Files
Mofox-Core/src/chat/focus_chat/planners/planner.py
SengokuCola 25d9032e62 better:重整配置,分离表达,聊天模式区分
重整配置文件路径,添加更多配置选项
分离了人设表达方式和学习到的表达方式
将聊天模式区分为normal focus和auto
2025-05-20 22:42:16 +08:00

322 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json # <--- 确保导入 json
import traceback
from typing import List, Dict, Any, Optional
from rich.traceback import install
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.info.cycle_info import CycleInfo
from src.chat.focus_chat.info.mind_info import MindInfo
from src.chat.focus_chat.info.action_info import ActionInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.common.logger_manager import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
logger = get_logger("planner")
install(extra_lines=3)
def init_prompt():
Prompt(
"""{extra_info_block}
你需要基于以下信息决定如何参与对话
这些信息可能会有冲突请你整合这些信息并选择一个最合适的action
{chat_content_block}
{mind_info_block}
{cycle_info_block}
请综合分析聊天内容和你看到的新消息参考聊天规划选择合适的action:
{action_options_text}
你必须从上面列出的可用action中选择一个并说明原因。
你的决策必须以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。
请你以下面格式输出你选择的action
{{
"action": "action_name",
"reasoning": "你的决策理由",
"参数1": "参数1的值",
"参数2": "参数2的值",
"参数3": "参数3的值",
...
}}
请输出你的决策 JSON""",
"planner_prompt",
)
Prompt(
"""
action_name: {action_name}
描述:{action_description}
参数:
{action_parameters}
动作要求:
{action_require}""",
"action_prompt",
)
class ActionPlanner:
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.plan,
max_tokens=1000,
request_type="action_planning", # 用于动作规划
)
self.action_manager = action_manager
async def plan(self, all_plan_info: List[InfoBase], cycle_timers: dict) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
参数:
all_plan_info: 所有计划信息
cycle_timers: 计时器字典
"""
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
action_data = {}
try:
# 获取观察信息
extra_info: list[str] = []
# 首先处理动作变更
for info in all_plan_info:
if isinstance(info, ActionInfo) and info.has_changes():
add_actions = info.get_add_actions()
remove_actions = info.get_remove_actions()
reason = info.get_reason()
# 处理动作的增加
for action_name in add_actions:
if action_name in self.action_manager.get_registered_actions():
self.action_manager.add_action_to_using(action_name)
logger.debug(f"{self.log_prefix}添加动作: {action_name}, 原因: {reason}")
# 处理动作的移除
for action_name in remove_actions:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}移除动作: {action_name}, 原因: {reason}")
# 如果当前选择的动作被移除了更新为no_reply
if action in remove_actions:
action = "no_reply"
reasoning = f"之前选择的动作{action}已被移除,原因: {reason}"
# 继续处理其他信息
for info in all_plan_info:
if isinstance(info, ObsInfo):
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate()
chat_type = info.get_chat_type()
is_group_chat = chat_type == "group"
elif isinstance(info, MindInfo):
current_mind = info.get_current_mind()
elif isinstance(info, CycleInfo):
cycle_info = info.get_observe_info()
elif isinstance(info, StructuredInfo):
_structured_info = info.get_data()
elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo
extra_info.append(info.get_processed_info())
# 获取当前可用的动作
current_available_actions = self.action_manager.get_using_actions()
# 如果没有可用动作直接返回no_reply
if not current_available_actions:
logger.warning(f"{self.log_prefix}没有可用的动作将使用no_reply")
action = "no_reply"
reasoning = "没有可用的动作"
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"current_mind": current_mind,
"observed_messages": observed_messages,
}
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await self.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=None,
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument
# structured_info=structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions, # <-- Pass determined actions
cycle_info=cycle_info, # <-- Pass cycle info
extra_info=extra_info,
)
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
llm_content, _, _ = await self.planner_llm.generate_response(prompt=prompt)
logger.debug(f"{self.log_prefix}[Planner] LLM 原始 JSON 响应 (预期): {llm_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}[Planner] LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}"
action = "no_reply"
if llm_content:
try:
# 尝试去除可能的 markdown 代码块标记
cleaned_content = (
llm_content.strip().removeprefix("```json").removeprefix("```").removesuffix("```").strip()
)
if not cleaned_content:
raise json.JSONDecodeError("Cleaned content is empty", cleaned_content, 0)
parsed_json = json.loads(cleaned_content)
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
# 将所有其他属性添加到action_data
action_data = {}
for key, value in parsed_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
action = "no_reply"
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
else:
# 动作有效且可用
action = extracted_action
reasoning = extracted_reasoning
except Exception as json_e:
logger.warning(
f"{self.log_prefix}解析LLM响应JSON失败模型返回不标准: {json_e}. LLM原始输出: '{llm_content}'"
)
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply"
except Exception as outer_e:
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
traceback.print_exc()
action = "no_reply"
reasoning = f"Planner 内部处理错误: {outer_e}"
logger.debug(
f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
)
# 恢复原始动作集
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}恢复了原始动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}
plan_result = {
"action_result": action_result,
"current_mind": current_mind,
"observed_messages": observed_messages,
}
return plan_result
async def build_planner_prompt(
self,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str,
current_mind: Optional[str],
current_available_actions: Dict[str, ActionInfo],
cycle_info: Optional[str],
extra_info: list[str],
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
# --- Determine chat context ---
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
chat_content_block = ""
if observed_messages_str:
chat_content_block = f"聊天记录:\n{observed_messages_str}"
else:
chat_content_block = "你还未开始聊天"
mind_info_block = ""
if current_mind:
mind_info_block = f"对聊天的规划:{current_mind}"
else:
mind_info_block = "你刚参与聊天"
personality_block = individuality.get_prompt(x_person=2, level=2)
action_options_block = ""
for using_actions_name, using_actions_info in current_available_actions.items():
# print(using_actions_name)
# print(using_actions_info)
# print(using_actions_info["parameters"])
# print(using_actions_info["require"])
# print(using_actions_info["description"])
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
param_text = ""
for param_name, param_description in using_actions_info["parameters"].items():
param_text += f" {param_name}: {param_description}\n"
require_text = ""
for require_item in using_actions_info["require"]:
require_text += f" - {require_item}\n"
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info["description"],
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
extra_info_block = "\n".join(extra_info)
extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策"
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
prompt = planner_prompt_template.format(
bot_name=global_config.bot.nickname,
prompt_personality=personality_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
mind_info_block=mind_info_block,
cycle_info_block=cycle_info,
action_options_text=action_options_block,
extra_info_block=extra_info_block,
)
return prompt
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错"
init_prompt()