224 lines
8.7 KiB
Python
224 lines
8.7 KiB
Python
from src.config.config import global_config
|
|
from src.chat.message_receive.message import MessageRecv, MessageSending, Message
|
|
from src.common.database.database_model import Messages, ThinkingLog
|
|
import time
|
|
import traceback
|
|
from typing import List
|
|
import json
|
|
|
|
|
|
class InfoCatcher:
|
|
def __init__(self):
|
|
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
|
|
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
|
|
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
|
|
|
|
self.chat_id = ""
|
|
self.trigger_response_text = ""
|
|
self.response_text = ""
|
|
|
|
self.trigger_response_time = 0
|
|
self.trigger_response_message = None
|
|
|
|
self.response_time = 0
|
|
self.response_messages = []
|
|
|
|
# 使用字典来存储 heartflow 模式的数据
|
|
self.heartflow_data = {
|
|
"heart_flow_prompt": "",
|
|
"sub_heartflow_before": "",
|
|
"sub_heartflow_now": "",
|
|
"sub_heartflow_after": "",
|
|
"sub_heartflow_model": "",
|
|
"prompt": "",
|
|
"response": "",
|
|
"model": "",
|
|
}
|
|
|
|
# 使用字典来存储 reasoning 模式的数据喵~
|
|
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
|
|
|
|
# 耗时喵~
|
|
self.timing_results = {
|
|
"interested_rate_time": 0,
|
|
"sub_heartflow_observe_time": 0,
|
|
"sub_heartflow_step_time": 0,
|
|
"make_response_time": 0,
|
|
}
|
|
|
|
def catch_decide_to_response(self, message: MessageRecv):
|
|
# 搜集决定回复时的信息
|
|
self.trigger_response_message = message
|
|
self.trigger_response_text = message.detailed_plain_text
|
|
|
|
self.trigger_response_time = time.time()
|
|
|
|
self.chat_id = message.chat_stream.stream_id
|
|
|
|
self.chat_history = self.get_message_from_db_before_msg(message)
|
|
|
|
def catch_after_observe(self, obs_duration: float): # 这里可以有更多信息
|
|
self.timing_results["sub_heartflow_observe_time"] = obs_duration
|
|
|
|
def catch_afer_shf_step(self, step_duration: float, past_mind: str, current_mind: str):
|
|
self.timing_results["sub_heartflow_step_time"] = step_duration
|
|
if len(past_mind) > 1:
|
|
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
|
|
self.heartflow_data["sub_heartflow_now"] = current_mind
|
|
else:
|
|
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
|
|
self.heartflow_data["sub_heartflow_now"] = current_mind
|
|
|
|
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
|
|
self.reasoning_data["thinking_log"] = reasoning_content
|
|
self.reasoning_data["prompt"] = prompt
|
|
self.reasoning_data["response"] = response
|
|
self.reasoning_data["model"] = model_name
|
|
|
|
self.response_text = response
|
|
|
|
def catch_after_generate_response(self, response_duration: float):
|
|
self.timing_results["make_response_time"] = response_duration
|
|
|
|
def catch_after_response(
|
|
self, response_duration: float, response_message: List[str], first_bot_msg: MessageSending
|
|
):
|
|
self.timing_results["make_response_time"] = response_duration
|
|
self.response_time = time.time()
|
|
self.response_messages = []
|
|
for msg in response_message:
|
|
self.response_messages.append(msg)
|
|
|
|
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(
|
|
self.trigger_response_message, first_bot_msg
|
|
)
|
|
|
|
@staticmethod
|
|
def get_message_from_db_between_msgs(message_start: Message, message_end: Message):
|
|
try:
|
|
time_start = message_start.message_info.time
|
|
time_end = message_end.message_info.time
|
|
chat_id = message_start.chat_stream.stream_id
|
|
|
|
print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
|
|
|
|
messages_between_query = (
|
|
Messages.select()
|
|
.where((Messages.chat_id == chat_id) & (Messages.time > time_start) & (Messages.time < time_end))
|
|
.order_by(Messages.time.desc())
|
|
)
|
|
|
|
result = list(messages_between_query)
|
|
print(f"查询结果数量: {len(result)}")
|
|
if result:
|
|
print(f"第一条消息时间: {result[0].time}")
|
|
print(f"最后一条消息时间: {result[-1].time}")
|
|
return result
|
|
except Exception as e:
|
|
print(f"获取消息时出错: {str(e)}")
|
|
print(traceback.format_exc())
|
|
return []
|
|
|
|
def get_message_from_db_before_msg(self, message: MessageRecv):
|
|
message_id_val = message.message_info.message_id
|
|
chat_id_val = message.chat_stream.stream_id
|
|
|
|
messages_before_query = (
|
|
Messages.select()
|
|
.where((Messages.chat_id == chat_id_val) & (Messages.message_id < message_id_val))
|
|
.order_by(Messages.time.desc())
|
|
.limit(global_config.focus_chat.observation_context_size * 3)
|
|
)
|
|
|
|
return list(messages_before_query)
|
|
|
|
def message_list_to_dict(self, message_list):
|
|
result = []
|
|
for msg_item in message_list:
|
|
processed_msg_item = msg_item
|
|
if not isinstance(msg_item, dict):
|
|
processed_msg_item = self.message_to_dict(msg_item)
|
|
|
|
if not processed_msg_item:
|
|
continue
|
|
|
|
lite_message = {
|
|
"time": processed_msg_item.get("time"),
|
|
"user_nickname": processed_msg_item.get("user_nickname"),
|
|
"processed_plain_text": processed_msg_item.get("processed_plain_text"),
|
|
}
|
|
result.append(lite_message)
|
|
return result
|
|
|
|
@staticmethod
|
|
def message_to_dict(msg_obj):
|
|
if not msg_obj:
|
|
return None
|
|
if isinstance(msg_obj, dict):
|
|
return msg_obj
|
|
|
|
if isinstance(msg_obj, Messages):
|
|
return {
|
|
"time": msg_obj.time,
|
|
"user_id": msg_obj.user_id,
|
|
"user_nickname": msg_obj.user_nickname,
|
|
"processed_plain_text": msg_obj.processed_plain_text,
|
|
}
|
|
|
|
if hasattr(msg_obj, "message_info") and hasattr(msg_obj.message_info, "user_info"):
|
|
return {
|
|
"time": msg_obj.message_info.time,
|
|
"user_id": msg_obj.message_info.user_info.user_id,
|
|
"user_nickname": msg_obj.message_info.user_info.user_nickname,
|
|
"processed_plain_text": msg_obj.processed_plain_text,
|
|
}
|
|
|
|
print(f"Warning: message_to_dict received an unhandled type: {type(msg_obj)}")
|
|
return {}
|
|
|
|
def done_catch(self):
|
|
"""将收集到的信息存储到数据库的 thinking_log 表中喵~"""
|
|
try:
|
|
trigger_info_dict = self.message_to_dict(self.trigger_response_message)
|
|
response_info_dict = {
|
|
"time": self.response_time,
|
|
"message": self.response_messages,
|
|
}
|
|
chat_history_list = self.message_list_to_dict(self.chat_history)
|
|
chat_history_in_thinking_list = self.message_list_to_dict(self.chat_history_in_thinking)
|
|
chat_history_after_response_list = self.message_list_to_dict(self.chat_history_after_response)
|
|
|
|
log_entry = ThinkingLog(
|
|
chat_id=self.chat_id,
|
|
trigger_text=self.trigger_response_text,
|
|
response_text=self.response_text,
|
|
trigger_info_json=json.dumps(trigger_info_dict) if trigger_info_dict else None,
|
|
response_info_json=json.dumps(response_info_dict),
|
|
timing_results_json=json.dumps(self.timing_results),
|
|
chat_history_json=json.dumps(chat_history_list),
|
|
chat_history_in_thinking_json=json.dumps(chat_history_in_thinking_list),
|
|
chat_history_after_response_json=json.dumps(chat_history_after_response_list),
|
|
heartflow_data_json=json.dumps(self.heartflow_data),
|
|
reasoning_data_json=json.dumps(self.reasoning_data),
|
|
)
|
|
log_entry.save()
|
|
|
|
return True
|
|
except Exception as e:
|
|
print(f"存储思考日志时出错: {str(e)} 喵~")
|
|
print(traceback.format_exc())
|
|
return False
|
|
|
|
|
|
class InfoCatcherManager:
|
|
def __init__(self):
|
|
self.info_catchers = {}
|
|
|
|
def get_info_catcher(self, thinking_id: str) -> InfoCatcher:
|
|
if thinking_id not in self.info_catchers:
|
|
self.info_catchers[thinking_id] = InfoCatcher()
|
|
return self.info_catchers[thinking_id]
|
|
|
|
|
|
info_catcher_manager = InfoCatcherManager()
|