by_what}选择合适的action和触发action的消息:
|
||
{actions_before_now_block}
|
||
|
||
{no_action_block}
|
||
{action_options_text}
|
||
|
||
你必须从上面列出的可用action中选择一个,并说明触发action的消息id(不是消息原文)和选择该action的原因。
|
||
|
||
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
|
||
""",
|
||
"planner_prompt",
|
||
)
|
||
|
||
Prompt(
|
||
"""
|
||
# 主动思考决策
|
||
|
||
## 你的内部状态
|
||
{time_block}
|
||
{identity_block}
|
||
{schedule_block}
|
||
{mood_block}
|
||
|
||
## 长期记忆摘要
|
||
{long_term_memory_block}
|
||
|
||
## 任务
|
||
基于以上所有信息,分析当前情况,决定是否需要主动做些什么。
|
||
如果你认为不需要,就选择 'do_nothing'。
|
||
|
||
## 可用动作
|
||
{action_options_text}
|
||
|
||
你必须从上面列出的可用action中选择一个。
|
||
请以严格的 JSON 格式输出,且仅包含 JSON 内容:
|
||
""",
|
||
"proactive_planner_prompt",
|
||
)
|
||
|
||
Prompt(
|
||
"""
|
||
动作:{action_name}
|
||
动作描述:{action_description}
|
||
{action_require}
|
||
{{
|
||
"action": "{action_name}",{action_parameters}{target_prompt}
|
||
"reason":"触发action的原因"
|
||
}}
|
||
""",
|
||
"action_prompt",
|
||
)
|
||
|
||
|
||
class ActionPlanner:
|
||
def __init__(self, chat_id: str, action_manager: ActionManager):
|
||
self.chat_id = chat_id
|
||
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
|
||
self.action_manager = action_manager
|
||
# LLM规划器配置
|
||
self.planner_llm = LLMRequest(
|
||
model_set=model_config.model_task_config.planner, request_type="planner"
|
||
) # 用于动作规划
|
||
|
||
self.last_obs_time_mark = 0.0
|
||
# 添加重试计数器
|
||
self.plan_retry_count = 0
|
||
self.max_plan_retries = 3
|
||
|
||
async def _get_long_term_memory_context(self) -> str:
|
||
"""
|
||
获取长期记忆上下文
|
||
"""
|
||
try:
|
||
# 1. 生成时间相关的关键词
|
||
now = datetime.now()
|
||
keywords = ["今天", "日程", "计划"]
|
||
if 5 <= now.hour < 12:
|
||
keywords.append("早上")
|
||
elif 12 <= now.hour < 18:
|
||
keywords.append("中午")
|
||
else:
|
||
keywords.append("晚上")
|
||
|
||
# TODO: 添加与聊天对象相关的关键词
|
||
|
||
# 2. 调用 hippocampus_manager 检索记忆
|
||
retrieved_memories = await hippocampus_manager.get_memory_from_topic(
|
||
valid_keywords=keywords,
|
||
max_memory_num=5,
|
||
max_memory_length=1
|
||
)
|
||
|
||
if not retrieved_memories:
|
||
return "最近没有什么特别的记忆。"
|
||
|
||
# 3. 格式化记忆
|
||
memory_statements = []
|
||
for topic, memory_item in retrieved_memories:
|
||
memory_statements.append(f"关于'{topic}', 你记得'{memory_item}'。")
|
||
|
||
return " ".join(memory_statements)
|
||
except Exception as e:
|
||
logger.error(f"获取长期记忆时出错: {e}")
|
||
return "回忆时出现了一些问题。"
|
||
|
||
async def _build_action_options(self, current_available_actions: Dict[str, ActionInfo], mode: ChatMode, target_prompt: str = "") -> str:
|
||
"""
|
||
构建动作选项
|
||
"""
|
||
action_options_block = ""
|
||
|
||
if mode == ChatMode.PROACTIVE:
|
||
action_options_block += """动作:do_nothing
|
||
动作描述:保持沉默,不主动发起任何动作或对话。
|
||
- 当你分析了所有信息后,觉得当前不是一个发起互动的好时机时
|
||
{{
|
||
"action": "do_nothing",
|
||
"reason":"决定保持沉默的具体原因"
|
||
}}
|
||
|
||
"""
|
||
for action_name, action_info in current_available_actions.items():
|
||
# TODO: 增加一个字段来判断action是否支持在PROACTIVE模式下使用
|
||
|
||
param_text = ""
|
||
if action_info.action_parameters:
|
||
param_text = "\n" + "\n".join(f' "{p_name}":"{p_desc}"' for p_name, p_desc in action_info.action_parameters.items())
|
||
|
||
require_text = "\n".join(f"- {req}" for req in action_info.action_require)
|
||
|
||
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
||
action_options_block += using_action_prompt.format(
|
||
action_name=action_name,
|
||
action_description=action_info.description,
|
||
action_parameters=param_text,
|
||
action_require=require_text,
|
||
target_prompt=target_prompt,
|
||
)
|
||
return action_options_block
|
||
|
||
def find_message_by_id(self, message_id: str, message_id_list: list) -> Optional[Dict[str, Any]]:
|
||
# sourcery skip: use-next
|
||
"""
|
||
根据message_id从message_id_list中查找对应的原始消息
|
||
|
||
Args:
|
||
message_id: 要查找的消息ID
|
||
message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...]
|
||
|
||
Returns:
|
||
找到的原始消息字典,如果未找到则返回None
|
||
"""
|
||
for item in message_id_list:
|
||
if item.get("id") == message_id:
|
||
return item.get("message")
|
||
return None
|
||
|
||
def get_latest_message(self, message_id_list: list) -> Optional[Dict[str, Any]]:
|
||
"""
|
||
获取消息列表中的最新消息
|
||
|
||
Args:
|
||
message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...]
|
||
|
||
Returns:
|
||
最新的消息字典,如果列表为空则返回None
|
||
"""
|
||
if not message_id_list:
|
||
return None
|
||
# 假设消息列表是按时间顺序排列的,最后一个是最新的
|
||
return message_id_list[-1].get("message")
|
||
|
||
async def plan(
|
||
self, mode: ChatMode = ChatMode.FOCUS
|
||
) -> Tuple[Dict[str, Any], Optional[Dict[str, Any]]]:
|
||
"""
|
||
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
|
||
"""
|
||
|
||
action = "no_reply" # 默认动作
|
||
reasoning = "规划器初始化默认"
|
||
action_data = {}
|
||
current_available_actions: Dict[str, ActionInfo] = {}
|
||
target_message: Optional[Dict[str, Any]] = None # 初始化target_message变量
|
||
prompt: str = ""
|
||
message_id_list: list = []
|
||
|
||
try:
|
||
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
|
||
|
||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||
prompt, message_id_list = await self.build_planner_prompt(
|
||
is_group_chat=is_group_chat, # <-- Pass HFC state
|
||
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
|
||
current_available_actions=current_available_actions, # <-- Pass determined actions
|
||
mode=mode,
|
||
)
|
||
|
||
# --- 调用 LLM (普通文本生成) ---
|
||
llm_content = None
|
||
try:
|
||
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||
if reasoning_content:
|
||
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||
else:
|
||
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||
logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||
if reasoning_content:
|
||
logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||
|
||
except Exception as req_e:
|
||
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
|
||
reasoning = f"LLM 请求失败,模型出现问题: {req_e}"
|
||
action = "no_reply"
|
||
|
||
if llm_content:
|
||
try:
|
||
parsed_json = orjson.loads(repair_json(llm_content))
|
||
|
||
if isinstance(parsed_json, list):
|
||
if parsed_json:
|
||
parsed_json = parsed_json[-1]
|
||
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象,使用最后一个: {parsed_json}")
|
||
else:
|
||
parsed_json = {}
|
||
|
||
if not isinstance(parsed_json, dict):
|
||
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
|
||
parsed_json = {}
|
||
|
||
action = parsed_json.get("action", "no_reply")
|
||
reasoning = parsed_json.get("reasoning", "未提供原因")
|
||
|
||
# 将所有其他属性添加到action_data
|
||
for key, value in parsed_json.items():
|
||
if key not in ["action", "reasoning"]:
|
||
action_data[key] = value
|
||
|
||
# 在FOCUS模式下,非no_reply动作需要target_message_id
|
||
if mode == ChatMode.FOCUS and action != "no_reply":
|
||
if target_message_id := parsed_json.get("target_message_id"):
|
||
if isinstance(target_message_id, int):
|
||
target_message_id = str(target_message_id)
|
||
|
||
if isinstance(target_message_id, str) and not target_message_id.startswith('m'):
|
||
target_message_id = f"m{target_message_id}"
|
||
# 根据target_message_id查找原始消息
|
||
target_message = self.find_message_by_id(target_message_id, message_id_list)
|
||
# target_message = None
|
||
# 如果获取的target_message为None,输出warning并重新plan
|
||
if target_message is None:
|
||
self.plan_retry_count += 1
|
||
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息,重试次数: {self.plan_retry_count}/{self.max_plan_retries}")
|
||
|
||
# 如果连续三次plan均为None,输出error并选取最新消息
|
||
if self.plan_retry_count >= self.max_plan_retries:
|
||
logger.error(f"{self.log_prefix}连续{self.max_plan_retries}次plan获取target_message失败,选择最新消息作为target_message")
|
||
target_message = self.get_latest_message(message_id_list)
|
||
self.plan_retry_count = 0 # 重置计数器
|
||
else:
|
||
# 递归重新plan
|
||
return await self.plan(mode)
|
||
else:
|
||
# 成功获取到target_message,重置计数器
|
||
self.plan_retry_count = 0
|
||
else:
|
||
logger.warning(f"{self.log_prefix}FOCUS模式下动作'{action}'缺少target_message_id")
|
||
|
||
if action == "no_action":
|
||
reasoning = "normal决定不使用额外动作"
|
||
elif mode == ChatMode.PROACTIVE and action == "do_nothing":
|
||
pass # 在PROACTIVE模式下,do_nothing是有效动作
|
||
elif action != "no_reply" and action != "reply" and action not in current_available_actions:
|
||
logger.warning(
|
||
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
|
||
)
|
||
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {list(current_available_actions.keys())})。原始理由: {reasoning}"
|
||
action = "no_reply"
|
||
|
||
# 检查no_reply是否可用,如果不可用则使用reply作为终极回退
|
||
if "no_reply" not in current_available_actions:
|
||
if "reply" in current_available_actions:
|
||
action = "reply"
|
||
reasoning += " (no_reply不可用,使用reply作为回退)"
|
||
logger.warning(f"{self.log_prefix}no_reply不可用,使用reply作为回退")
|
||
else:
|
||
# 如果连reply都不可用,使用第一个可用的动作
|
||
if current_available_actions:
|
||
action = list(current_available_actions.keys())[0]
|
||
reasoning += f" (no_reply和reply都不可用,使用{action}作为回退)"
|
||
logger.warning(f"{self.log_prefix}no_reply和reply都不可用,使用{action}作为回退")
|
||
else:
|
||
# 如果没有任何可用动作,这是一个严重错误
|
||
logger.error(f"{self.log_prefix}没有任何可用动作,系统状态异常")
|
||
action = "no_reply" # 仍然尝试no_reply,让上层处理
|
||
|
||
# 对no_reply动作本身也进行可用性检查
|
||
elif action == "no_reply" and "no_reply" not in current_available_actions:
|
||
if "reply" in current_available_actions:
|
||
action = "reply"
|
||
reasoning = f"no_reply不可用,自动回退到reply。原因: {reasoning}"
|
||
logger.warning(f"{self.log_prefix}no_reply不可用,自动回退到reply")
|
||
elif current_available_actions:
|
||
action = list(current_available_actions.keys())[0]
|
||
reasoning = f"no_reply不可用,自动回退到{action}。原因: {reasoning}"
|
||
logger.warning(f"{self.log_prefix}no_reply不可用,自动回退到{action}")
|
||
else:
|
||
logger.error(f"{self.log_prefix}没有任何可用动作,保持no_reply让上层处理")
|
||
|
||
except Exception as json_e:
|
||
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
|
||
traceback.print_exc()
|
||
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
|
||
action = "no_reply"
|
||
|
||
# 检查no_reply是否可用
|
||
if "no_reply" not in current_available_actions:
|
||
if "reply" in current_available_actions:
|
||
action = "reply"
|
||
reasoning += " (no_reply不可用,使用reply)"
|
||
elif current_available_actions:
|
||
action = list(current_available_actions.keys())[0]
|
||
reasoning += f" (no_reply不可用,使用{action})"
|
||
|
||
except Exception as outer_e:
|
||
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
|
||
traceback.print_exc()
|
||
action = "no_reply"
|
||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||
|
||
# 检查no_reply是否可用
|
||
current_available_actions = self.action_manager.get_using_actions()
|
||
if "no_reply" not in current_available_actions:
|
||
if "reply" in current_available_actions:
|
||
action = "reply"
|
||
reasoning += " (no_reply不可用,使用reply)"
|
||
elif current_available_actions:
|
||
action = list(current_available_actions.keys())[0]
|
||
reasoning += f" (no_reply不可用,使用{action})"
|
||
else:
|
||
logger.error(f"{self.log_prefix}严重错误:没有任何可用动作")
|
||
|
||
is_parallel = False
|
||
if mode == ChatMode.NORMAL and action in current_available_actions:
|
||
is_parallel = current_available_actions[action].parallel_action
|
||
|
||
action_result = {
|
||
"action_type": action,
|
||
"action_data": action_data,
|
||
"reasoning": reasoning,
|
||
"timestamp": time.time(),
|
||
"is_parallel": is_parallel,
|
||
}
|
||
|
||
|
||
return (
|
||
{
|
||
"action_result": action_result,
|
||
"action_prompt": prompt,
|
||
},
|
||
target_message,
|
||
)
|
||
|
||
async def build_planner_prompt(
|
||
self,
|
||
is_group_chat: bool, # Now passed as argument
|
||
chat_target_info: Optional[dict], # Now passed as argument
|
||
current_available_actions: Dict[str, ActionInfo],
|
||
mode: ChatMode = ChatMode.FOCUS,
|
||
) -> tuple[str, list]: # sourcery skip: use-join
|
||
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
|
||
try:
|
||
# --- 通用信息获取 ---
|
||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||
bot_name = global_config.bot.nickname
|
||
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else ""
|
||
bot_core_personality = global_config.personality.personality_core
|
||
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}:"
|
||
|
||
schedule_block = ""
|
||
if global_config.schedule.enable:
|
||
if current_activity := schedule_manager.get_current_activity():
|
||
schedule_block = f"你当前正在:{current_activity}。"
|
||
|
||
mood_block = ""
|
||
if global_config.mood.enable_mood:
|
||
chat_mood = mood_manager.get_mood_by_chat_id(self.chat_id)
|
||
mood_block = f"你现在的心情是:{chat_mood.mood_state}"
|
||
|
||
# --- 根据模式构建不同的Prompt ---
|
||
if mode == ChatMode.PROACTIVE:
|
||
long_term_memory_block = await self._get_long_term_memory_context()
|
||
action_options_text = await self._build_action_options(current_available_actions, mode)
|
||
|
||
prompt_template = await global_prompt_manager.get_prompt_async("proactive_planner_prompt")
|
||
prompt = prompt_template.format(
|
||
time_block=time_block,
|
||
identity_block=identity_block,
|
||
schedule_block=schedule_block,
|
||
mood_block=mood_block,
|
||
long_term_memory_block=long_term_memory_block,
|
||
action_options_text=action_options_text,
|
||
)
|
||
return prompt, []
|
||
|
||
# --- FOCUS 和 NORMAL 模式的逻辑 ---
|
||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||
chat_id=self.chat_id,
|
||
timestamp=time.time(),
|
||
limit=int(global_config.chat.max_context_size * 0.6),
|
||
)
|
||
|
||
chat_content_block, message_id_list = build_readable_messages_with_id(
|
||
messages=message_list_before_now,
|
||
timestamp_mode="normal",
|
||
read_mark=self.last_obs_time_mark,
|
||
truncate=True,
|
||
show_actions=True,
|
||
)
|
||
|
||
actions_before_now = get_actions_by_timestamp_with_chat(
|
||
chat_id=self.chat_id,
|
||
timestamp_start=time.time() - 3600,
|
||
timestamp_end=time.time(),
|
||
limit=5,
|
||
)
|
||
|
||
actions_before_now_block = build_readable_actions(actions=actions_before_now)
|
||
actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}"
|
||
|
||
self.last_obs_time_mark = time.time()
|
||
|
||
if mode == ChatMode.FOCUS:
|
||
mentioned_bonus = ""
|
||
if global_config.chat.mentioned_bot_inevitable_reply:
|
||
mentioned_bonus = "\n- 有人提到你"
|
||
if global_config.chat.at_bot_inevitable_reply:
|
||
mentioned_bonus = "\n- 有人提到你,或者at你"
|
||
|
||
by_what = "聊天内容"
|
||
target_prompt = '\n "target_message_id":"触发action的消息id"'
|
||
no_action_block = f"""重要说明:
|
||
- 'no_reply' 表示只进行不进行回复,等待合适的回复时机
|
||
- 当你刚刚发送了消息,没有人回复时,选择no_reply
|
||
- 当你一次发送了太多消息,为了避免打扰聊天节奏,选择no_reply
|
||
|
||
动作:reply
|
||
动作描述:参与聊天回复,发送文本进行表达
|
||
- 你想要闲聊或者随便附和{mentioned_bonus}
|
||
- 如果你刚刚进行了回复,不要对同一个话题重复回应
|
||
{{
|
||
"action": "reply",
|
||
"target_message_id":"触发action的消息id",
|
||
"reason":"回复的原因"
|
||
}}
|
||
|
||
"""
|
||
else: # NORMAL Mode
|
||
by_what = "聊天内容和用户的最新消息"
|
||
target_prompt = ""
|
||
no_action_block = """重要说明:
|
||
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
|
||
- 其他action表示在普通回复的基础上,执行相应的额外动作"""
|
||
|
||
chat_context_description = "你现在正在一个群聊中"
|
||
if not is_group_chat and chat_target_info:
|
||
chat_target_name = chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
|
||
chat_context_description = f"你正在和 {chat_target_name} 私聊"
|
||
|
||
action_options_block = await self._build_action_options(current_available_actions, mode, target_prompt)
|
||
|
||
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
|
||
|
||
custom_prompt_block = ""
|
||
if global_config.custom_prompt.planner_custom_prompt_content:
|
||
custom_prompt_block = global_config.custom_prompt.planner_custom_prompt_content
|
||
|
||
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
|
||
prompt = planner_prompt_template.format(
|
||
schedule_block=schedule_block,
|
||
mood_block=mood_block,
|
||
time_block=time_block,
|
||
by_what=by_what,
|
||
chat_context_description=chat_context_description,
|
||
chat_content_block=chat_content_block,
|
||
actions_before_now_block=actions_before_now_block,
|
||
no_action_block=no_action_block,
|
||
action_options_text=action_options_block,
|
||
moderation_prompt=moderation_prompt_block,
|
||
identity_block=identity_block,
|
||
custom_prompt_block=custom_prompt_block,
|
||
bot_name=bot_name,
|
||
)
|
||
return prompt, message_id_list
|
||
except Exception as e:
|
||
logger.error(f"构建 Planner 提示词时出错: {e}")
|
||
logger.error(traceback.format_exc())
|
||
return "构建 Planner Prompt 时出错", []
|
||
|
||
def get_necessary_info(self) -> Tuple[bool, Optional[dict], Dict[str, ActionInfo]]:
|
||
"""
|
||
获取 Planner 需要的必要信息
|
||
"""
|
||
is_group_chat = True
|
||
is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id)
|
||
logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}")
|
||
|
||
current_available_actions_dict = self.action_manager.get_using_actions()
|
||
|
||
# 获取完整的动作信息
|
||
all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore
|
||
ComponentType.ACTION
|
||
)
|
||
current_available_actions = {}
|
||
for action_name in current_available_actions_dict:
|
||
if action_name in all_registered_actions:
|
||
current_available_actions[action_name] = all_registered_actions[action_name]
|
||
else:
|
||
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
|
||
|
||
return is_group_chat, chat_target_info, current_available_actions
|
||
|
||
|
||
init_prompt()
|