Files
Mofox-Core/template/bot_config_template.toml
2025-04-23 23:48:42 +08:00

297 lines
14 KiB
TOML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[inner]
version = "1.4.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
#如果新增项目请在BotConfig类下新增相应的变量
#1.如果你修改的是[]层级项目,例如你新增了 [memory],那么请在config.py的 load_config函数中的include_configs字典中新增"内容":{
#"func":memory,
#"support":">=0.0.0", #新的版本号
#"necessary":False #是否必须
#}
#2.如果你修改的是[]下的项目,例如你新增了[memory]下的 memory_ban_words ,那么请在config.py的 load_config函数中的 memory函数下新增版本判断:
# if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
# config.memory_ban_words = set(memory_config.get("memory_ban_words", []))
# 版本格式:主版本号.次版本号.修订号,版本号递增规则如下:
# 主版本号:当你做了不兼容的 API 修改,
# 次版本号:当你做了向下兼容的功能性新增,
# 修订号:当你做了向下兼容的问题修正。
# 先行版本号及版本编译信息可以加到“主版本号.次版本号.修订号”的后面,作为延伸。
#----以上是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
[bot]
qq = 1145141919810
nickname = "麦麦"
alias_names = ["麦叠", "牢麦"] #该选项还在调试中,暂时未生效
[groups]
talk_allowed = [
123,
123,
] #可以回复消息的群号码
talk_frequency_down = [] #降低回复频率的群号码
ban_user_id = [] #禁止回复和读取消息的QQ号
[personality] #未完善
personality_core = "用一句话或几句话描述人格的核心特点" # 建议20字以内谁再写3000字小作文敲谁脑袋
personality_sides = [
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
]# 条数任意不能为0, 该选项还在调试中,可能未完全生效
[identity] #アイデンティティがない 生まれないらららら
# 兴趣爱好 未完善,有些条目未使用
identity_detail = [
"身份特点",
"身份特点",
]# 条数任意不能为0, 该选项还在调试中,可能未完全生效
#外貌特征
height = 170 # 身高 单位厘米 该选项还在调试中,暂时未生效
weight = 50 # 体重 单位千克 该选项还在调试中,暂时未生效
age = 20 # 年龄 单位岁 该选项还在调试中,暂时未生效
gender = "男" # 性别 该选项还在调试中,暂时未生效
appearance = "用几句话描述外貌特征" # 外貌特征 该选项还在调试中,暂时未生效
[schedule]
enable_schedule_gen = true # 是否启用日程表
enable_schedule_interaction = true # 日程表是否影响回复模式
prompt_schedule_gen = "用几句话描述描述性格特点或行动规律,这个特征会用来生成日程表"
schedule_doing_update_interval = 900 # 日程表更新间隔 单位秒
schedule_temperature = 0.1 # 日程表温度建议0.1-0.5
time_zone = "Asia/Shanghai" # 给你的机器人设置时区,可以解决运行电脑时区和国内时区不同的情况,或者模拟国外留学生日程
[platforms] # 必填项目,填写每个平台适配器提供的链接
nonebot-qq="http://127.0.0.1:18002/api/message"
[response] #群聊的回复策略
enable_heart_flowC = true
# 该功能还在完善中
# 是否启用heart_flowC(心流聊天,HFC)模式
# 启用后麦麦会自主选择进入heart_flowC模式(持续一段时间进行主动的观察和回复并给出回复比较消耗token
#一般回复参数
model_reasoning_probability = 0.7 # 麦麦回答时选择推理模型 模型的概率
model_normal_probability = 0.3 # 麦麦回答时选择一般模型 模型的概率
[heartflow] #启用启用heart_flowC(心流聊天)模式时生效,需要填写以下参数
reply_trigger_threshold = 3.0 # 心流聊天触发阈值,越低越容易进入心流聊天
probability_decay_factor_per_second = 0.2 # 概率衰减因子,越大衰减越快,越高越容易退出心流聊天
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入心流聊天
initial_duration = 60 # 初始持续时间,越大心流聊天持续的时间越长
sub_heart_flow_stop_time = 500 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
# sub_heart_flow_update_interval = 60
# sub_heart_flow_freeze_time = 100
# heart_flow_update_interval = 600
observation_context_size = 20 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
compressed_length = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
[message]
max_context_size = 12 # 麦麦回复时获得的上文数量建议12太短太长都会导致脑袋尖尖
emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率设置为1让麦麦自己决定发不发
thinking_timeout = 100 # 麦麦最长思考时间超过这个时间的思考会放弃往往是api反应太慢
max_response_length = 256 # 麦麦单次回答的最大token数
message_buffer = true # 启用消息缓冲器?启用此项以解决消息的拆分问题,但会使麦麦的回复延迟
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
ban_words = [
# "403","张三"
]
ban_msgs_regex = [
# 需要过滤的消息原始消息匹配的正则表达式匹配到的消息将被过滤支持CQ码若不了解正则表达式请勿修改
#"https?://[^\\s]+", # 匹配https链接
#"\\d{4}-\\d{2}-\\d{2}", # 匹配日期
# "\\[CQ:at,qq=\\d+\\]" # 匹配@
]
[willing] # 一般回复模式的回复意愿设置
willing_mode = "classical" # 回复意愿模式 —— 经典模式classical动态模式dynamicmxp模式mxp自定义模式custom需要你自己实现
response_willing_amplifier = 1 # 麦麦回复意愿放大系数一般为1
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
emoji_response_penalty = 0 # 表情包回复惩罚系数设为0为不回复单个表情包减少单独回复表情包的概率
mentioned_bot_inevitable_reply = false # 提及 bot 必然回复
at_bot_inevitable_reply = false # @bot 必然回复
[emoji]
max_emoji_num = 90 # 表情包最大数量
max_reach_deletion = true # 开启则在达到最大数量时删除表情包,关闭则达到最大数量时不删除,只是不会继续收集表情包
check_interval = 30 # 检查表情包(注册,破损,删除)的时间间隔(分钟)
auto_save = true # 是否保存表情包和图片
enable_check = false # 是否启用表情包过滤,只有符合该要求的表情包才会被保存
check_prompt = "符合公序良俗" # 表情包过滤要求,只有符合该要求的表情包才会被保存
[memory]
build_memory_interval = 2000 # 记忆构建间隔 单位秒 间隔越低,麦麦学习越多,但是冗余信息也会增多
build_memory_distribution = [4.0,2.0,0.6,24.0,8.0,0.4] # 记忆构建分布参数分布1均值标准差权重分布2均值标准差权重
build_memory_sample_num = 10 # 采样数量,数值越高记忆采样次数越多
build_memory_sample_length = 20 # 采样长度,数值越高一段记忆内容越丰富
memory_compress_rate = 0.1 # 记忆压缩率 控制记忆精简程度 建议保持默认,调高可以获得更多信息,但是冗余信息也会增多
forget_memory_interval = 1000 # 记忆遗忘间隔 单位秒 间隔越低,麦麦遗忘越频繁,记忆更精简,但更难学习
memory_forget_time = 24 #多长时间后的记忆会被遗忘 单位小时
memory_forget_percentage = 0.01 # 记忆遗忘比例 控制记忆遗忘程度 越大遗忘越多 建议保持默认
#不希望记忆的词,已经记忆的不会受到影响
memory_ban_words = [
# "403","张三"
]
[mood]
mood_update_interval = 1.0 # 情绪更新间隔 单位秒
mood_decay_rate = 0.95 # 情绪衰减率
mood_intensity_factor = 1.0 # 情绪强度因子
[keywords_reaction] # 针对某个关键词作出反应
enable = true # 关键词反应功能的总开关
[[keywords_reaction.rules]] # 如果想要新增多个关键词直接复制本条修改keywords和reaction即可
enable = true # 是否启用此条为了人类在未来AI战争能更好地识别AIbushi默认开启
keywords = ["人机", "bot", "机器", "入机", "robot", "机器人","ai","AI"] # 会触发反应的关键词
reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" # 触发之后添加的提示词
[[keywords_reaction.rules]] # 就像这样复制
enable = false # 仅作示例,不会触发
keywords = ["测试关键词回复","test",""]
reaction = "回答“测试成功”"
[[keywords_reaction.rules]] # 使用正则表达式匹配句式
enable = false # 仅作示例,不会触发
regex = ["^(?P<n>\\S{1,20})是这样的$"] # 将匹配到的词汇命名为n反应中对应的[n]会被替换为匹配到的内容,若不了解正则表达式请勿编写
reaction = "请按照以下模板造句:[n]是这样的xx只要xx就可以可是[n]要考虑的事情就很多了比如什么时候xx什么时候xx什么时候xx。请自由发挥替换xx部分只需保持句式结构同时表达一种将[n]过度重视的反讽意味)"
[chinese_typo]
enable = true # 是否启用中文错别字生成器
error_rate=0.001 # 单字替换概率
min_freq=9 # 最小字频阈值
tone_error_rate=0.1 # 声调错误概率
word_replace_rate=0.006 # 整词替换概率
[response_splitter]
enable_response_splitter = true # 是否启用回复分割器
response_max_length = 256 # 回复允许的最大长度
response_max_sentence_num = 4 # 回复允许的最大句子数
[remote] #发送统计信息,主要是看全球有多少只麦麦
enable = true
[experimental] #实验性功能
enable_friend_chat = false # 是否启用好友聊天
pfc_chatting = false # 是否启用PFC聊天该功能仅作用于私聊与回复模式独立
#下面的模型若使用硅基流动则不需要更改使用ds官方则改成.env自定义的宏使用自定义模型则选择定位相似的模型自己填写
#推理模型
# 额外字段
# 下面的模型有以下额外字段可以添加:
# stream = <true|false> : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False
[model.llm_reasoning] #只在回复模式为reasoning时启用
name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B"
provider = "SILICONFLOW"
pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
#非推理模型
[model.llm_normal] #V3 回复模型1 主要回复模型默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2 #模型的输入价格(非必填,可以记录消耗)
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.llm_emotion_judge] #表情包判断
name = "Qwen/Qwen2.5-14B-Instruct"
provider = "SILICONFLOW"
pri_in = 0.7
pri_out = 0.7
[model.llm_topic_judge] #记忆主题判断建议使用qwen2.5 7b
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.llm_summary_by_topic] #概括模型建议使用qwen2.5 32b 及以上
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.llm_tool_use] #工具调用模型需要使用支持工具调用的模型建议使用qwen2.5 32b
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
# 识图模型
[model.vlm] #图像识别
name = "Pro/Qwen/Qwen2.5-VL-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0.35
pri_out = 0.35
#嵌入模型
[model.embedding] #嵌入
name = "BAAI/bge-m3"
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.llm_observation] #观察模型建议用免费的建议使用qwen2.5 7b
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
name = "Qwen/Qwen2.5-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.llm_sub_heartflow] #子心流建议使用V3级别
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.llm_heartflow] #心流建议使用qwen2.5 32b
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
#私聊PFC需要开启PFC功能默认三个模型均为硅基流动v3如果需要支持多人同时私聊或频繁调用建议把其中的一个或两个换成官方v3或其它模型以免撞到429
[model.llm_PFC_action_planner]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
temp = 0.3
pri_in = 2
pri_out = 8
[model.llm_PFC_chat]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
temp = 0.3
pri_in = 2
pri_out = 8
[model.llm_PFC_reply_checker]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2
pri_out = 8